Cell Communication: Studying gap junctions with PARIS
For our bodies to work properly, cells need to communicate with each other. One way to do so is via gap junctions, which are connections between cells that allow small signaling molecules or electrical signals to pass between them. Cells coupled together by gap junctions often synchronize their activity (Bennett and Zukin, 2004).
Neuromodulators and the activity of neurons can affect gap junction coupling between neurons, which, in turn, can influence the pattern of activity in neurons (Lane et al., 2018; Haas et al., 2011). Gap junctions have also been implicated in a variety of diseases (Nielsen et al., 2012). So far, it has been difficult to identify their precise roles in health and disease, as present methods to map or monitor gap junction coupling are often invasive and damaging, or unable to measure a specific cell type in enough detail.
Now, in eLife, Yulong Li and colleagues at Peking University – including Ling Wu as first author – report that they have developed a new method called PARIS to map and measure gap junctions (Wu et al., 2019). PARIS is a genetically encoded system, consisting of an optically controlled ‘actuator’ in one cell (the actuator cell) and a fluorescent sensor in another (the receiver cell). When stimulated with light, the actuator generates an electrochemical gradient with the help of a light-gated proton pump. The activated pump then transports hydrogen ions out of the cell. If the cells are coupled to each other, the departing ions change the pH in the receiver cell, causing a measurable increase in fluorescence (Figure 1A,B).

Detecting gap junction coupling.
(A) A new method called PARIS can be used to study gap junctions between cells (black squares). It is a genetically encoded system in which one cell (the ‘actuator’) contains a light-gated proton pump (ArchT). If the actuator cell is coupled to another (‘receiver’) cell, shining light onto the pump (blue trace) causes protons (H+, black circles) to flow, generating a measurable electrical current (black trace, pA). (B) In an alternate detection method, a fluorescent sensor (pHluorin, green oval) can be placed in the receiver cell. Once activated, the pump transports protons out of the actuator cell; if the cells are coupled, this induces a change in the pH of the receiver cell that increases the fluorescence of the sensor (green trace). (C) PARIS can be used to determine whether gap junction coupling (GJC) exists between different cell types by using light (blue beam) to stimulate a particular type of neuron and checking for fluorescence (green) from another type of neuron. For example, Wu et al. showed that excitatory projection neurons (ePN) in the Drosophila brain (black shape, left hemisphere) form gap junctions with excitatory local neurons (eLN) but not with other nearby cell types (KC, glia, iLN).
The pH gradient generated by PARIS can be detected in multiple receiver cells, even when they are not coupled directly to the actuator. Changes to the pH are known to affect the coupling and the strength of gap junctions (Nielsen et al., 2012). However, Wu et al. show that a slight pH increase of 0.1 is sufficient to detect gap junction coupling and therefore does not appear to disrupt the activity of a cell, even in repeated trials.
Furthermore, the change of fluorescence is noticeable within seconds and provides a consistent signal over repeated measurements that is strong enough to be tracked over hours. Moreover, since the technique is fully genetically encoded, there is no need to use dyes or to deliver compounds directly into the cell. Instead, Wu et al. have shown that PARIS can be delivered into the cell by various molecular gene transfer techniques, including virus-based transfer methods, allowing it to be applied to a wide range of organisms.
Given these attributes, PARIS can be used in a variety of fields where it promises to accelerate and expand research. For example, it could be used to study abnormal gap junction coupling associated with certain conditions, or to monitor drugs expected to alter coupling (Haas et al., 2011; Lane et al., 2018; Lane et al., 2016). It may even be used to study signaling within a cell, as it has been shown that certain intracellular enzymes can alter gap junction coupling too.
The ability of PARIS to assess gap junction coupling between individual cell types, especially in the brain, is particularly attractive. Wu et al. were able to confirm that in the olfactory system of fruit flies, a type of neuron known as an excitatory projection neuron, forms gap junctions with excitatory local neurons, but not with other nearby cell types (Figure 1C; Huang et al., 2010; Yaksi and Wilson, 2010).
