NetPyNE, a tool for data-driven multiscale modeling of brain circuits

  1. Salvador Dura-Bernal  Is a corresponding author
  2. Benjamin A Suter
  3. Padraig Gleeson
  4. Matteo Cantarelli
  5. Adrian Quintana
  6. Facundo Rodriguez
  7. David J Kedziora
  8. George L Chadderdon
  9. Cliff C Kerr
  10. Samuel A Neymotin
  11. Robert A McDougal
  12. Michael Hines
  13. Gordon M G Shepherd
  14. William W Lytton
  1. State University of New York Downstate Medical Center, United States
  2. Northwestern University, United States
  3. University College London, United Kingdom
  4. Metacell LLC, United States
  5. EyeSeeTea Ltd, United Kingdom
  6. University of Sydney, Australia
  7. Yale University, United States

Abstract

Biophysical modeling of neuronal networks helps to integrate and interpret rapidly growing and disparate experimental datasets at multiple scales. The NetPyNE tool (www.netpyne.org) provides both programmatic and graphical interfaces to develop data-driven multiscale network models in NEURON. NetPyNE clearly separates model parameters from implementation code. Users provide specifications at a high level via a standardized declarative language, e.g. connectivity rules, to create millions of cell-to-cell connections. NetPyNE then enables users to generate the NEURON network, run efficiently parallelized simulations, optimize and explore network parameters through automated batch runs, and use built-in functions for visualization and analysis - connectivity matrices, voltage traces, spike raster plots, local field potentials, and information theoretic measures. NetPyNE also facilitates model sharing by exporting and importing standardized formats (NeuroML and SONATA). NetPyNE is already being used to teach computational neuroscience students and by modelers to investigate brain regions and phenomena.

Data availability

All data and models used in this work are publicly available from the following GitHub and ModelDB links:- Fig 3: https://github.com/Neurosim-lab/netpyne/tree/paper/examples/paper/fig3- Fig 5: https://github.com/Neurosim-lab/netpyne/tree/paper/examples/paper/fig5- Fig 6: https://github.com/Neurosim-lab/netpyne/tree/paper/examples/paper/fig6- Fig 7: https://github.com/Neurosim-lab/netpyne/tree/paper/examples/paper/fig7- Fig 8: https://github.com/Neurosim-lab/netpyne/tree/paper/examples/paper/fig8- Fig 9A: https://github.com/ceciliaromaro/PD_in_NetPyNE- Fig 9B: https://github.com/rtekin/myKnoxRepo- Fig 9C: https://github.com/rodriguez-facundo/LASCON-project- Fig 9D: https://github.com/angietep/CA1-NetPyNE-modelTable 1:Dentate gyrus:- Original: https://modeldb.yale.edu/155568- NetPyNE: https://github.com/rodriguez-facundo/LASCON-projectCA1 microcircuits:- Original: https://modeldb.yale.edu/123815- NetPyNE: https://github.com/angietep/CA1-NetPyNE-modelEpilepsy in thalamocortex:- Original: https://modeldb.yale.edu/234233- NetPyNE: https://github.com/rodriguez-facundo/LASCON-projectEEG and MEG in cortex / HNN model:- Original: https://github.com/jonescompneurolab/hnn- NetPyNE: https://github.com/jonescompneurolab/hnn/tree/netpyneMotor cortex with RL:
- Original: https://modeldb.yale.edu/183014- NetPyNE: https://github.com/Neurosim-lab/netpyne/tree/development/examples/RL_armCortical microcircuits:- Original: https://github.com/OpenSourceBrain/PotjansDiesmann2014/tree/master/PyNEST- NetPyNE: https://github.com/ceciliaromaro/PD_in_NetPyNE

Article and author information

Author details

  1. Salvador Dura-Bernal

    Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, United States
    For correspondence
    salvadordura@gmail.com
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8561-5324
  2. Benjamin A Suter

    Department of Physiology, Northwestern University, Chicago, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9885-6936
  3. Padraig Gleeson

    Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5963-8576
  4. Matteo Cantarelli

    Metacell LLC, Boston, United States
    Competing interests
    Matteo Cantarelli, is affiliated with Metacell LLC. The author has no other competing interests to declare..
  5. Adrian Quintana

    EyeSeeTea Ltd, Cheltenham, United Kingdom
    Competing interests
    Adrian Quintana, is affiliated with EyeSeeTea Ltd. The author has no other competing interests to declare..
  6. Facundo Rodriguez

    Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, United States
    Competing interests
    No competing interests declared.
  7. David J Kedziora

    Complex Systems Group, School of Physics, University of Sydney, Sydney, Australia
    Competing interests
    No competing interests declared.
  8. George L Chadderdon

    Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, United States
    Competing interests
    No competing interests declared.
  9. Cliff C Kerr

    Complex Systems Group, School of Physics, University of Sydney, Sydney, Australia
    Competing interests
    No competing interests declared.
  10. Samuel A Neymotin

    Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, United States
    Competing interests
    No competing interests declared.
  11. Robert A McDougal

    Department of Neuroscience, Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
  12. Michael Hines

    Department of Neuroscience, Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
  13. Gordon M G Shepherd

    Department of Physiology, Northwestern University, Chicago, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1455-8262
  14. William W Lytton

    Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, United States
    Competing interests
    No competing interests declared.

