Gain-of-function mutations in the UNC-2/CaV2α channel lead to excitation-dominant synaptic transmission in C. elegans

  1. Yung-Chi Huang
  2. Jennifer K Pirri
  3. Diego Rayes
  4. Shangbang Gao
  5. Ben Mulcahy
  6. Jeff Grant
  7. Yasunori Saheki
  8. Michael M Francis
  9. Mei Zhen
  10. Mark J Alkema  Is a corresponding author
  1. University of Massachusetts Medical School, United States
  2. Mount Sinai Hospital, Canada
  3. The Rockefeller University, United States
1 additional file

Additional files

All additional files

Any figure supplements, source code, source data, videos or supplementary files associated with this article are contained within this zip.

https://cdn.elifesciences.org/articles/45905/elife-45905-supp-v2.zip

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yung-Chi Huang
  2. Jennifer K Pirri
  3. Diego Rayes
  4. Shangbang Gao
  5. Ben Mulcahy
  6. Jeff Grant
  7. Yasunori Saheki
  8. Michael M Francis
  9. Mei Zhen
  10. Mark J Alkema
(2019)
Gain-of-function mutations in the UNC-2/CaV2α channel lead to excitation-dominant synaptic transmission in C. elegans
eLife 8:e45905.
https://doi.org/10.7554/eLife.45905