Abstract

The organisation of mammalian genomes into loops and topologically associating domains (TADs) contributes to chromatin structure, gene expression and recombination. TADs and many loops are formed by cohesin and positioned by CTCF. In proliferating cells, cohesin also mediates sister chromatid cohesion, which is essential for chromosome segregation. Current models of chromatin folding and cohesion are based on assumptions of how many cohesin and CTCF molecules organise the genome. Here we have measured absolute copy numbers and dynamics of cohesin, CTCF, NIPBL, WAPL and sororin by mass spectrometry, fluorescence-correlation spectroscopy and fluorescence recovery after photobleaching in HeLa cells. In G1-phase there are ~250,000 nuclear cohesin complexes, of which ~160,000 are chromatin-bound. Comparison with chromatin immunoprecipitation-sequencing data implies that some genomic cohesin and CTCF enrichment sites are unoccupied in single cells at any one time. We discuss the implications of these findings for how cohesin can contribute to genome organisation and cohesion.

Data availability

Mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD012712. Sequencing data have been deposited in GEO (GSE126990.

The following data sets were generated

Article and author information

Author details

  1. Johann Holzmann

    Research Institute of Molecular Pathology, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  2. Antonio Z Politi

    Chemical Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4788-0933
  3. Kota Nagasaka

    Research Institute of Molecular Pathology, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0765-638X
  4. Merle Hantsche-Grininger

    Chemical Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Nike Walther

    Chemical Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7591-5251
  6. Birgit Koch

    Chemical Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Johannes Fuchs

    Research Institute of Molecular Pathology, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  8. Gerhard Dürnberger

    Research Institute of Molecular Pathology, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  9. Wen Tang

    Research Institute of Molecular Pathology, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  10. Rene Ladurner

    Research Institute of Molecular Pathology, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  11. Roman R Stocsits

    Research Institute of Molecular Pathology, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  12. Georg A Busslinger

    Research Institute of Molecular Pathology, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  13. Béla Novák

    Department of Biochemistry, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6961-1366
  14. Karl Mechtler

    Research Institute of Molecular Pathology, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  15. Iain Finley Davidson

    Research Institute of Molecular Pathology, Vienna, Austria
    For correspondence
    davidson@imp.ac.at
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4945-6415
  16. Jan Ellenberg

    Chemical Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
    For correspondence
    jan.ellenberg@embl.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5909-701X
  17. Jan-Michael Peters

    Research Institute of Molecular Pathology, Vienna, Austria
    For correspondence
    Jan-Michael.Peters@imp.ac.at
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2820-3195

Funding

Boehringer Ingelheim

  • Johann Holzmann
  • Kota Nagasaka
  • Johannes Fuchs
  • Gerhard Dürnberger
  • Wen Tang
  • Rene Ladurner
  • Georg A Busslinger
  • Karl Mechtler
  • Iain Finley Davidson
  • Jan-Michael Peters

European Molecular Biology Laboratory

  • Antonio Z Politi
  • Merle Hantsche-Grininger
  • Nike Walther
  • Birgit Koch
  • Jan Ellenberg

National Institutes of Health (Common Fund 4D Nucleome Program (U01 EB021223 / U01 DA047728))

  • Jan Ellenberg

Paul G. Allen Frontiers Group (Allen Distinguished Investigator Program)

  • Jan Ellenberg

EMBL International PhD Programme

  • Nike Walther

Austrian Research Promotion Agency (FFG-852936)

  • Jan-Michael Peters

Austrian Research Promotion Agency (Laura Bassi Centre for Optimized Structural Studies grant FFG-840283)

  • Jan-Michael Peters

Austrian Science Fund (Wittgenstein award Z196-B20)

  • Jan-Michael Peters

Horizon 2020 Framework Programme (653706)

  • Jan Ellenberg

Horizon 2020 Framework Programme (823839)

  • Karl Mechtler

Austrian Science Fund (I 3686-B25 MEIOREC - ERA-CAPS)

  • Karl Mechtler

Austrian Science Fund (FWF special research program SFB F34)

  • Jan-Michael Peters

Austrian Research Promotion Agency (FFG-834223)

  • Jan-Michael Peters

Vienna Science and Technology Fund (WWTF LS09-13)

  • Jan-Michael Peters

Seventh Framework Programme (241548 (MitoSys))

  • Jan Ellenberg
  • Jan-Michael Peters

Horizon 2020 Framework Programme (693949)

