Imaging of glucose metabolism by 13C-MRI distinguishes pancreatic cancer subtypes in mice

  1. Shun Kishimoto
  2. Jeffrey R Brender  Is a corresponding author
  3. Daniel R Crooks
  4. Shingo Matsumoto
  5. Tomohiro Seki
  6. Nobu Oshima
  7. Hellmut Merkle
  8. Penghui Lin
  9. Galen Reed
  10. Albert P Chen
  11. Jan Henrik Ardenkjaer-Larsen
  12. Jeeva Munasinghe
  13. Keita Saito
  14. Kazutoshi Yamamoto
  15. Peter L Choyke
  16. James Mitchell
  17. Andrew N Lane
  18. Teresa Fan
  19. W Marston Linehan
  20. Murali C Krishna  Is a corresponding author
  1. National Cancer Institute, National Institutes of Health, United States
  2. Hokkaido University, Japan
  3. National Institute of Neurological Disorders and Stroke, National Institutes of Health, United States
  4. University of Kentucky, United States
  5. GE Healthcare, Canada

Abstract

Metabolic differences among and within tumors can be an important determinant in cancer treatment outcome. However, methods for determining these differences non-invasively in vivo is lacking. Using pancreatic ductal adenocarcinoma as a model, we demonstrate that tumor xenografts with a similar genetic background can be distinguished by their differing rates of the metabolism of 13C labeled glucose tracers, which can be imaged without hyperpolarization using newly developed techniques for noise suppression. Using this method, cancer subtypes that appeared to have similar metabolic profiles based on steady state metabolic measurement can be distinguished from each other. The metabolic maps from 13C-glucose imaging localized lactate production and overall glucose metabolism to different regions of some tumors. Such tumor heterogeneity was not detectable in FDG-PET.

Data availability

Glucose imaging data and related files have been deposited to Dataverse at https://doi.org/10.7910/DVN/XU9XH9

Article and author information

Author details

  1. Shun Kishimoto

    Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, United States
    Competing interests
    No competing interests declared.
  2. Jeffrey R Brender

    Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, United States
    For correspondence
    cherukum@mail.nih.gov
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7487-6169
  3. Daniel R Crooks

    Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, United States
    Competing interests
    No competing interests declared.
  4. Shingo Matsumoto

    Graduate School of Information Science and Technology, Division of Bioengineering and Bioinformatics, Hokkaido University, Sapporo, Japan
    Competing interests
    No competing interests declared.
  5. Tomohiro Seki

    Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, United States
    Competing interests
    No competing interests declared.
  6. Nobu Oshima

    Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, United States
    Competing interests
    No competing interests declared.
  7. Hellmut Merkle

    National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
    Competing interests
    No competing interests declared.
  8. Penghui Lin

    Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, United States
    Competing interests
    No competing interests declared.
  9. Galen Reed

    Research Circle Technology, GE Healthcare, Toronto, Canada
    Competing interests
    Galen Reed, is affiliated with GE HealthCare. The author has no other competing interests to declare..
  10. Albert P Chen

    Research Circle Technology, GE Healthcare, Toronto, Canada
    Competing interests
    Albert P Chen, is affiliated with GE HealthCare. The author has no other competing interests to declare..
  11. Jan Henrik Ardenkjaer-Larsen

    Research Circle Technology, GE Healthcare, Toronto, Canada
    Competing interests
    Jan Henrik Ardenkjaer-Larsen, is affiliated with GE HealthCare. The author has no other competing interests to declare..
  12. Jeeva Munasinghe

    In Vivo NMR Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
    Competing interests
    No competing interests declared.
  13. Keita Saito

    Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, United States
    Competing interests
    No competing interests declared.
  14. Kazutoshi Yamamoto

    Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, United States
    Competing interests
    No competing interests declared.
  15. Peter L Choyke

    Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, United States
    Competing interests
    No competing interests declared.
  16. James Mitchell

    Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, United States
    Competing interests
    No competing interests declared.
  17. Andrew N Lane

    Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, United States
    Competing interests
    No competing interests declared.
  18. Teresa Fan

    Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, United States
    Competing interests
    No competing interests declared.
  19. W Marston Linehan

    Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, United States
    Competing interests
    No competing interests declared.
  20. Murali C Krishna

    Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, United States
    For correspondence
    murali@helix.nih.gov
    Competing interests
    No competing interests declared.

