NetPyNE, a tool for data-driven multiscale modeling of brain circuits

  1. Salvador Dura-Bernal  Is a corresponding author
  2. Benjamin A Suter
  3. Padraig Gleeson
  4. Matteo Cantarelli
  5. Adrian Quintana
  6. Facundo Rodriguez
  7. David J Kedziora
  8. George L Chadderdon
  9. Cliff C Kerr
  10. Samuel A Neymotin
  11. Robert A McDougal
  12. Michael Hines
  13. Gordon M G Shepherd
  14. William W Lytton
  1. State University of New York Downstate Medical Center, United States
  2. Northwestern University, United States
  3. University College London, United Kingdom
  4. Metacell LLC, United States
  5. EyeSeeTea Ltd, United Kingdom
  6. University of Sydney, Australia
  7. Yale University, United States

Abstract

Biophysical modeling of neuronal networks helps to integrate and interpret rapidly growing and disparate experimental datasets at multiple scales. The NetPyNE tool (www.netpyne.org) provides both programmatic and graphical interfaces to develop data-driven multiscale network models in NEURON. NetPyNE clearly separates model parameters from implementation code. Users provide specifications at a high level via a standardized declarative language, e.g. connectivity rules, to create millions of cell-to-cell connections. NetPyNE then enables users to generate the NEURON network, run efficiently parallelized simulations, optimize and explore network parameters through automated batch runs, and use built-in functions for visualization and analysis - connectivity matrices, voltage traces, spike raster plots, local field potentials, and information theoretic measures. NetPyNE also facilitates model sharing by exporting and importing standardized formats (NeuroML and SONATA). NetPyNE is already being used to teach computational neuroscience students and by modelers to investigate brain regions and phenomena.

Data availability

All data and models used in this work are publicly available from the following GitHub and ModelDB links:- Fig 3: https://github.com/Neurosim-lab/netpyne/tree/paper/examples/paper/fig3- Fig 5: https://github.com/Neurosim-lab/netpyne/tree/paper/examples/paper/fig5- Fig 6: https://github.com/Neurosim-lab/netpyne/tree/paper/examples/paper/fig6- Fig 7: https://github.com/Neurosim-lab/netpyne/tree/paper/examples/paper/fig7- Fig 8: https://github.com/Neurosim-lab/netpyne/tree/paper/examples/paper/fig8- Fig 9A: https://github.com/ceciliaromaro/PD_in_NetPyNE- Fig 9B: https://github.com/rtekin/myKnoxRepo- Fig 9C: https://github.com/rodriguez-facundo/LASCON-project- Fig 9D: https://github.com/angietep/CA1-NetPyNE-modelTable 1:Dentate gyrus:- Original: https://modeldb.yale.edu/155568- NetPyNE: https://github.com/rodriguez-facundo/LASCON-projectCA1 microcircuits:- Original: https://modeldb.yale.edu/123815- NetPyNE: https://github.com/angietep/CA1-NetPyNE-modelEpilepsy in thalamocortex:- Original: https://modeldb.yale.edu/234233- NetPyNE: https://github.com/rodriguez-facundo/LASCON-projectEEG and MEG in cortex / HNN model:- Original: https://github.com/jonescompneurolab/hnn- NetPyNE: https://github.com/jonescompneurolab/hnn/tree/netpyneMotor cortex with RL:
- Original: https://modeldb.yale.edu/183014- NetPyNE: https://github.com/Neurosim-lab/netpyne/tree/development/examples/RL_armCortical microcircuits:- Original: https://github.com/OpenSourceBrain/PotjansDiesmann2014/tree/master/PyNEST- NetPyNE: https://github.com/ceciliaromaro/PD_in_NetPyNE

Article and author information

Author details

  1. Salvador Dura-Bernal

    Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, United States
    For correspondence
    salvadordura@gmail.com
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8561-5324
  2. Benjamin A Suter

    Department of Physiology, Northwestern University, Chicago, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9885-6936
  3. Padraig Gleeson

    Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5963-8576
  4. Matteo Cantarelli

    Metacell LLC, Boston, United States
    Competing interests
    Matteo Cantarelli, is affiliated with Metacell LLC. The author has no other competing interests to declare..
  5. Adrian Quintana

    EyeSeeTea Ltd, Cheltenham, United Kingdom
    Competing interests
    Adrian Quintana, is affiliated with EyeSeeTea Ltd. The author has no other competing interests to declare..
  6. Facundo Rodriguez

    Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, United States
    Competing interests
    No competing interests declared.
  7. David J Kedziora

    Complex Systems Group, School of Physics, University of Sydney, Sydney, Australia
    Competing interests
    No competing interests declared.
  8. George L Chadderdon

    Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, United States
    Competing interests
    No competing interests declared.
  9. Cliff C Kerr

    Complex Systems Group, School of Physics, University of Sydney, Sydney, Australia
    Competing interests
    No competing interests declared.
  10. Samuel A Neymotin

    Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, United States
    Competing interests
    No competing interests declared.
  11. Robert A McDougal

    Department of Neuroscience, Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
  12. Michael Hines

    Department of Neuroscience, Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
  13. Gordon M G Shepherd

    Department of Physiology, Northwestern University, Chicago, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1455-8262
  14. William W Lytton

    Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, United States
    Competing interests
    No competing interests declared.

