Abstract

The organisation of mammalian genomes into loops and topologically associating domains (TADs) contributes to chromatin structure, gene expression and recombination. TADs and many loops are formed by cohesin and positioned by CTCF. In proliferating cells, cohesin also mediates sister chromatid cohesion, which is essential for chromosome segregation. Current models of chromatin folding and cohesion are based on assumptions of how many cohesin and CTCF molecules organise the genome. Here we have measured absolute copy numbers and dynamics of cohesin, CTCF, NIPBL, WAPL and sororin by mass spectrometry, fluorescence-correlation spectroscopy and fluorescence recovery after photobleaching in HeLa cells. In G1-phase there are ~250,000 nuclear cohesin complexes, of which ~160,000 are chromatin-bound. Comparison with chromatin immunoprecipitation-sequencing data implies that some genomic cohesin and CTCF enrichment sites are unoccupied in single cells at any one time. We discuss the implications of these findings for how cohesin can contribute to genome organisation and cohesion.

Data availability

Mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD012712. Sequencing data have been deposited in GEO (GSE126990.

The following data sets were generated

Article and author information

Author details

  1. Johann Holzmann

    Research Institute of Molecular Pathology, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  2. Antonio Z Politi

    Chemical Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4788-0933
  3. Kota Nagasaka

    Research Institute of Molecular Pathology, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0765-638X
  4. Merle Hantsche-Grininger

    Chemical Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Nike Walther

    Chemical Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7591-5251
  6. Birgit Koch

    Chemical Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Johannes Fuchs

    Research Institute of Molecular Pathology, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  8. Gerhard Dürnberger

    Research Institute of Molecular Pathology, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  9. Wen Tang

    Research Institute of Molecular Pathology, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  10. Rene Ladurner

    Research Institute of Molecular Pathology, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  11. Roman R Stocsits

    Research Institute of Molecular Pathology, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  12. Georg A Busslinger

    Research Institute of Molecular Pathology, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  13. Béla Novák

    Department of Biochemistry, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6961-1366
  14. Karl Mechtler

    Research Institute of Molecular Pathology, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  15. Iain Finley Davidson

    Research Institute of Molecular Pathology, Vienna, Austria
    For correspondence
    davidson@imp.ac.at
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4945-6415
  16. Jan Ellenberg

    Chemical Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
    For correspondence
    jan.ellenberg@embl.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5909-701X
  17. Jan-Michael Peters

    Research Institute of Molecular Pathology, Vienna, Austria
    For correspondence
    Jan-Michael.Peters@imp.ac.at
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2820-3195

Funding

Boehringer Ingelheim

  • Johann Holzmann
  • Kota Nagasaka
  • Johannes Fuchs
  • Gerhard Dürnberger
  • Wen Tang
  • Rene Ladurner
  • Georg A Busslinger
  • Karl Mechtler
  • Iain Finley Davidson
  • Jan-Michael Peters

European Molecular Biology Laboratory

  • Antonio Z Politi
  • Merle Hantsche-Grininger
  • Nike Walther
  • Birgit Koch
  • Jan Ellenberg

National Institutes of Health (Common Fund 4D Nucleome Program (U01 EB021223 / U01 DA047728))

  • Jan Ellenberg

Paul G. Allen Frontiers Group (Allen Distinguished Investigator Program)

  • Jan Ellenberg

EMBL International PhD Programme

  • Nike Walther

Austrian Research Promotion Agency (FFG-852936)

  • Jan-Michael Peters

Austrian Research Promotion Agency (Laura Bassi Centre for Optimized Structural Studies grant FFG-840283)

  • Jan-Michael Peters

Austrian Science Fund (Wittgenstein award Z196-B20)

  • Jan-Michael Peters

Horizon 2020 Framework Programme (653706)

  • Jan Ellenberg

Horizon 2020 Framework Programme (823839)

  • Karl Mechtler

Austrian Science Fund (I 3686-B25 MEIOREC - ERA-CAPS)

  • Karl Mechtler

Austrian Science Fund (FWF special research program SFB F34)

  • Jan-Michael Peters

Austrian Research Promotion Agency (FFG-834223)

  • Jan-Michael Peters

Vienna Science and Technology Fund (WWTF LS09-13)

  • Jan-Michael Peters

Seventh Framework Programme (241548 (MitoSys))

