IL-21/type I interferon interplay regulates neutrophil-dependent innate immune responses to Staphylococcus aureus

  1. Rosanne Spolski  Is a corresponding author
  2. Erin E West
  3. Peng Li
  4. Sharon Veenbergen
  5. Sunny Yang
  6. Majid Kazemian
  7. Jangsuk Oh
  8. Zu-Xi Yu
  9. Alexandra Freeman
  10. Stephen Holland
  11. Philip M Murphy
  12. Warren J Leonard  Is a corresponding author
  1. National Heart, Lung, and Blood Institute, United States
  2. National Institute of Allergy and Infectious Diseases, Netherlands
  3. National Institute of Allergy and Infectious Diseases, United States

Abstract

Methicillin-resistant Staphylococcus aureus (MRSA) is a major hospital- and community-acquired pathogen, but the mechanisms underlying host-defense to MRSA remain poorly understood. Here, we investigated the role of IL-21 in this process. When administered intra-tracheally into wild-type mice, IL-21 induced granzymes and augmented clearance of pulmonary MRSA but not when neutrophils were depleted or a granzyme B inhibitor was added. Correspondingly, IL-21 induced MRSA killing by human peripheral blood neutrophils. Unexpectedly, however, basal MRSA clearance was enhanced when IL-21 signaling was blocked, both in Il21r KO mice and in wild-type mice injected with IL-21R-Fc fusion-protein. This correlated with increased type I interferon and an IFN-related gene signature, and indeed anti-IFNAR1 treatment diminished MRSA clearance in these animals. Moreover, we found that IFNb induced granzyme B and promoted MRSA clearance in a granzyme B-dependent fashion. These results reveal an interplay between IL-21 and type-I IFN in the innate immune response to MRSA.

Data availability

All sequencing data in the final manuscript will be deposited in GEO.

The following data sets were generated

Article and author information

Author details

  1. Rosanne Spolski

    Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, Bethesda, United States
    For correspondence
    spolskir@nhlbi.nih.gov
    Competing interests
    The authors declare that no competing interests exist.
  2. Erin E West

    Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Peng Li

    Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Sharon Veenbergen

    Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, Bethesda, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Sunny Yang

    Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Majid Kazemian

    Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7080-8820
  7. Jangsuk Oh

    Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Zu-Xi Yu

    The Pathology Core, National Heart, Lung, and Blood Institute, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Alexandra Freeman

    Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Stephen Holland

    Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Philip M Murphy

    Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Warren J Leonard

    Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, Bethesda, United States
    For correspondence
    wjl@helix.nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5740-7448

Funding

National Institutes of Health (Division of Intramural Research, NHLBI)

  • Warren J Leonard

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Experiments involving animals were performed under protocols (H-0087R4) approved by the National Heart, Lung, and Blood Institute Animal Care and Use Committee and followed National Institutes of Health guidelines for use of animals in intramural research.

Human subjects: Blood samples were obtain from normal donors from the NIH Blood Bank under a waiver from the NIH Office of Human Subjects research. Blood samples were also obtained from AD-HIES patients who had given informed consent under an NIH IRB-approved protocol.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,352
    views
  • 321
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rosanne Spolski
  2. Erin E West
  3. Peng Li
  4. Sharon Veenbergen
  5. Sunny Yang
  6. Majid Kazemian
  7. Jangsuk Oh
  8. Zu-Xi Yu
  9. Alexandra Freeman
  10. Stephen Holland
  11. Philip M Murphy
  12. Warren J Leonard
(2019)
IL-21/type I interferon interplay regulates neutrophil-dependent innate immune responses to Staphylococcus aureus
eLife 8:e45501.
https://doi.org/10.7554/eLife.45501

Share this article

https://doi.org/10.7554/eLife.45501

Further reading

    1. Computational and Systems Biology
    2. Immunology and Inflammation
    Peng Li, Sree Pulugulla ... Warren J Leonard
    Short Report

    Transcription factor partners can cooperatively bind to DNA composite elements to augment gene transcription. Here, we report a novel protein-DNA binding screening pipeline, termed Spacing Preference Identification of Composite Elements (SPICE), that can systematically predict protein binding partners and DNA motif spacing preferences. Using SPICE, we successfully identified known composite elements, such as AP1-IRF composite elements (AICEs) and STAT5 tetramers, and also uncovered several novel binding partners, including JUN-IKZF1 composite elements. One such novel interaction was identified at CNS9, an upstream conserved noncoding region in the human IL10 gene, which harbors a non-canonical IKZF1 binding site. We confirmed the cooperative binding of JUN and IKZF1 and showed that the activity of an IL10-luciferase reporter construct in primary B and T cells depended on both this site and the AP1 binding site within this composite element. Overall, our findings reveal an unappreciated global association of IKZF1 and AP1 and establish SPICE as a valuable new pipeline for predicting novel transcription binding complexes.

    1. Immunology and Inflammation
    2. Medicine
    Edwin A Homan, Ankit Gilani ... James C Lo
    Short Report

    Together with obesity and type 2 diabetes, metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing global epidemic. Activation of the complement system and infiltration of macrophages has been linked to progression of metabolic liver disease. The role of complement receptors in macrophage activation and recruitment in MASLD remains poorly understood. In human and mouse, C3AR1 in the liver is expressed primarily in Kupffer cells, but is downregulated in humans with MASLD compared to obese controls. To test the role of complement 3a receptor (C3aR1) on macrophages and liver resident macrophages in MASLD, we generated mice deficient in C3aR1 on all macrophages (C3aR1-MφKO) or specifically in liver Kupffer cells (C3aR1-KpKO) and subjected them to a model of metabolic steatotic liver disease. We show that macrophages account for the vast majority of C3ar1 expression in the liver. Overall, C3aR1-MφKO and C3aR1-KpKO mice have similar body weight gain without significant alterations in glucose homeostasis, hepatic steatosis and fibrosis, compared to controls on a MASLD-inducing diet. This study demonstrates that C3aR1 deletion in macrophages or Kupffer cells, the predominant liver cell type expressing C3ar1, has no significant effect on liver steatosis, inflammation or fibrosis in a dietary MASLD model.