Structure of the gene therapy vector, adeno-associated virus with its cell receptor, AAVR

  1. Nancy L Meyer
  2. Guiqing Hu
  3. Omar Davulcu
  4. Qing Xie
  5. Alex J Noble
  6. Craig Yoshioka
  7. Drew S Gingerich
  8. Andrew Trzynka
  9. Larry David
  10. Scott M Stagg
  11. Michael Stewart Chapman  Is a corresponding author
  1. Oregon Health and Science University, United States
  2. Florida State University, United States
  3. University of Missouri, United States

Abstract

Adeno-associated virus (AAV) vectors are preeminent in emerging clinical gene therapies. Generalizing beyond the most tractable genetic diseases will require modulation of cell specificity and immune neutralization. Interactions of AAV with its cellular receptor, AAVR, are key to understanding cell-entry and trafficking with the rigor needed to engineer tissue-specific vectors. Cryo-electron tomography shows ordered binding of part of the flexible receptor to the viral surface, with distal domains in multiple conformations. Regions of the virus and receptor in close physical proximity can be identified by cross-linking / mass spectrometry. Cryo-electron microscopy with a two-domain receptor fragment reveals the interactions at 2.4 Å resolution. AAVR binds between AAV's spikes on a plateau that is conserved, except in one clade whose structure is AAVR-incompatible. AAVR's footprint overlaps the epitopes of several neutralizing antibodies, prompting a re-evaluation of neutralization mechanisms. The structure provides a roadmap for experimental probing and manipulation of viral-receptor interactions.

Data availability

Electron microscopy maps and atomic coordinates will be available from the electron microscopy and protein data banks (https://www.ebi.ac.uk/pdbe/emdb/ & https://www.rcsb.org/). For the high resolution PKD1-2/AAV2 complex, the accession numbers are EMD-0553, PDB ID 6NZ0, respectively. Reconstructions for the 4 tomographic classes have accession numbers of EMD-0621, EMD-0622, EMD-0623 and EMD-0624.

The following data sets were generated

Article and author information

Author details

  1. Nancy L Meyer

    Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6836-6688
  2. Guiqing Hu

    Institute Molecular Biophysics, Florida State University, Tallahassee, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Omar Davulcu

    Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Qing Xie

    Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Alex J Noble

    Institute Molecular Biophysics, Florida State University, Tallahassee, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8634-2279
  6. Craig Yoshioka

    Center for Spatial Systems Biomedicine, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0251-7316
  7. Drew S Gingerich

    Center for Spatial Systems Biomedicine, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Andrew Trzynka

    Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Larry David

    Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Scott M Stagg

    Institute Molecular Biophysics, Florida State University, Tallahassee, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Michael Stewart Chapman

    Department of Biochemistry, University of Missouri, Columbia, United States
    For correspondence
    chapmanms@missouri.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8525-8585

Funding

National Institutes of Health (R35GM122564)

  • Andrew Trzynka

National Institutes of Health (R01GM066875)

  • Michael Stewart Chapman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Meyer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 12,377
    views
  • 1,802
    downloads
  • 64
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nancy L Meyer
  2. Guiqing Hu
  3. Omar Davulcu
  4. Qing Xie
  5. Alex J Noble
  6. Craig Yoshioka
  7. Drew S Gingerich
  8. Andrew Trzynka
  9. Larry David
  10. Scott M Stagg
  11. Michael Stewart Chapman
(2019)
Structure of the gene therapy vector, adeno-associated virus with its cell receptor, AAVR
eLife 8:e44707.
https://doi.org/10.7554/eLife.44707

Share this article

https://doi.org/10.7554/eLife.44707

Further reading

    1. Microbiology and Infectious Disease
    Dhaval Ghone, Edward L Evans ... Aussie Suzuki
    Research Article

    Virion Infectivity Factor (Vif) of the Human Immunodeficiency Virus type 1 (HIV-1) targets and degrades cellular APOBEC3 proteins, key regulators of intrinsic and innate antiretroviral immune responses, thereby facilitating HIV-1 infection. While Vif’s role in degrading APOBEC3G is well-studied, Vif is also known to cause cell cycle arrest, but the detailed nature of Vif’s effects on the cell cycle has yet to be delineated. In this study, we employed high-temporal resolution single-cell live imaging and super-resolution microscopy to monitor individual cells during Vif-induced cell cycle arrest. Our findings reveal that Vif does not affect the G2/M boundary as previously thought. Instead, Vif triggers a unique and robust pseudo-metaphase arrest, distinct from the mild prometaphase arrest induced by Vpr. During this arrest, chromosomes align properly and form the metaphase plate, but later lose alignment, resulting in polar chromosomes. Notably, Vif, unlike Vpr, significantly reduces the levels of both Protein Phosphatase 1 (PP1) and 2 A (PP2A) at kinetochores, which regulate chromosome-microtubule interactions. These results unveil a novel role for Vif in kinetochore regulation that governs the spatial organization of chromosomes during mitosis.

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Ruihan Dong, Rongrong Liu ... Cheng Zhu
    Research Article

    Antimicrobial peptides (AMPs) are attractive candidates to combat antibiotic resistance for their capability to target biomembranes and restrict a wide range of pathogens. It is a daunting challenge to discover novel AMPs due to their sparse distributions in a vast peptide universe, especially for peptides that demonstrate potencies for both bacterial membranes and viral envelopes. Here, we establish a de novo AMP design framework by bridging a deep generative module and a graph-encoding activity regressor. The generative module learns hidden ‘grammars’ of AMP features and produces candidates sequentially pass antimicrobial predictor and antiviral classifiers. We discovered 16 bifunctional AMPs and experimentally validated their abilities to inhibit a spectrum of pathogens in vitro and in animal models. Notably, P076 is a highly potent bactericide with the minimal inhibitory concentration of 0.21 μM against multidrug-resistant Acinetobacter baumannii, while P002 broadly inhibits five enveloped viruses. Our study provides feasible means to uncover the sequences that simultaneously encode antimicrobial and antiviral activities, thus bolstering the function spectra of AMPs to combat a wide range of drug-resistant infections.