1. Computational and Systems Biology
  2. Neuroscience
Download icon

NetPyNE, a tool for data-driven multiscale modeling of brain circuits

  1. Salvador Dura-Bernal  Is a corresponding author
  2. Benjamin A Suter
  3. Padraig Gleeson
  4. Matteo Cantarelli
  5. Adrian Quintana
  6. Facundo Rodriguez
  7. David J Kedziora
  8. George L Chadderdon
  9. Cliff C Kerr
  10. Samuel A Neymotin
  11. Robert A McDougal
  12. Michael Hines
  13. Gordon M G Shepherd
  14. William W Lytton
  1. State University of New York Downstate Medical Center, United States
  2. Northwestern University, United States
  3. University College London, United Kingdom
  4. Metacell LLC, United States
  5. EyeSeeTea Ltd, United Kingdom
  6. University of Sydney, Australia
  7. Yale University, United States
Tools and Resources
  • Cited 23
  • Views 4,164
  • Annotations
Cite this article as: eLife 2019;8:e44494 doi: 10.7554/eLife.44494

Abstract

Biophysical modeling of neuronal networks helps to integrate and interpret rapidly growing and disparate experimental datasets at multiple scales. The NetPyNE tool (www.netpyne.org) provides both programmatic and graphical interfaces to develop data-driven multiscale network models in NEURON. NetPyNE clearly separates model parameters from implementation code. Users provide specifications at a high level via a standardized declarative language, e.g. connectivity rules, to create millions of cell-to-cell connections. NetPyNE then enables users to generate the NEURON network, run efficiently parallelized simulations, optimize and explore network parameters through automated batch runs, and use built-in functions for visualization and analysis - connectivity matrices, voltage traces, spike raster plots, local field potentials, and information theoretic measures. NetPyNE also facilitates model sharing by exporting and importing standardized formats (NeuroML and SONATA). NetPyNE is already being used to teach computational neuroscience students and by modelers to investigate brain regions and phenomena.

Data availability

All data and models used in this work are publicly available from the following GitHub and ModelDB links:- Fig 3: https://github.com/Neurosim-lab/netpyne/tree/paper/examples/paper/fig3- Fig 5: https://github.com/Neurosim-lab/netpyne/tree/paper/examples/paper/fig5- Fig 6: https://github.com/Neurosim-lab/netpyne/tree/paper/examples/paper/fig6- Fig 7: https://github.com/Neurosim-lab/netpyne/tree/paper/examples/paper/fig7- Fig 8: https://github.com/Neurosim-lab/netpyne/tree/paper/examples/paper/fig8- Fig 9A: https://github.com/ceciliaromaro/PD_in_NetPyNE- Fig 9B: https://github.com/rtekin/myKnoxRepo- Fig 9C: https://github.com/rodriguez-facundo/LASCON-project- Fig 9D: https://github.com/angietep/CA1-NetPyNE-modelTable 1:Dentate gyrus:- Original: https://modeldb.yale.edu/155568- NetPyNE: https://github.com/rodriguez-facundo/LASCON-projectCA1 microcircuits:- Original: https://modeldb.yale.edu/123815- NetPyNE: https://github.com/angietep/CA1-NetPyNE-modelEpilepsy in thalamocortex:- Original: https://modeldb.yale.edu/234233- NetPyNE: https://github.com/rodriguez-facundo/LASCON-projectEEG and MEG in cortex / HNN model:- Original: https://github.com/jonescompneurolab/hnn- NetPyNE: https://github.com/jonescompneurolab/hnn/tree/netpyneMotor cortex with RL:
- Original: https://modeldb.yale.edu/183014- NetPyNE: https://github.com/Neurosim-lab/netpyne/tree/development/examples/RL_armCortical microcircuits:- Original: https://github.com/OpenSourceBrain/PotjansDiesmann2014/tree/master/PyNEST- NetPyNE: https://github.com/ceciliaromaro/PD_in_NetPyNE

Article and author information

Author details

  1. Salvador Dura-Bernal

    Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, United States
    For correspondence
    salvadordura@gmail.com
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8561-5324
  2. Benjamin A Suter

    Department of Physiology, Northwestern University, Chicago, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9885-6936
  3. Padraig Gleeson

    Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5963-8576
  4. Matteo Cantarelli

    Metacell LLC, Boston, United States
    Competing interests
    Matteo Cantarelli, is affiliated with Metacell LLC. The author has no other competing interests to declare..
  5. Adrian Quintana

    EyeSeeTea Ltd, Cheltenham, United Kingdom
    Competing interests
    Adrian Quintana, is affiliated with EyeSeeTea Ltd. The author has no other competing interests to declare..
  6. Facundo Rodriguez

    Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, United States
    Competing interests
    No competing interests declared.
  7. David J Kedziora

    Complex Systems Group, School of Physics, University of Sydney, Sydney, Australia
    Competing interests
    No competing interests declared.
  8. George L Chadderdon

    Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, United States
    Competing interests
    No competing interests declared.
  9. Cliff C Kerr

    Complex Systems Group, School of Physics, University of Sydney, Sydney, Australia
    Competing interests
    No competing interests declared.
  10. Samuel A Neymotin

    Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, United States
    Competing interests
    No competing interests declared.
  11. Robert A McDougal

    Department of Neuroscience, Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
  12. Michael Hines

    Department of Neuroscience, Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
  13. Gordon M G Shepherd

    Department of Physiology, Northwestern University, Chicago, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1455-8262
  14. William W Lytton

    Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, United States
    Competing interests
    No competing interests declared.