Funding

National Cancer Institute (1ZIASC006321-39)

  • James Mitchell

National Cancer Institute (Intramural Research Program)

  • Murali C Krishna

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The animal experiments were conducted according to a protocol approved by the Animal Research Advisory Committee of the NIH (RBB-159-2SA) in accordance with the National Institutes of Health Guidelines for Animal Research.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 3,539
    views
  • 429
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shun Kishimoto
  2. Jeffrey R Brender
  3. Daniel R Crooks
  4. Shingo Matsumoto
  5. Tomohiro Seki
  6. Nobu Oshima
  7. Hellmut Merkle
  8. Penghui Lin
  9. Galen Reed
  10. Albert P Chen
  11. Jan Henrik Ardenkjaer-Larsen
  12. Jeeva Munasinghe
  13. Keita Saito
  14. Kazutoshi Yamamoto
  15. Peter L Choyke
  16. James Mitchell
  17. Andrew N Lane
  18. Teresa Fan
  19. W Marston Linehan
  20. Murali C Krishna
(2019)
Imaging of glucose metabolism by 13C-MRI distinguishes pancreatic cancer subtypes in mice
eLife 8:e46312.
https://doi.org/10.7554/eLife.46312

Share this article

https://doi.org/10.7554/eLife.46312

Further reading

    1. Cancer Biology
    2. Cell Biology
    Brooke A Conti, Leo Novikov ... Mariano Oppikofer
    Research Article

    DNA base lesions, such as incorporation of uracil into DNA or base mismatches, can be mutagenic and toxic to replicating cells. To discover factors in repair of genomic uracil, we performed a CRISPR knockout screen in the presence of floxuridine, a chemotherapeutic agent that incorporates uracil and fluorouracil into DNA. We identified known factors, such as uracil DNA N-glycosylase (UNG), and unknown factors, such as the N6-adenosine methyltransferase, METTL3, as required to overcome floxuridine-driven cytotoxicity. Visualized with immunofluorescence, the product of METTL3 activity, N6-methyladenosine, formed nuclear foci in cells treated with floxuridine. The observed N6-methyladenosine was embedded in DNA, called 6mA, and these results were confirmed using an orthogonal approach, liquid chromatography coupled to tandem mass spectrometry. METTL3 and 6mA were required for repair of lesions driven by additional base-damaging agents, including raltitrexed, gemcitabine, and hydroxyurea. Our results establish a role for METTL3 and 6mA in promoting genome stability in mammalian cells, especially in response to base damage.

    1. Cancer Biology
    Pierluigi Scerbo, Benjamin Tisserand ... Bertrand Ducos
    Research Article

    Why does a normal cell possibly harboring genetic mutations in oncogene or tumor suppressor genes becomes malignant and develops a tumor is a subject of intense debate. Various theories have been proposed but their experimental test has been hampered by the unpredictable and improbable malignant transformation of single cells. Here, using an optogenetic approach we permanently turn on an oncogene (KRASG12V) in a single cell of a zebrafish brain that, only in synergy with the transient co-activation of a reprogramming factor (VENTX/NANOG/OCT4), undergoes a deterministic malignant transition and robustly and reproducibly develops within 6 days into a full-blown tumor. The controlled way in which a single cell can thus be manipulated to give rise to cancer lends support to the ‘ground state theory of cancer initiation’ through ‘short-range dispersal’ of the first malignant cells preceding tumor growth.