  • Jan-Michael Peters

Sixth Framework Programme (503464 (MitoCheck))

  • Jan-Michael Peters

European Molecular Biology Organization (ALTF 1335-2016)

  • Kota Nagasaka

Human Frontier Science Program (LT001527/2017)

  • Kota Nagasaka

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Holzmann et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,029
    views
  • 942
    downloads
  • 84
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Johann Holzmann
  2. Antonio Z Politi
  3. Kota Nagasaka
  4. Merle Hantsche-Grininger
  5. Nike Walther
  6. Birgit Koch
  7. Johannes Fuchs
  8. Gerhard Dürnberger
  9. Wen Tang
  10. Rene Ladurner
  11. Roman R Stocsits
  12. Georg A Busslinger
  13. Béla Novák
  14. Karl Mechtler
  15. Iain Finley Davidson
  16. Jan Ellenberg
  17. Jan-Michael Peters
(2019)
Absolute quantification of cohesin, CTCF and their regulators in human cells
eLife 8:e46269.
https://doi.org/10.7554/eLife.46269

Share this article

https://doi.org/10.7554/eLife.46269

Further reading

    1. Cell Biology
    Guangyan Yang, Jiaqing Xiang ... Shu Yang
    Research Article

    TGF-β stimulates CCN2 expression which in turn amplifies TGF-β signaling. This process promotes extracellular matrix production and accelerates the pathological progression of fibrotic diseases. Alternative splicing plays an important role in multiple disease development, while U2 small nuclear RNA auxiliary factor 2 (U2AF2) is an essential factor in the early steps of pre-mRNA splicing. However, the molecular mechanism underlying abnormal CCN2 expression upon TGF-β stimulation remains unclear. This study elucidates that SIRT4 acts as a master regulator for CCN2 expression in response to TGF-β by modulating U2AF2-mediated alternative splicing. Analyses of renal biopsy specimens from patients with CKD and mouse fibrotic kidney tissues revealed marked nuclear accumulation of SIRT4. The tubulointerstitial fibrosis was alleviated by global deletion or tubular epithelial cell (TEC)-specific knockout of Sirt4, and aggravated by adeno-associated virus-mediated SIRT4 overexpression in TECs. Furthermore, SIRT4 was found to translocate from the mitochondria to the cytoplasm through the BAX/BAK pore under TGF-β stimulation. In the cytoplasm, TGF-β activated the ERK pathway and induced the phosphorylation of SIRT4 at Ser36, which further promoted its interaction with importin α1 and subsequent nuclear translocation. In the nucleus, SIRT4 was found to deacetylate U2AF2 at K413, facilitating the splicing of CCN2 pre-mRNA to promote CCN2 protein expression. Importantly, exosomes containing anti-SIRT4 antibodies were found to effectively mitigate the UUO-induced kidney fibrosis in mice. Collectively, these findings indicated that SIRT4 plays a role in kidney fibrosis by regulating CCN2 expression via the pre-mRNA splicing.

    1. Cell Biology
    Jessica E Schwarz, Antonijo Mrčela ... Amita Sehgal
    Short Report

    Aging is associated with a number of physiologic changes including perturbed circadian rhythms; however, mechanisms by which rhythms are altered remain unknown. To test the idea that circulating factors mediate age-dependent changes in peripheral rhythms, we compared the ability of human serum from young and old individuals to synchronize circadian rhythms in culture. We collected blood from apparently healthy young (age 25–30) and old (age 70–76) individuals at 14:00 and used the serum to synchronize cultured fibroblasts. We found that young and old sera are equally competent at initiating robust ~24 hr oscillations of a luciferase reporter driven by clock gene promoter. However, cyclic gene expression is affected, such that young and old sera promote cycling of different sets of genes. Genes that lose rhythmicity with old serum entrainment are associated with oxidative phosphorylation and Alzheimer’s Disease as identified by STRING and IPA analyses. Conversely, the expression of cycling genes associated with cholesterol biosynthesis increased in the cells entrained with old serum. Genes involved in the cell cycle and transcription/translation remain rhythmic in both conditions. We did not observe a global difference in the distribution of phase between groups, but found that peak expression of several clock-controlled genes (PER3, NR1D1, NR1D2, CRY1, CRY2, and TEF) lagged in the cells synchronized ex vivo with old serum. Taken together, these findings demonstrate that age-dependent blood-borne factors affect circadian rhythms in peripheral cells and have the potential to impact health and disease via maintaining or disrupting rhythms respectively.