1. Immunology and Inflammation
Download icon

IL-21/type I interferon interplay regulates neutrophil-dependent innate immune responses to Staphylococcus aureus

  1. Rosanne Spolski  Is a corresponding author
  2. Erin E West
  3. Peng Li
  4. Sharon Veenbergen
  5. Sunny Yung
  6. Majid Kazemian
  7. Jangsuk Oh
  8. Zu-Xi Yu
  9. Alexandra F Freeman
  10. Stephen M Holland
  11. Philip M Murphy
  12. Warren J Leonard  Is a corresponding author
  1. National Heart, Lung, and Blood Institute, United States
  2. National Institute of Allergy and Infectious Diseases, Netherlands
  3. National Institute of Allergy and Infectious Diseases, United States
Research Article
  • Cited 3
  • Views 1,452
  • Annotations
Cite this article as: eLife 2019;8:e45501 doi: 10.7554/eLife.45501

Abstract

Methicillin-resistant Staphylococcus aureus (MRSA) is a major hospital- and community-acquired pathogen, but the mechanisms underlying host-defense to MRSA remain poorly understood. Here, we investigated the role of IL-21 in this process. When administered intra-tracheally into wild-type mice, IL-21 induced granzymes and augmented clearance of pulmonary MRSA but not when neutrophils were depleted or a granzyme B inhibitor was added. Correspondingly, IL-21 induced MRSA killing by human peripheral blood neutrophils. Unexpectedly, however, basal MRSA clearance was enhanced when IL-21 signaling was blocked, both in Il21r KO mice and in wild-type mice injected with IL-21R-Fc fusion-protein. This correlated with increased type I interferon and an IFN-related gene signature, and indeed anti-IFNAR1 treatment diminished MRSA clearance in these animals. Moreover, we found that IFNb induced granzyme B and promoted MRSA clearance in a granzyme B-dependent fashion. These results reveal an interplay between IL-21 and type-I IFN in the innate immune response to MRSA.

Article and author information

Author details

  1. Rosanne Spolski

    Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, Bethesda, United States
    For correspondence
    spolskir@nhlbi.nih.gov
    Competing interests
    The authors declare that no competing interests exist.
  2. Erin E West

    Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Peng Li

    Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Sharon Veenbergen

    Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, Bethesda, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Sunny Yung

    Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Majid Kazemian

    Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7080-8820
  7. Jangsuk Oh

    Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Zu-Xi Yu

    The Pathology Core, National Heart, Lung, and Blood Institute, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Alexandra F Freeman

    Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Stephen M Holland

    Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Philip M Murphy

    Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Warren J Leonard

    Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, Bethesda, United States
    For correspondence
    wjl@helix.nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5740-7448

Funding

National Institutes of Health (Division of Intramural Research, NHLBI)

  • Warren J Leonard

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Experiments involving animals were performed under protocols (H-0087R4) approved by the National Heart, Lung, and Blood Institute Animal Care and Use Committee and followed National Institutes of Health guidelines for use of animals in intramural research.

Human subjects: Blood samples were obtain from normal donors from the NIH Blood Bank under a waiver from the NIH Office of Human Subjects research. Blood samples were also obtained from AD-HIES patients who had given informed consent under an NIH IRB-approved protocol.

Reviewing Editor

  1. Wayne M Yokoyama, Washington University School of Medicine, United States

Publication history

  1. Received: January 24, 2019
  2. Accepted: April 9, 2019
  3. Accepted Manuscript published: April 10, 2019 (version 1)
  4. Accepted Manuscript updated: April 16, 2019 (version 2)
  5. Version of Record published: May 7, 2019 (version 3)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,452
    Page views
  • 229
    Downloads
  • 3
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Yiska Weisblum et al.
    Research Article

    Neutralizing antibodies elicited by prior infection or vaccination are likely to be key for future protection of individuals and populations against SARS-CoV-2. Moreover, passively administered antibodies are among the most promising therapeutic and prophylactic anti-SARS-CoV-2 agents. However, the degree to which SARS-CoV-2 will adapt to evade neutralizing antibodies is unclear. Using a recombinant chimeric VSV/SARS-CoV-2 reporter virus, we show that functional SARS-CoV-2 S protein variants with mutations in the receptor binding domain (RBD) and N-terminal domain that confer resistance to monoclonal antibodies or convalescent plasma can be readily selected. Notably, SARS-CoV-2 S variants that resist commonly elicited neutralizing antibodies are now present at low frequencies in circulating SARS-CoV-2 populations. Finally, the emergence of antibody-resistant SARS-CoV-2 variants that might limit the therapeutic usefulness of monoclonal antibodies can be mitigated by the use of antibody combinations that target distinct neutralizing epitopes.

    1. Evolutionary Biology
    2. Immunology and Inflammation
    Kazi Rahman et al.
    Research Article

    The interferon-inducible transmembrane (IFITM) proteins belong to the Dispanin/CD225 family and inhibit diverse virus infections. IFITM3 reduces membrane fusion between cells and virions through a poorly characterized mechanism. Mutation of proline rich transmembrane protein 2 (PRRT2), a regulator of neurotransmitter release, at glycine-305 was previously linked to paroxysmal neurological disorders in humans. Here, we show that glycine-305 and the homologous site in IFITM3, glycine-95, drive protein oligomerization from within a GxxxG motif. Mutation of glycine-95 (and to a lesser extent, glycine-91) disrupted IFITM3 oligomerization and reduced its antiviral activity against Influenza A virus. An oligomerization-defective variant was used to reveal that IFITM3 promotes membrane rigidity in a glycine-95-dependent and amphipathic helix-dependent manner. Furthermore, a compound which counteracts virus inhibition by IFITM3, amphotericin B, prevented the IFITM3-mediated rigidification of membranes. Overall, these data suggest that IFITM3 oligomers inhibit virus-cell fusion by promoting membrane rigidity.