  • Jan Ellenberg
  • Jan-Michael Peters

Horizon 2020 Framework Programme (693949)

  • Jan-Michael Peters

Sixth Framework Programme (503464 (MitoCheck))

  • Jan-Michael Peters

European Molecular Biology Organization (ALTF 1335-2016)

  • Kota Nagasaka

Human Frontier Science Program (LT001527/2017)

  • Kota Nagasaka

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Holzmann et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,996
    views
  • 938
    downloads
  • 83
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Johann Holzmann
  2. Antonio Z Politi
  3. Kota Nagasaka
  4. Merle Hantsche-Grininger
  5. Nike Walther
  6. Birgit Koch
  7. Johannes Fuchs
  8. Gerhard Dürnberger
  9. Wen Tang
  10. Rene Ladurner
  11. Roman R Stocsits
  12. Georg A Busslinger
  13. Béla Novák
  14. Karl Mechtler
  15. Iain Finley Davidson
  16. Jan Ellenberg
  17. Jan-Michael Peters
(2019)
Absolute quantification of cohesin, CTCF and their regulators in human cells
eLife 8:e46269.
https://doi.org/10.7554/eLife.46269

Share this article

https://doi.org/10.7554/eLife.46269

Further reading

    1. Cell Biology
    Xiaojiao Hua, Chen Zhao ... Yan Zhou
    Research Article

    The β-catenin-dependent canonical Wnt signaling is pivotal in organ development, tissue homeostasis, and cancer. Here, we identified an upstream enhancer of Ctnnb1 – the coding gene for β-catenin, named ieCtnnb1 (intestinal enhancer of Ctnnb1), which is crucial for intestinal homeostasis. ieCtnnb1 is predominantly active in the base of small intestinal crypts and throughout the epithelia of large intestine. Knockout of ieCtnnb1 led to a reduction in Ctnnb1 transcription, compromising the canonical Wnt signaling in intestinal crypts. Single-cell sequencing revealed that ieCtnnb1 knockout altered epithelial compositions and potentially compromised functions of small intestinal crypts. While deletion of ieCtnnb1 hampered epithelial turnovers in physiologic conditions, it prevented occurrence and progression of Wnt/β-catenin-driven colorectal cancers. Human ieCTNNB1 drove reporter gene expression in a pattern highly similar to mouse ieCtnnb1. ieCTNNB1 contains a single-nucleotide polymorphism associated with CTNNB1 expression levels in human gastrointestinal epithelia. The enhancer activity of ieCTNNB1 in colorectal cancer tissues was stronger than that in adjacent normal tissues. HNF4α and phosphorylated CREB1 were identified as key trans-factors binding to ieCTNNB1 and regulating CTNNB1 transcription. Together, these findings unveil an enhancer-dependent mechanism controlling the dosage of Wnt signaling and homeostasis in intestinal epithelia.

    1. Cell Biology
    2. Stem Cells and Regenerative Medicine
    Nathaniel Paul Meyer, Tania Singh ... Diane L Barber
    Research Article

    Our understanding of the transitions of human embryonic stem cells between distinct stages of pluripotency relies predominantly on regulation by transcriptional and epigenetic programs with limited insight on the role of established morphological changes. We report remodeling of the actin cytoskeleton of human embryonic stem cells (hESCs) as they transition from primed to naïve pluripotency which includes assembly of a ring of contractile actin filaments encapsulating colonies of naïve hESCs. Activity of the Arp2/3 complex is required for the actin ring, to establish uniform cell mechanics within naïve colonies, promote nuclear translocation of the Hippo pathway effectors YAP and TAZ, and effective transition to naïve pluripotency. RNA-sequencing analysis confirms that Arp2/3 complex activity regulates Hippo signaling in hESCs, and impaired naïve pluripotency with inhibited Arp2/3 complex activity is rescued by expressing a constitutively active, nuclear-localized YAP-S127A. Moreover, expression of YAP-S127A partially restores the actin filament fence with Arp2/3 complex inhibition, suggesting that actin filament remodeling is both upstream and downstream of YAP activity. These new findings on the cell biology of hESCs reveal a mechanism for cytoskeletal dynamics coordinating cell mechanics to regulate gene expression and facilitate transitions between pluripotency states.