NetPyNE, a tool for data-driven multiscale modeling of brain circuits
Abstract
Biophysical modeling of neuronal networks helps to integrate and interpret rapidly growing and disparate experimental datasets at multiple scales. The NetPyNE tool (www.netpyne.org) provides both programmatic and graphical interfaces to develop data-driven multiscale network models in NEURON. NetPyNE clearly separates model parameters from implementation code. Users provide specifications at a high level via a standardized declarative language, e.g. connectivity rules, to create millions of cell-to-cell connections. NetPyNE then enables users to generate the NEURON network, run efficiently parallelized simulations, optimize and explore network parameters through automated batch runs, and use built-in functions for visualization and analysis - connectivity matrices, voltage traces, spike raster plots, local field potentials, and information theoretic measures. NetPyNE also facilitates model sharing by exporting and importing standardized formats (NeuroML and SONATA). NetPyNE is already being used to teach computational neuroscience students and by modelers to investigate brain regions and phenomena.
Data availability
All data and models used in this work are publicly available from the following GitHub and ModelDB links:- Fig 3: https://github.com/Neurosim-lab/netpyne/tree/paper/examples/paper/fig3- Fig 5: https://github.com/Neurosim-lab/netpyne/tree/paper/examples/paper/fig5- Fig 6: https://github.com/Neurosim-lab/netpyne/tree/paper/examples/paper/fig6- Fig 7: https://github.com/Neurosim-lab/netpyne/tree/paper/examples/paper/fig7- Fig 8: https://github.com/Neurosim-lab/netpyne/tree/paper/examples/paper/fig8- Fig 9A: https://github.com/ceciliaromaro/PD_in_NetPyNE- Fig 9B: https://github.com/rtekin/myKnoxRepo- Fig 9C: https://github.com/rodriguez-facundo/LASCON-project- Fig 9D: https://github.com/angietep/CA1-NetPyNE-modelTable 1:Dentate gyrus:- Original: https://modeldb.yale.edu/155568- NetPyNE: https://github.com/rodriguez-facundo/LASCON-projectCA1 microcircuits:- Original: https://modeldb.yale.edu/123815- NetPyNE: https://github.com/angietep/CA1-NetPyNE-modelEpilepsy in thalamocortex:- Original: https://modeldb.yale.edu/234233- NetPyNE: https://github.com/rodriguez-facundo/LASCON-projectEEG and MEG in cortex / HNN model:- Original: https://github.com/jonescompneurolab/hnn- NetPyNE: https://github.com/jonescompneurolab/hnn/tree/netpyneMotor cortex with RL: - Original: https://modeldb.yale.edu/183014- NetPyNE: https://github.com/Neurosim-lab/netpyne/tree/development/examples/RL_armCortical microcircuits:- Original: https://github.com/OpenSourceBrain/PotjansDiesmann2014/tree/master/PyNEST- NetPyNE: https://github.com/ceciliaromaro/PD_in_NetPyNE
Article and author information
Author details
Funding
National Institute of Biomedical Imaging and Bioengineering (U01EB017695)
- Salvador Dura-Bernal
- Benjamin A Suter
- Matteo Cantarelli
- Adrian Quintana
- Facundo Rodriguez
- Samuel A Neymotin
- Michael Hines
- Gordon M G Shepherd
- William W Lytton
New York State Department of Health (DOH01-C32250GG-3450000)
- Salvador Dura-Bernal
- Facundo Rodriguez
- William W Lytton
Wellcome (101445)
- Padraig Gleeson
National Institute of Biomedical Imaging and Bioengineering (2R01DC012947-06A1)
- Samuel A Neymotin
National Institute of Biomedical Imaging and Bioengineering (R01EB022903)
- Salvador Dura-Bernal
- Michael Hines
- William W Lytton
National Institute of Biomedical Imaging and Bioengineering (R01MH086638)
- Robert A McDougal
- Michael Hines
- William W Lytton
Wellcome (212941)
- Padraig Gleeson
National Institute of Biomedical Imaging and Bioengineering (3R01EB022889)
- Salvador Dura-Bernal
- Matteo Cantarelli
- Adrian Quintana
- Facundo Rodriguez
- Samuel A Neymotin
- Michael Hines
Australian Research Council (DE140101375)
- David J Kedziora
- Cliff C Kerr
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2019, Dura-Bernal et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 6,732
- views
-
- 782
- downloads
-
- 123
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Computational and Systems Biology
- Microbiology and Infectious Disease
Bacterial membranes are complex and dynamic, arising from an array of evolutionary pressures. One enzyme that alters membrane compositions through covalent lipid modification is MprF. We recently identified that Streptococcus agalactiae MprF synthesizes lysyl-phosphatidylglycerol (Lys-PG) from anionic PG, and a novel cationic lipid, lysyl-glucosyl-diacylglycerol (Lys-Glc-DAG), from neutral glycolipid Glc-DAG. This unexpected result prompted us to investigate whether Lys-Glc-DAG occurs in other MprF-containing bacteria, and whether other novel MprF products exist. Here, we studied protein sequence features determining MprF substrate specificity. First, pairwise analyses identified several streptococcal MprFs synthesizing Lys-Glc-DAG. Second, a restricted Boltzmann machine-guided approach led us to discover an entirely new substrate for MprF in Enterococcus, diglucosyl-diacylglycerol (Glc2-DAG), and an expanded set of organisms that modify glycolipid substrates using MprF. Overall, we combined the wealth of available sequence data with machine learning to model evolutionary constraints on MprF sequences across the bacterial domain, thereby identifying a novel cationic lipid.
-
- Computational and Systems Biology
- Neuroscience
Perception can be highly dependent on stimulus context, but whether and how sensory areas encode the context remains uncertain. We used an ambiguous auditory stimulus – a tritone pair – to investigate the neural activity associated with a preceding contextual stimulus that strongly influenced the tritone pair’s perception: either as an ascending or a descending step in pitch. We recorded single-unit responses from a population of auditory cortical cells in awake ferrets listening to the tritone pairs preceded by the contextual stimulus. We find that the responses adapt locally to the contextual stimulus, consistent with human MEG recordings from the auditory cortex under the same conditions. Decoding the population responses demonstrates that cells responding to pitch-changes are able to predict well the context-sensitive percept of the tritone pairs. Conversely, decoding the individual pitch representations and taking their distance in the circular Shepard tone space predicts the opposite of the percept. The various percepts can be readily captured and explained by a neural model of cortical activity based on populations of adapting, pitch and pitch-direction cells, aligned with the neurophysiological responses. Together, these decoding and model results suggest that contextual influences on perception may well be already encoded at the level of the primary sensory cortices, reflecting basic neural response properties commonly found in these areas.