Absolute quantification of cohesin, CTCF and their regulators in human cells

  1. Johann Holzmann
  2. Antonio Z Politi
  3. Kota Nagasaka
  4. Merle Hantsche-Grininger
  5. Nike Walther
  6. Birgit Koch
  7. Johannes Fuchs
  8. Gerhard Dürnberger
  9. Wen Tang
  10. Rene Ladurner
  11. Roman R Stocsits
  12. Georg A Busslinger
  13. Béla Novák
  14. Karl Mechtler
  15. Iain Finley Davidson  Is a corresponding author
  16. Jan Ellenberg  Is a corresponding author
  17. Jan-Michael Peters  Is a corresponding author
  1. Research Institute of Molecular Pathology, Austria
  2. European Molecular Biology Laboratory, Germany
  3. University of Oxford, United Kingdom

Abstract

The organisation of mammalian genomes into loops and topologically associating domains (TADs) contributes to chromatin structure, gene expression and recombination. TADs and many loops are formed by cohesin and positioned by CTCF. In proliferating cells, cohesin also mediates sister chromatid cohesion, which is essential for chromosome segregation. Current models of chromatin folding and cohesion are based on assumptions of how many cohesin and CTCF molecules organise the genome. Here we have measured absolute copy numbers and dynamics of cohesin, CTCF, NIPBL, WAPL and sororin by mass spectrometry, fluorescence-correlation spectroscopy and fluorescence recovery after photobleaching in HeLa cells. In G1-phase there are ~250,000 nuclear cohesin complexes, of which ~160,000 are chromatin-bound. Comparison with chromatin immunoprecipitation-sequencing data implies that some genomic cohesin and CTCF enrichment sites are unoccupied in single cells at any one time. We discuss the implications of these findings for how cohesin can contribute to genome organisation and cohesion.

Data availability

Mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD012712. Sequencing data have been deposited in GEO (GSE126990.

The following data sets were generated

Article and author information

Author details

  1. Johann Holzmann

    Research Institute of Molecular Pathology, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  2. Antonio Z Politi

    Chemical Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4788-0933
  3. Kota Nagasaka

    Research Institute of Molecular Pathology, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0765-638X
  4. Merle Hantsche-Grininger

    Chemical Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Nike Walther

    Chemical Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7591-5251
  6. Birgit Koch

    Chemical Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Johannes Fuchs

    Research Institute of Molecular Pathology, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  8. Gerhard Dürnberger

    Research Institute of Molecular Pathology, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  9. Wen Tang

    Research Institute of Molecular Pathology, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  10. Rene Ladurner

    Research Institute of Molecular Pathology, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  11. Roman R Stocsits

    Research Institute of Molecular Pathology, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  12. Georg A Busslinger

    Research Institute of Molecular Pathology, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  13. Béla Novák

    Department of Biochemistry, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6961-1366
  14. Karl Mechtler

    Research Institute of Molecular Pathology, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  15. Iain Finley Davidson

    Research Institute of Molecular Pathology, Vienna, Austria
    For correspondence
    davidson@imp.ac.at
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4945-6415
  16. Jan Ellenberg

    Chemical Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
    For correspondence
    jan.ellenberg@embl.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5909-701X
  17. Jan-Michael Peters

    Research Institute of Molecular Pathology, Vienna, Austria
    For correspondence
    Jan-Michael.Peters@imp.ac.at
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2820-3195

Funding

Boehringer Ingelheim

  • Johann Holzmann
  • Kota Nagasaka
  • Johannes Fuchs
  • Gerhard Dürnberger
  • Wen Tang
  • Rene Ladurner
  • Georg A Busslinger
  • Karl Mechtler
  • Iain Finley Davidson
  • Jan-Michael Peters

European Molecular Biology Laboratory

  • Antonio Z Politi
  • Merle Hantsche-Grininger
  • Nike Walther
  • Birgit Koch
  • Jan Ellenberg

National Institutes of Health (Common Fund 4D Nucleome Program (U01 EB021223 / U01 DA047728))

  • Jan Ellenberg

Paul G. Allen Frontiers Group (Allen Distinguished Investigator Program)