Funding

National Institute of Biomedical Imaging and Bioengineering (U01EB017695)

  • Salvador Dura-Bernal
  • Benjamin A Suter
  • Matteo Cantarelli
  • Adrian Quintana
  • Facundo Rodriguez
  • Samuel A Neymotin
  • Michael Hines
  • Gordon M G Shepherd
  • William W Lytton

New York State Department of Health (DOH01-C32250GG-3450000)

  • Salvador Dura-Bernal
  • Facundo Rodriguez
  • William W Lytton

Wellcome (101445)

  • Padraig Gleeson

National Institute of Biomedical Imaging and Bioengineering (2R01DC012947-06A1)

  • Samuel A Neymotin

National Institute of Biomedical Imaging and Bioengineering (R01EB022903)

  • Salvador Dura-Bernal
  • Michael Hines
  • William W Lytton

National Institute of Biomedical Imaging and Bioengineering (R01MH086638)

  • Robert A McDougal
  • Michael Hines
  • William W Lytton

Wellcome (212941)

  • Padraig Gleeson

National Institute of Biomedical Imaging and Bioengineering (3R01EB022889)

  • Salvador Dura-Bernal
  • Matteo Cantarelli
  • Adrian Quintana
  • Facundo Rodriguez
  • Samuel A Neymotin
  • Michael Hines

Australian Research Council (DE140101375)

  • David J Kedziora
  • Cliff C Kerr

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Upinder Singh Bhalla, Tata Institute of Fundamental Research, India

Publication history

  1. Received: December 19, 2018
  2. Accepted: April 25, 2019
  3. Accepted Manuscript published: April 26, 2019 (version 1)
  4. Version of Record published: May 24, 2019 (version 2)
  5. Version of Record updated: May 31, 2019 (version 3)

Copyright

© 2019, Dura-Bernal et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,164
    Page views
  • 508
    Downloads
  • 23
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Chromosomes and Gene Expression
    2. Computational and Systems Biology
    Lucy Ham et al.
    Research Article Updated

    Single-cell expression profiling opens up new vistas on cellular processes. Extensive cell-to-cell variability at the transcriptomic and proteomic level has been one of the stand-out observations. Because most experimental analyses are destructive we only have access to snapshot data of cellular states. This loss of temporal information presents significant challenges for inferring dynamics, as well as causes of cell-to-cell variability. In particular, we typically cannot separate dynamic variability from within cells (‘intrinsic noise’) from variability across the population (‘extrinsic noise’). Here, we make this non-identifiability mathematically precise, allowing us to identify new experimental set-ups that can assist in resolving this non-identifiability. We show that multiple generic reporters from the same biochemical pathways (e.g. mRNA and protein) can infer magnitudes of intrinsic and extrinsic transcriptional noise, identifying sources of heterogeneity. Stochastic simulations support our theory, and demonstrate that ‘pathway-reporters’ compare favourably to the well-known, but often difficult to implement, dual-reporter method.

    1. Computational and Systems Biology
    2. Neuroscience
    Cathy S Chen et al.
    Research Article

    Sex-based modulation of cognitive processes could set the stage for individual differences in vulnerability to neuropsychiatric disorders. While value-based decision making processes in particular have been proposed to be influenced by sex differences, the overall correct performance in decision making tasks often show variable or minimal differences across sexes. Computational tools allow us to uncover latent variables that define different decision making approaches, even in animals with similar correct performance. Here, we quantify sex differences in mice in the latent variables underlying behavior in a classic value-based decision making task: a restless 2-armed bandit. While male and female mice had similar accuracy, they achieved this performance via different patterns of exploration. Male mice tended to make more exploratory choices overall, largely because they appeared to get 'stuck' in exploration once they had started. Female mice tended to explore less but learned more quickly during exploration. Together, these results suggest that sex exerts stronger influences on decision making during periods of learning and exploration than during stable choices. Exploration during decision making is altered in people diagnosed with addictions, depression, and neurodevelopmental disabilities, pinpointing the neural mechanisms of exploration as a highly translational avenue for conferring sex-modulated vulnerability to neuropsychiatric diagnoses.