IL-21/type I interferon interplay regulates neutrophil-dependent innate immune responses to Staphylococcus aureus

  1. Rosanne Spolski  Is a corresponding author
  2. Erin E West
  3. Peng Li
  4. Sharon Veenbergen
  5. Sunny Yung
  6. Majid Kazemian
  7. Jangsuk Oh
  8. Zu-Xi Yu
  9. Alexandra F Freeman
  10. Stephen M Holland
  11. Philip M Murphy
  12. Warren J Leonard  Is a corresponding author
  1. National Heart, Lung, and Blood Institute, United States
  2. National Institute of Allergy and Infectious Diseases, Netherlands
  3. National Institute of Allergy and Infectious Diseases, United States

Abstract

Methicillin-resistant Staphylococcus aureus (MRSA) is a major hospital- and community-acquired pathogen, but the mechanisms underlying host-defense to MRSA remain poorly understood. Here, we investigated the role of IL-21 in this process. When administered intra-tracheally into wild-type mice, IL-21 induced granzymes and augmented clearance of pulmonary MRSA but not when neutrophils were depleted or a granzyme B inhibitor was added. Correspondingly, IL-21 induced MRSA killing by human peripheral blood neutrophils. Unexpectedly, however, basal MRSA clearance was enhanced when IL-21 signaling was blocked, both in Il21r KO mice and in wild-type mice injected with IL-21R-Fc fusion-protein. This correlated with increased type I interferon and an IFN-related gene signature, and indeed anti-IFNAR1 treatment diminished MRSA clearance in these animals. Moreover, we found that IFNb induced granzyme B and promoted MRSA clearance in a granzyme B-dependent fashion. These results reveal an interplay between IL-21 and type-I IFN in the innate immune response to MRSA.

Data availability

All sequencing data in the final manuscript will be deposited in GEO.

The following data sets were generated

Article and author information

Author details

  1. Rosanne Spolski

    Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, Bethesda, United States
    For correspondence
    spolskir@nhlbi.nih.gov
    Competing interests
    The authors declare that no competing interests exist.
  2. Erin E West

    Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Peng Li

    Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Sharon Veenbergen

    Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, Bethesda, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Sunny Yung

    Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Majid Kazemian

    Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7080-8820
  7. Jangsuk Oh

    Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Zu-Xi Yu

    The Pathology Core, National Heart, Lung, and Blood Institute, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Alexandra F Freeman

    Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Stephen M Holland

    Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Philip M Murphy

    Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Warren J Leonard

    Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, Bethesda, United States
    For correspondence
    wjl@helix.nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5740-7448

Funding

National Institutes of Health (Division of Intramural Research, NHLBI)

  • Warren J Leonard

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Experiments involving animals were performed under protocols (H-0087R4) approved by the National Heart, Lung, and Blood Institute Animal Care and Use Committee and followed National Institutes of Health guidelines for use of animals in intramural research.

Human subjects: Blood samples were obtain from normal donors from the NIH Blood Bank under a waiver from the NIH Office of Human Subjects research. Blood samples were also obtained from AD-HIES patients who had given informed consent under an NIH IRB-approved protocol.

Reviewing Editor

  1. Wayne M Yokoyama, Washington University School of Medicine, United States

Publication history

  1. Received: January 24, 2019
  2. Accepted: April 9, 2019
  3. Accepted Manuscript published: April 10, 2019 (version 1)
  4. Accepted Manuscript updated: April 16, 2019 (version 2)
  5. Version of Record published: May 7, 2019 (version 3)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,100
    Page views
  • 302
    Downloads
  • 10
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rosanne Spolski
  2. Erin E West
  3. Peng Li
  4. Sharon Veenbergen
  5. Sunny Yung
  6. Majid Kazemian
  7. Jangsuk Oh
  8. Zu-Xi Yu
  9. Alexandra F Freeman
  10. Stephen M Holland
  11. Philip M Murphy
  12. Warren J Leonard
(2019)
IL-21/type I interferon interplay regulates neutrophil-dependent innate immune responses to Staphylococcus aureus
eLife 8:e45501.
https://doi.org/10.7554/eLife.45501

Further reading

    1. Immunology and Inflammation
    Jiro Sakai, Jiyeon Yang ... Mustafa Akkoyunlu
    Research Article

    Newborns are unable to reach the adult-level humoral immune response partly due to the potent immunoregulatory role of IL-10. Increased IL-10 production by neonatal B cells has been attributed to the larger population of IL-10-producting CD43+ B-1 cells in neonates. Here, we show that neonatal mouse CD43- non-B-1 cells also produce substantial amounts of IL-10 following B cell antigen receptor (BCR) activation. In neonatal mouse CD43- non-B-1 cells, BCR engagement activated STAT5 under the control of phosphorylated forms of signaling molecules Syk, Btk, PKC, FAK and Rac1. Neonatal STAT5 activation led to IL-6 production, which in turn was responsible for IL-10 production in an autocrine/paracrine fashion through the activation of STAT3. In addition to the increased IL-6 production in response to BCR stimulation, elevated expression of IL-6Rα expression in neonatal B cells rendered them highly susceptible to IL-6 mediated STAT3 phosphorylation and IL-10 production. Finally, IL-10 secreted from neonatal mouse CD43- non-B-1 cells was sufficient to inhibit TNF-α secretion by macrophages. Our results unveil a distinct mechanism of IL-6-dependent IL-10 production in BCR-stimulated neonatal CD19+CD43- B cells.

    1. Chromosomes and Gene Expression
    2. Immunology and Inflammation
    Suhas Sureshchandra, Brianna M Doratt ... Ilhem Messaoudi
    Research Article Updated

    Maternal pre-pregnancy (pregravid) obesity is associated with adverse outcomes for both mother and offspring. Amongst the complications for the offspring is increased susceptibility and severity of neonatal infections necessitating admission to the intensive care unit, notably bacterial sepsis and enterocolitis. Previous studies have reported aberrant responses to LPS and polyclonal stimulation by umbilical cord blood monocytes that were mediated by alterations in the epigenome. In this study, we show that pregravid obesity dysregulates umbilical cord blood monocyte responses to bacterial and viral pathogens. Specifically, interferon-stimulated gene expression and inflammatory responses to respiratory syncytial virus (RSV) and E. coli were significantly dampened, respectively . Although upstream signaling events were comparable, translocation of the key transcription factor NF-κB and chromatin accessibility at pro-inflammatory gene promoters following TLR stimulation was significantly attenuated. Using a rhesus macaque model of western style diet-induced obesity, we further demonstrate that this defect is detected in fetal peripheral monocytes and tissue-resident macrophages during gestation. Collectively, these data indicate that maternal obesity alters metabolic, signaling, and epigenetic profiles of fetal monocytes leading to a state of immune paralysis during late gestation and at birth.