Absolute quantification of cohesin, CTCF and their regulators in human cells
Abstract
The organisation of mammalian genomes into loops and topologically associating domains (TADs) contributes to chromatin structure, gene expression and recombination. TADs and many loops are formed by cohesin and positioned by CTCF. In proliferating cells, cohesin also mediates sister chromatid cohesion, which is essential for chromosome segregation. Current models of chromatin folding and cohesion are based on assumptions of how many cohesin and CTCF molecules organise the genome. Here we have measured absolute copy numbers and dynamics of cohesin, CTCF, NIPBL, WAPL and sororin by mass spectrometry, fluorescence-correlation spectroscopy and fluorescence recovery after photobleaching in HeLa cells. In G1-phase there are ~250,000 nuclear cohesin complexes, of which ~160,000 are chromatin-bound. Comparison with chromatin immunoprecipitation-sequencing data implies that some genomic cohesin and CTCF enrichment sites are unoccupied in single cells at any one time. We discuss the implications of these findings for how cohesin can contribute to genome organisation and cohesion.
Data availability
Mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD012712. Sequencing data have been deposited in GEO (GSE126990.
-
ChIP-seq data from Absolute quantification of cohesin, CTCF and their regulators in human cellsNCBI Gene Expression Omnibus, GSE126990.
Article and author information
Author details
Funding
Boehringer Ingelheim
- Johann Holzmann
- Kota Nagasaka
- Johannes Fuchs
- Gerhard Dürnberger
- Wen Tang
- Rene Ladurner
- Georg A Busslinger
- Karl Mechtler
- Iain Finley Davidson
- Jan-Michael Peters
European Molecular Biology Laboratory
- Antonio Z Politi
- Merle Hantsche-Grininger
- Nike Walther
- Birgit Koch
- Jan Ellenberg
National Institutes of Health (Common Fund 4D Nucleome Program (U01 EB021223 / U01 DA047728))
- Jan Ellenberg
Paul G. Allen Frontiers Group (Allen Distinguished Investigator Program)
- Jan Ellenberg
EMBL International PhD Programme
- Nike Walther
Austrian Research Promotion Agency (FFG-852936)
- Jan-Michael Peters
Austrian Research Promotion Agency (Laura Bassi Centre for Optimized Structural Studies grant FFG-840283)
- Jan-Michael Peters
Austrian Science Fund (Wittgenstein award Z196-B20)
- Jan-Michael Peters
Horizon 2020 Framework Programme (653706)
- Jan Ellenberg
Horizon 2020 Framework Programme (823839)
- Karl Mechtler
Austrian Science Fund (I 3686-B25 MEIOREC - ERA-CAPS)
- Karl Mechtler
Austrian Science Fund (FWF special research program SFB F34)
- Jan-Michael Peters
Austrian Research Promotion Agency (FFG-834223)
- Jan-Michael Peters
Vienna Science and Technology Fund (WWTF LS09-13)
- Jan-Michael Peters
Seventh Framework Programme (241548 (MitoSys))
- Jan Ellenberg
- Jan-Michael Peters
Horizon 2020 Framework Programme (693949)
- Jan-Michael Peters
Sixth Framework Programme (503464 (MitoCheck))
- Jan-Michael Peters
European Molecular Biology Organization (ALTF 1335-2016)
- Kota Nagasaka
Human Frontier Science Program (LT001527/2017)
- Kota Nagasaka
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2019, Holzmann et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 5,187
- views
-
- 973
- downloads
-
- 93
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cell Biology
Polynucleotide kinase phosphatase (PNKP) has enzymatic activities as 3′-phosphatase and 5′-kinase of DNA ends to promote DNA ligation and repair. Here, we show that cyclin-dependent kinases (CDKs) regulate the phosphorylation of threonine 118 (T118) in PNKP. This phosphorylation allows recruitment to the gapped DNA structure found in single-strand DNA (ssDNA) nicks and/or gaps between Okazaki fragments (OFs) during DNA replication. T118A (alanine)-substituted PNKP-expressing cells exhibited an accumulation of ssDNA gaps in S phase and accelerated replication fork progression. Furthermore, PNKP is involved in poly (ADP-ribose) polymerase 1 (PARP1)-dependent replication gap filling as part of a backup pathway in the absence of OFs ligation. Altogether, our data suggest that CDK-mediated PNKP phosphorylation at T118 is important for its recruitment to ssDNA gaps to proceed with OFs ligation and its backup repairs via the gap-filling pathway to maintain genome stability.
-
- Cell Biology
- Developmental Biology
Mechanical forces play a critical role in tendon development and function, influencing cell behavior through mechanotransduction signaling pathways and subsequent extracellular matrix (ECM) remodeling. Here we investigate the molecular mechanisms by which tenocytes in developing zebrafish embryos respond to muscle contraction forces during the onset of swimming and cranial muscle activity. Using genome-wide bulk RNA sequencing of FAC-sorted tenocytes we identify novel tenocyte markers and genes involved in tendon mechanotransduction. Embryonic tendons show dramatic changes in expression of matrix remodeling associated 5b (mxra5b), matrilin1 (matn1), and the transcription factor kruppel-like factor 2a (klf2a), as muscles start to contract. Using embryos paralyzed either by loss of muscle contractility or neuromuscular stimulation we confirm that muscle contractile forces influence the spatial and temporal expression patterns of all three genes. Quantification of these gene expression changes across tenocytes at multiple tendon entheses and myotendinous junctions reveals that their responses depend on force intensity, duration and tissue stiffness. These force-dependent feedback mechanisms in tendons, particularly in the ECM, have important implications for improved treatments of tendon injuries and atrophy.