Impaired ABCA1/ABCG1-mediated lipid efflux in the mouse retinal pigment epithelium (RPE) leads to retinal degeneration

  1. Federica Storti
  2. Katrin Klee
  3. Vyara Todorova
  4. Regula Steiner
  5. Alaa Othman
  6. Saskia van der Velde-Visser
  7. Marijana Samardzija
  8. Isabelle Meneau
  9. Maya Barben
  10. Duygu Karademir
  11. Valda Pauzuolyte
  12. Sanford L Boye
  13. Frank Blaser
  14. Christoph Ullmer
  15. Joshua L Dunaief
  16. Thorsten Hornemann
  17. Lucia Rohrer
  18. Anneke I den Hollander
  19. Arnold von Eckardstein
  20. Jürgen Fingerle
  21. Cyrille Maugeais
  22. Christian Grimm  Is a corresponding author
  1. University of Zurich, Switzerland
  2. Radboud University Medical Center, Netherlands
  3. University Hospital Zurich, Switzerland
  4. University of Florida, United States
  5. F Hoffmann-La Roche Ltd, Switzerland
  6. Scheie Eye Institute, University of Pennsylvania, United States
  7. University of Tübingen, Germany

Abstract

Age-related macular degeneration (AMD) is a progressive disease of the retinal pigment epithelium (RPE) and the retina leading to loss of central vision. Polymorphisms in genes involved in lipid metabolism, including the ATP-binding cassette transporter A1 (ABCA1), have been associated with AMD risk. However, the significance of retinal lipid handling for AMD pathogenesis remains elusive. Here, we study the contribution of lipid efflux in the RPE by generating a mouse model lacking ABCA1 and its partner ABCG1 specifically in this layer. Mutant mice show lipid accumulation in the RPE, reduced RPE and retinal function, retinal inflammation and RPE/photoreceptor degeneration. Data from human cell lines indicate that the ABCA1 AMD risk-conferring allele decreases ABCA1 expression, identifying the potential molecular cause that underlies the genetic risk for AMD. Our results highlight the essential homeostatic role for lipid efflux in the RPE and suggest a pathogenic contribution of reduced ABCA1 function to AMD.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Federica Storti

    Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Schlieren, Switzerland
    Competing interests
    No competing interests declared.
  2. Katrin Klee

    Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Schlieren, Switzerland
    Competing interests
    No competing interests declared.
  3. Vyara Todorova

    Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Schlieren, Switzerland
    Competing interests
    No competing interests declared.
  4. Regula Steiner

    Institute of Clinical Chemistry, University of Zurich, Schlieren, Switzerland
    Competing interests
    No competing interests declared.
  5. Alaa Othman

    Institute of Clinical Chemistry, University of Zurich, Schlieren, Switzerland
    Competing interests
    No competing interests declared.
  6. Saskia van der Velde-Visser

    Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
    Competing interests
    No competing interests declared.
  7. Marijana Samardzija

    Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Schlieren, Switzerland
    Competing interests
    No competing interests declared.
  8. Isabelle Meneau

    Department of Ophthalmology, University Hospital Zurich, Zurich, Switzerland
    Competing interests
    No competing interests declared.
  9. Maya Barben

    Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Schlieren, Switzerland
    Competing interests
    No competing interests declared.
  10. Duygu Karademir

    Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Schlieren, Switzerland
    Competing interests
    No competing interests declared.
  11. Valda Pauzuolyte

    Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Schlieren, Switzerland
    Competing interests
    No competing interests declared.
  12. Sanford L Boye

    Ophthalmology and Molecular Genetics and Retina Gene Therapy Group, University of Florida, Gainesville, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8803-9369
  13. Frank Blaser

    Department of Ophthalmology, University Hospital Zurich, Zurich, Switzerland
    Competing interests
    No competing interests declared.
  14. Christoph Ullmer

    Roche Innovation Center Basel, F Hoffmann-La Roche Ltd, Basel, Switzerland
    Competing interests
    Christoph Ullmer, This author is an employee of F. Hoffmann-La Roche Ltd.
  15. Joshua L Dunaief

    Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  16. Thorsten Hornemann

    Institute for Clinical Chemistry, University of Zurich, Zurich, Switzerland
    Competing interests
    No competing interests declared.
  17. Lucia Rohrer

    Institute of Clinical Chemistry, University of Zurich, Schlieren, Switzerland
    Competing interests
    No competing interests declared.
  18. Anneke I den Hollander

    Department of Ophthalmology, Radboud University Medical Center, Nijmegen, Netherlands
    Competing interests
    No competing interests declared.
  19. Arnold von Eckardstein

    Institute of Clinical Chemistry, University of Zurich, Schlieren, Switzerland
    Competing interests
    No competing interests declared.
  20. Jürgen Fingerle

    Natural and Medical Sciences Institute, University of Tübingen, Tübingen, Germany
    Competing interests
    Jürgen Fingerle, This author is a prevoius employee of F. Hoffmann-La Roche Ltd.
  21. Cyrille Maugeais

    Roche Innovation Center Basel, F Hoffmann-La Roche Ltd, Basel, Switzerland
    Competing interests
    Cyrille Maugeais, This author is a previous employee of F. Hoffmann-La Roche Ltd.
  22. Christian Grimm

    Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Schlieren, Switzerland
    For correspondence
    cgrimm@opht.uzh.ch
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9318-4352

Funding

Vontobel Stiftung

  • Federica Storti

Roche (RPF 378)

  • Federica Storti
  • Christian Grimm

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (31003A_173008)

  • Vyara Todorova
  • Marijana Samardzija
  • Maya Barben
  • Christian Grimm

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments adhered to the ARVO Statement for the Use of Animals in Ophthalmic and Vision Research and the regulations of the Veterinary Authorities of Kanton Zurich, Switzerland (study approval reference numbers: ZH141/2016 and ZH216/2015).

Human subjects: The study was approved by the local ethical committee at the Radboud University Medical Center, The Netherlands, and was performed in accordance with the tenets of the Declaration of Helsinki. Individuals were selected from the European Genetic Database (EUGENDA, https://www.eugenda.org/), a large multicenter database for clinical and molecular analysis of AMD, and provided written informed consent before participation.

Copyright

© 2019, Storti et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

Share this article

https://doi.org/10.7554/eLife.45100

Further reading

    1. Neuroscience
    Yisi Liu, Pu Wang ... Hongwei Zhou
    Short Report

    The increasing use of tissue clearing techniques underscores the urgent need for cost-effective and simplified deep imaging methods. While traditional inverted confocal microscopes excel in high-resolution imaging of tissue sections and cultured cells, they face limitations in deep imaging of cleared tissues due to refractive index mismatches between the immersion media of objectives and sample container. To overcome these challenges, the RIM-Deep was developed to significantly improve deep imaging capabilities without compromising the normal function of the confocal microscope. This system facilitates deep immunofluorescence imaging of the prefrontal cortex in cleared macaque tissue, extending imaging depth from 2 mm to 5 mm. Applied to an intact and cleared Thy1-EGFP mouse brain, the system allowed for clear axonal visualization at high imaging depth. Moreover, this advancement enables large-scale, deep 3D imaging of intact tissues. In principle, this concept can be extended to any imaging modality, including existing inverted wide-field, confocal, and two-photon microscopy. This would significantly upgrade traditional laboratory configurations and facilitate the study of connectomes in the brain and other tissues.

    1. Neuroscience
    Damian Koevoet, Laura Van Zantwijk ... Christoph Strauch
    Research Article

    What determines where to move the eyes? We recently showed that pupil size, a well-established marker of effort, also reflects the effort associated with making a saccade (‘saccade costs’). Here, we demonstrate saccade costs to critically drive saccade selection: when choosing between any two saccade directions, the least costly direction was consistently preferred. Strikingly, this principle even held during search in natural scenes in two additional experiments. When increasing cognitive demand experimentally through an auditory counting task, participants made fewer saccades and especially cut costly directions. This suggests that the eye-movement system and other cognitive operations consume similar resources that are flexibly allocated among each other as cognitive demand changes. Together, we argue that eye-movement behavior is tuned to adaptively minimize saccade-inherent effort.