Funding

National Institute of Biomedical Imaging and Bioengineering (U01EB017695)

  • Salvador Dura-Bernal
  • Benjamin A Suter
  • Matteo Cantarelli
  • Adrian Quintana
  • Facundo Rodriguez
  • Samuel A Neymotin
  • Michael Hines
  • Gordon M G Shepherd
  • William W Lytton

New York State Department of Health (DOH01-C32250GG-3450000)

  • Salvador Dura-Bernal
  • Facundo Rodriguez
  • William W Lytton

Wellcome (101445)

  • Padraig Gleeson

National Institute of Biomedical Imaging and Bioengineering (2R01DC012947-06A1)

  • Samuel A Neymotin

National Institute of Biomedical Imaging and Bioengineering (R01EB022903)

  • Salvador Dura-Bernal
  • Michael Hines
  • William W Lytton

National Institute of Biomedical Imaging and Bioengineering (R01MH086638)

  • Robert A McDougal
  • Michael Hines
  • William W Lytton

Wellcome (212941)

  • Padraig Gleeson

National Institute of Biomedical Imaging and Bioengineering (3R01EB022889)

  • Salvador Dura-Bernal
  • Matteo Cantarelli
  • Adrian Quintana
  • Facundo Rodriguez
  • Samuel A Neymotin
  • Michael Hines

Australian Research Council (DE140101375)

  • David J Kedziora
  • Cliff C Kerr

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Dura-Bernal et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,861
    views
  • 799
    downloads
  • 129
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Salvador Dura-Bernal
  2. Benjamin A Suter
  3. Padraig Gleeson
  4. Matteo Cantarelli
  5. Adrian Quintana
  6. Facundo Rodriguez
  7. David J Kedziora
  8. George L Chadderdon
  9. Cliff C Kerr
  10. Samuel A Neymotin
  11. Robert A McDougal
  12. Michael Hines
  13. Gordon M G Shepherd
  14. William W Lytton
(2019)
NetPyNE, a tool for data-driven multiscale modeling of brain circuits
eLife 8:e44494.
https://doi.org/10.7554/eLife.44494

Share this article

https://doi.org/10.7554/eLife.44494

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Gabriel Loewinger, Erjia Cui ... Francisco Pereira
    Tools and Resources

    Fiber photometry has become a popular technique to measure neural activity in vivo, but common analysis strategies can reduce the detection of effects because they condense within-trial signals into summary measures, and discard trial-level information by averaging across-trials. We propose a novel photometry statistical framework based on functional linear mixed modeling, which enables hypothesis testing of variable effects at every trial time-point, and uses trial-level signals without averaging. This makes it possible to compare the timing and magnitude of signals across conditions while accounting for between-animal differences. Our framework produces a series of plots that illustrate covariate effect estimates and statistical significance at each trial time-point. By exploiting signal autocorrelation, our methodology yields joint 95% confidence intervals that account for inspecting effects across the entire trial and improve the detection of event-related signal changes over common multiple comparisons correction strategies. We reanalyze data from a recent study proposing a theory for the role of mesolimbic dopamine in reward learning, and show the capability of our framework to reveal significant effects obscured by standard analysis approaches. For example, our method identifies two dopamine components with distinct temporal dynamics in response to reward delivery. In simulation experiments, our methodology yields improved statistical power over common analysis approaches. Finally, we provide an open-source package and analysis guide for applying our framework.

    1. Computational and Systems Biology
    Veronika Koren, Simone Blanco Malerba ... Stefano Panzeri
    Research Article

    The principle of efficient coding posits that sensory cortical networks are designed to encode maximal sensory information with minimal metabolic cost. Despite the major influence of efficient coding in neuroscience, it has remained unclear whether fundamental empirical properties of neural network activity can be explained solely based on this normative principle. Here, we derive the structural, coding, and biophysical properties of excitatory-inhibitory recurrent networks of spiking neurons that emerge directly from imposing that the network minimizes an instantaneous loss function and a time-averaged performance measure enacting efficient coding. We assumed that the network encodes a number of independent stimulus features varying with a time scale equal to the membrane time constant of excitatory and inhibitory neurons. The optimal network has biologically plausible biophysical features, including realistic integrate-and-fire spiking dynamics, spike-triggered adaptation, and a non-specific excitatory external input. The excitatory-inhibitory recurrent connectivity between neurons with similar stimulus tuning implements feature-specific competition, similar to that recently found in visual cortex. Networks with unstructured connectivity cannot reach comparable levels of coding efficiency. The optimal ratio of excitatory vs inhibitory neurons and the ratio of mean inhibitory-to-inhibitory vs excitatory-to-inhibitory connectivity are comparable to those of cortical sensory networks. The efficient network solution exhibits an instantaneous balance between excitation and inhibition. The network can perform efficient coding even when external stimuli vary over multiple time scales. Together, these results suggest that key properties of biological neural networks may be accounted for by efficient coding.