  • Jan Ellenberg

EMBL International PhD Programme

  • Nike Walther

Austrian Research Promotion Agency (FFG-852936)

  • Jan-Michael Peters

Austrian Research Promotion Agency (Laura Bassi Centre for Optimized Structural Studies grant FFG-840283)

  • Jan-Michael Peters

Austrian Science Fund (Wittgenstein award Z196-B20)

  • Jan-Michael Peters

Horizon 2020 Framework Programme (653706)

  • Jan Ellenberg

Horizon 2020 Framework Programme (823839)

  • Karl Mechtler

Austrian Science Fund (I 3686-B25 MEIOREC - ERA-CAPS)

  • Karl Mechtler

Austrian Science Fund (FWF special research program SFB F34)

  • Jan-Michael Peters

Austrian Research Promotion Agency (FFG-834223)

  • Jan-Michael Peters

Vienna Science and Technology Fund (WWTF LS09-13)

  • Jan-Michael Peters

Seventh Framework Programme (241548 (MitoSys))

  • Jan Ellenberg
  • Jan-Michael Peters

Horizon 2020 Framework Programme (693949)

  • Jan-Michael Peters

Sixth Framework Programme (503464 (MitoCheck))

  • Jan-Michael Peters

European Molecular Biology Organization (ALTF 1335-2016)

  • Kota Nagasaka

Human Frontier Science Program (LT001527/2017)

  • Kota Nagasaka

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Holzmann et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,199
    views
  • 974
    downloads
  • 93
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.46269

Further reading

    1. Cell Biology
    Kaili Du, Hongyu Chen ... Dan Li
    Research Article

    Niemann–Pick disease type C (NPC) is a devastating lysosomal storage disease characterized by abnormal cholesterol accumulation in lysosomes. Currently, there is no treatment for NPC. Transcription factor EB (TFEB), a member of the microphthalmia transcription factors (MiTF), has emerged as a master regulator of lysosomal function and promoted the clearance of substrates stored in cells. However, it is not known whether TFEB plays a role in cholesterol clearance in NPC disease. Here, we show that transgenic overexpression of TFEB, but not TFE3 (another member of MiTF family) facilitates cholesterol clearance in various NPC1 cell models. Pharmacological activation of TFEB by sulforaphane (SFN), a previously identified natural small-molecule TFEB agonist by us, can dramatically ameliorate cholesterol accumulation in human and mouse NPC1 cell models. In NPC1 cells, SFN induces TFEB nuclear translocation via a ROS-Ca2+-calcineurin-dependent but MTOR-independent pathway and upregulates the expression of TFEB-downstream genes, promoting lysosomal exocytosis and biogenesis. While genetic inhibition of TFEB abolishes the cholesterol clearance and exocytosis effect by SFN. In the NPC1 mouse model, SFN dephosphorylates/activates TFEB in the brain and exhibits potent efficacy of rescuing the loss of Purkinje cells and body weight. Hence, pharmacological upregulating lysosome machinery via targeting TFEB represents a promising approach to treat NPC and related lysosomal storage diseases, and provides the possibility of TFEB agonists, that is, SFN as potential NPC therapeutic candidates.

    1. Cell Biology
    Yan Song, Linda J Fothergill ... Gene W Yeo
    Research Article

    Dynamic interactions between gut mucosal cells and the external environment are essential to maintain gut homeostasis. Enterochromaffin (EC) cells transduce both chemical and mechanical signals and produce 5-hydroxytryptamine to mediate disparate physiological responses. However, the molecular and cellular basis for functional diversity of ECs remains to be adequately defined. Here, we integrated single-cell transcriptomics with spatial image analysis to identify 14 EC clusters that are topographically organized along the gut. Subtypes predicted to be sensitive to the chemical environment and mechanical forces were identified that express distinct transcription factors and hormones. A Piezo2+ population in the distal colon was endowed with a distinctive neuronal signature. Using a combination of genetic, chemogenetic, and pharmacological approaches, we demonstrated Piezo2+ ECs are required for normal colon motility. Our study constructs a molecular map for ECs and offers a framework for deconvoluting EC cells with pleiotropic functions.