PARIS also can be used to gain insight into where cells connect with each other. For example, the researchers revealed that excitatory and inhibitory projection neurons are coupled at their dendrites rather than at their axons. This degree of resolution is invaluable for studying nervous systems, and is difficult to achieve by other means.
Projects to map the brain connectivity in humans and other species based on chemical synaptic connectivity alone will be incomplete because they fail to describe alternate pathways information may use to travel, such as gap junctions (Marder et al., 2017). With future improvements in the sensitivity of the fluorescent receiver to an even smaller pH change, PARIS has the potential to be a valuable tool to study cell communication and its role in many different diseases.
References
-
Complicating connectomes: electrical coupling creates parallel pathways and degenerate circuit mechanismsDevelopmental Neurobiology 77:597–609.https://doi.org/10.1002/dneu.22410
Article and author information
Author details
Publication history
Copyright
© 2019, Kick and Schulz
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,333
- views
-
- 144
- downloads
-
- 1
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
Active inference integrates perception, decision-making, and learning into a united theoretical framework, providing an efficient way to trade off exploration and exploitation by minimizing (expected) free energy. In this study, we asked how the brain represents values and uncertainties (novelty and variability), and resolves these uncertainties under the active inference framework in the exploration-exploitation trade-off. Twenty-five participants performed a contextual two-armed bandit task, with electroencephalogram (EEG) recordings. By comparing the model evidence for active inference and reinforcement learning models of choice behavior, we show that active inference better explains human decision-making under novelty and variability, which entails exploration or information seeking. The EEG sensor-level results show that the activity in the frontal, central, and parietal regions is associated with novelty, while the activity in the frontal and central brain regions is associated with variability. The EEG source-level results indicate that the expected free energy is encoded in the frontal pole and middle frontal gyrus and uncertainties are encoded in different brain regions but with overlap. Our study dissociates the expected free energy and uncertainties in active inference theory and their neural correlates, speaking to the construct validity of active inference in characterizing cognitive processes of human decisions. It provides behavioral and neural evidence of active inference in decision processes and insights into the neural mechanism of human decisions under uncertainties.
-
- Genetics and Genomics
- Neuroscience
The mammalian suprachiasmatic nucleus (SCN), situated in the ventral hypothalamus, directs daily cellular and physiological rhythms across the body. The SCN clockwork is a self-sustaining transcriptional-translational feedback loop (TTFL) that in turn coordinates the expression of clock-controlled genes (CCGs) directing circadian programmes of SCN cellular activity. In the mouse, the transcription factor, ZFHX3 (zinc finger homeobox-3), is necessary for the development of the SCN and influences circadian behaviour in the adult. The molecular mechanisms by which ZFHX3 affects the SCN at transcriptomic and genomic levels are, however, poorly defined. Here, we used chromatin immunoprecipitation sequencing to map the genomic localization of ZFHX3-binding sites in SCN chromatin. To test for function, we then conducted comprehensive RNA sequencing at six distinct times-of-day to compare the SCN transcriptional profiles of control and ZFHX3-conditional null mutants. We show that the genome-wide occupancy of ZFHX3 occurs predominantly around gene transcription start sites, co-localizing with known histone modifications, and preferentially partnering with clock transcription factors (CLOCK, BMAL1) to regulate clock gene(s) transcription. Correspondingly, we show that the conditional loss of ZFHX3 in the adult has a dramatic effect on the SCN transcriptome, including changes in the levels of transcripts encoding elements of numerous neuropeptide neurotransmitter systems while attenuating the daily oscillation of the clock TF Bmal1. Furthermore, various TTFL genes and CCGs exhibited altered circadian expression profiles, consistent with an advanced in daily behavioural rhythms under 12 h light–12 h dark conditions. Together, these findings reveal the extensive genome-wide regulation mediated by ZFHX3 in the central clock that orchestrates daily timekeeping in mammals.