Thermosensitive alternative splicing senses and mediates temperature adaptation in Drosophila

  1. Ane Martin Anduaga
  2. Naveh Evantal
  3. Ines Lucia Patop
  4. Osnat Bartok
  5. Ron Weiss
  6. Sebastian Kadener  Is a corresponding author
  1. Brandeis University, United States
  2. The Hebrew University of Jerusalem, Israel

Abstract

Circadian rhythms are generated by cyclic transcription, translation, and degradation of clock gene products, including timeless (tim), but how the circadian clock senses and adapts to temperature changes is not completely understood. Here we show that temperature dramatically changes the splicing pattern of tim in Drosophila. We found that at 18 °C, TIM levels are low due to the induction of two cold-specific isoforms: tim-cold and tim-short&cold. At 29 °C, another isoform, tim-medium, is upregulated. This isoform switching regulates the levels and activity of TIM as each isoform has a specific function. We found that tim-short&cold encodes a protein that rescues the behavioral defects of tim01 mutants and that flies in which tim-short&cold is abrogated have abnormal locomotor activity. In addition, miRNA-mediated control limits the expression of some of these isoforms. Finally, our data using minigenes suggest that tim alternative splicing might act as a thermometer for the circadian clock.

Data availability

Sequencing data have been deposited in GEO under accession codes GSE124134, 124135, 124141, 123142, 124200 and 124201.

The following data sets were generated

Article and author information

Author details

  1. Ane Martin Anduaga

    Biology Department, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Naveh Evantal

    Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  3. Ines Lucia Patop

    Biology Department, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Osnat Bartok

    Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  5. Ron Weiss

    Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  6. Sebastian Kadener

    Biology Department, Brandeis University, Waltham, United States
    For correspondence
    skadener@brandeis.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0080-5987

Funding

National Institutes of Health (R01GM125859)

  • Sebastian Kadener

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Martin Anduaga et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ane Martin Anduaga
  2. Naveh Evantal
  3. Ines Lucia Patop
  4. Osnat Bartok
  5. Ron Weiss
  6. Sebastian Kadener
(2019)
Thermosensitive alternative splicing senses and mediates temperature adaptation in Drosophila
eLife 8:e44642.
https://doi.org/10.7554/eLife.44642

Share this article

https://doi.org/10.7554/eLife.44642

Further reading

    1. Neuroscience
    Thomas MW Leir, Matthew PH Gardner
    Insight

    New results help address a longstanding debate regarding which learning strategies allow animals to anticipate negative events based on past associations between sensory stimuli.

    1. Neuroscience
    Sara A Nolin, Mary E Faulkner ... Kristina Visscher
    Research Article

    The brain is organized into systems and networks of interacting components. The functional connections among these components give insight into the brain's organization and may underlie some cognitive effects of aging. Examining the relationship between individual differences in brain organization and cognitive function in older adults who have reached oldest old ages with healthy cognition can help us understand how these networks support healthy cognitive aging. We investigated functional network segregation in 146 cognitively healthy participants aged 85+ in the McKnight Brain Aging Registry. We found that the segregation of the association system and the individual networks within the association system [the fronto-parietal network (FPN), cingulo-opercular network (CON) and default mode network (DMN)], has strong associations with overall cognition and processing speed. We also provide a healthy oldest-old (85+) cortical parcellation that can be used in future work in this age group. This study shows that network segregation of the oldest-old brain is closely linked to cognitive performance. This work adds to the growing body of knowledge about differentiation in the aged brain by demonstrating that cognitive ability is associated with differentiated functional networks in very old individuals representing successful cognitive aging.