Thermosensitive alternative splicing senses and mediates temperature adaptation in Drosophila

  1. Ane Martin Anduaga
  2. Naveh Evantal
  3. Ines Lucia Patop
  4. Osnat Bartok
  5. Ron Weiss
  6. Sebastian Kadener  Is a corresponding author
  1. Brandeis University, United States
  2. The Hebrew University of Jerusalem, Israel

Abstract

Circadian rhythms are generated by cyclic transcription, translation, and degradation of clock gene products, including timeless (tim), but how the circadian clock senses and adapts to temperature changes is not completely understood. Here we show that temperature dramatically changes the splicing pattern of tim in Drosophila. We found that at 18 °C, TIM levels are low due to the induction of two cold-specific isoforms: tim-cold and tim-short&cold. At 29 °C, another isoform, tim-medium, is upregulated. This isoform switching regulates the levels and activity of TIM as each isoform has a specific function. We found that tim-short&cold encodes a protein that rescues the behavioral defects of tim01 mutants and that flies in which tim-short&cold is abrogated have abnormal locomotor activity. In addition, miRNA-mediated control limits the expression of some of these isoforms. Finally, our data using minigenes suggest that tim alternative splicing might act as a thermometer for the circadian clock.

Data availability

Sequencing data have been deposited in GEO under accession codes GSE124134, 124135, 124141, 123142, 124200 and 124201.

The following data sets were generated

Article and author information

Author details

  1. Ane Martin Anduaga

    Biology Department, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Naveh Evantal

    Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  3. Ines Lucia Patop

    Biology Department, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Osnat Bartok

    Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  5. Ron Weiss

    Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  6. Sebastian Kadener

    Biology Department, Brandeis University, Waltham, United States
    For correspondence
    skadener@brandeis.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0080-5987

Funding

National Institutes of Health (R01GM125859)

  • Sebastian Kadener

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Martin Anduaga et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,135
    views
  • 597
    downloads
  • 64
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ane Martin Anduaga
  2. Naveh Evantal
  3. Ines Lucia Patop
  4. Osnat Bartok
  5. Ron Weiss
  6. Sebastian Kadener
(2019)
Thermosensitive alternative splicing senses and mediates temperature adaptation in Drosophila
eLife 8:e44642.
https://doi.org/10.7554/eLife.44642

Share this article

https://doi.org/10.7554/eLife.44642

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Brian DePasquale, Carlos D Brody, Jonathan W Pillow
    Research Article Updated

    Accumulating evidence to make decisions is a core cognitive function. Previous studies have tended to estimate accumulation using either neural or behavioral data alone. Here, we develop a unified framework for modeling stimulus-driven behavior and multi-neuron activity simultaneously. We applied our method to choices and neural recordings from three rat brain regions—the posterior parietal cortex (PPC), the frontal orienting fields (FOF), and the anterior-dorsal striatum (ADS)—while subjects performed a pulse-based accumulation task. Each region was best described by a distinct accumulation model, which all differed from the model that best described the animal’s choices. FOF activity was consistent with an accumulator where early evidence was favored while the ADS reflected near perfect accumulation. Neural responses within an accumulation framework unveiled a distinct association between each brain region and choice. Choices were better predicted from all regions using a comprehensive, accumulation-based framework and different brain regions were found to differentially reflect choice-related accumulation signals: FOF and ADS both reflected choice but ADS showed more instances of decision vacillation. Previous studies relating neural data to behaviorally inferred accumulation dynamics have implicitly assumed that individual brain regions reflect the whole-animal level accumulator. Our results suggest that different brain regions represent accumulated evidence in dramatically different ways and that accumulation at the whole-animal level may be constructed from a variety of neural-level accumulators.

    1. Neuroscience
    Poortata Lalwani, Thad Polk, Douglas D Garrett
    Research Article

    Moment-to-moment neural variability has been shown to scale positively with the complexity of stimulus input. However, the mechanisms underlying the ability to align variability to input complexity are unknown. Using a combination of behavioral methods, computational modeling, fMRI, MR spectroscopy, and pharmacological intervention, we investigated the role of aging and GABA in neural variability during visual processing. We replicated previous findings that participants expressed higher variability when viewing more complex visual stimuli. Additionally, we found that such variability modulation was associated with higher baseline visual GABA levels and was reduced in older adults. When pharmacologically increasing GABA activity, we found that participants with lower baseline GABA levels showed a drug-related increase in variability modulation while participants with higher baseline GABA showed no change or even a reduction, consistent with an inverted-U account. Finally, higher baseline GABA and variability modulation were jointly associated with better visual-discrimination performance. These results suggest that GABA plays an important role in how humans utilize neural variability to adapt to the complexity of the visual world.