Funding

National Institute of Biomedical Imaging and Bioengineering (U01EB017695)

  • Salvador Dura-Bernal
  • Benjamin A Suter
  • Matteo Cantarelli
  • Adrian Quintana
  • Facundo Rodriguez
  • Samuel A Neymotin
  • Michael Hines
  • Gordon M G Shepherd
  • William W Lytton

New York State Department of Health (DOH01-C32250GG-3450000)

  • Salvador Dura-Bernal
  • Facundo Rodriguez
  • William W Lytton

Wellcome (101445)

  • Padraig Gleeson

National Institute of Biomedical Imaging and Bioengineering (2R01DC012947-06A1)

  • Samuel A Neymotin

National Institute of Biomedical Imaging and Bioengineering (R01EB022903)

  • Salvador Dura-Bernal
  • Michael Hines
  • William W Lytton

National Institute of Biomedical Imaging and Bioengineering (R01MH086638)

  • Robert A McDougal
  • Michael Hines
  • William W Lytton

Wellcome (212941)

  • Padraig Gleeson

National Institute of Biomedical Imaging and Bioengineering (3R01EB022889)

  • Salvador Dura-Bernal
  • Matteo Cantarelli
  • Adrian Quintana
  • Facundo Rodriguez
  • Samuel A Neymotin
  • Michael Hines

Australian Research Council (DE140101375)

  • David J Kedziora
  • Cliff C Kerr

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Upinder Singh Bhalla, Tata Institute of Fundamental Research, India

Publication history

  1. Received: December 19, 2018
  2. Accepted: April 25, 2019
  3. Accepted Manuscript published: April 26, 2019 (version 1)
  4. Version of Record published: May 24, 2019 (version 2)
  5. Version of Record updated: May 31, 2019 (version 3)

Copyright

© 2019, Dura-Bernal et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,974
    Page views
  • 595
    Downloads
  • 41
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Salvador Dura-Bernal
  2. Benjamin A Suter
  3. Padraig Gleeson
  4. Matteo Cantarelli
  5. Adrian Quintana
  6. Facundo Rodriguez
  7. David J Kedziora
  8. George L Chadderdon
  9. Cliff C Kerr
  10. Samuel A Neymotin
  11. Robert A McDougal
  12. Michael Hines
  13. Gordon M G Shepherd
  14. William W Lytton
(2019)
NetPyNE, a tool for data-driven multiscale modeling of brain circuits
eLife 8:e44494.
https://doi.org/10.7554/eLife.44494

Further reading

    1. Computational and Systems Biology
    Felix Proulx-Giraldeau, Jan M Skotheim, Paul François
    Research Article

    Cell size is controlled to be within a specific range to support physiological function. To control their size, cells use diverse mechanisms ranging from ‘sizers’, in which differences in cell size are compensated for in a single cell division cycle, to ‘adders’, in which a constant amount of cell growth occurs in each cell cycle. This diversity raises the question why a particular cell would implement one rather than another mechanism? To address this question, we performed a series of simulations evolving cell size control networks. The size control mechanism that evolved was influenced by both cell cycle structure and specific selection pressures. Moreover, evolved networks recapitulated known size control properties of naturally occurring networks. If the mechanism is based on a G1 size control and an S/G2/M timer, as found for budding yeast and some human cells, adders likely evolve. But, if the G1 phase is significantly longer than the S/G2/M phase, as is often the case in mammalian cells in vivo, sizers become more likely. Sizers also evolve when the cell cycle structure is inverted so that G1 is a timer, while S/G2/M performs size control, as is the case for the fission yeast S. pombe. For some size control networks, cell size consistently decreases in each cycle until a burst of cell cycle inhibitor drives an extended G1 phase much like the cell division cycle of the green algae Chlamydomonas. That these size control networks evolved such self-organized criticality shows how the evolution of complex systems can drive the emergence of critical processes.

    1. Computational and Systems Biology
    2. Neuroscience
    Kiri Choi, Won Kyu Kim, Changbong Hyeon
    Research Article

    The projection neurons (PNs), reconstructed from electron microscope (EM) images of the Drosophila olfactory system, offer a detailed view of neuronal anatomy, providing glimpses into information flow in the brain. About 150 uPNs constituting 58 glomeruli in the antennal lobe (AL) are bundled together in the axonal extension, routing the olfactory signal received at AL to mushroom body (MB) calyx and lateral horn (LH). Here we quantify the neuronal organization in terms of the inter-PN distances and examine its relationship with the odor types sensed by Drosophila. The homotypic uPNs that constitute glomeruli are tightly bundled and stereotyped in position throughout the neuropils, even though the glomerular PN organization in AL is no longer sustained in the higher brain center. Instead, odor-type dependent clusters consisting of multiple homotypes innervate the MB calyx and LH. Pheromone-encoding and hygro/thermo-sensing homotypes are spatially segregated in MB calyx, whereas two distinct clusters of food-related homotypes are found in LH in addition to the segregation of pheromone-encoding and hygro/thermo-sensing homotypes. We find that there are statistically significant associations between the spatial organization among a group of homotypic uPNs and certain stereotyped olfactory responses. Additionally, the signals from some of the tightly bundled homotypes converge to a specific group of lateral horn neurons (LHNs), which indicates that homotype (or odor type) specific integration of signals occurs at the synaptic interface between PNs and LHNs. Our findings suggest that before neural computation in the inner brain, some of the olfactory information are already encoded in the spatial organization of uPNs, illuminating that a certain degree of labeled-line strategy is at work in the Drosophila olfactory system.