Imaging of glucose metabolism by 13C-MRI distinguishes pancreatic cancer subtypes in mice

  1. Shun Kishimoto
  2. Jeffrey R Brender  Is a corresponding author
  3. Daniel R Crooks
  4. Shingo Matsumoto
  5. Tomohiro Seki
  6. Nobu Oshima
  7. Hellmut Merkle
  8. Penghui Lin
  9. Galen Reed
  10. Albert P Chen
  11. Jan Henrik Ardenkjaer-Larsen
  12. Jeeva Munasinghe
  13. Keita Saito
  14. Kazutoshi Yamamoto
  15. Peter L Choyke
  16. James Mitchell
  17. Andrew N Lane
  18. Teresa Fan
  19. W Marston Linehan
  20. Murali C Krishna  Is a corresponding author
  1. National Cancer Institute, National Institutes of Health, United States
  2. Hokkaido University, Japan
  3. National Institute of Neurological Disorders and Stroke, National Institutes of Health, United States
  4. University of Kentucky, United States
  5. GE Healthcare, Canada

Abstract

Metabolic differences among and within tumors can be an important determinant in cancer treatment outcome. However, methods for determining these differences non-invasively in vivo is lacking. Using pancreatic ductal adenocarcinoma as a model, we demonstrate that tumor xenografts with a similar genetic background can be distinguished by their differing rates of the metabolism of 13C labeled glucose tracers, which can be imaged without hyperpolarization using newly developed techniques for noise suppression. Using this method, cancer subtypes that appeared to have similar metabolic profiles based on steady state metabolic measurement can be distinguished from each other. The metabolic maps from 13C-glucose imaging localized lactate production and overall glucose metabolism to different regions of some tumors. Such tumor heterogeneity was not detectable in FDG-PET.

Data availability

Glucose imaging data and related files have been deposited to Dataverse at https://doi.org/10.7910/DVN/XU9XH9

Article and author information

Author details

  1. Shun Kishimoto

    Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, United States
    Competing interests
    No competing interests declared.
  2. Jeffrey R Brender

    Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, United States
    For correspondence
    cherukum@mail.nih.gov
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7487-6169
  3. Daniel R Crooks

    Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, United States
    Competing interests
    No competing interests declared.
  4. Shingo Matsumoto

    Graduate School of Information Science and Technology, Division of Bioengineering and Bioinformatics, Hokkaido University, Sapporo, Japan
    Competing interests
    No competing interests declared.
  5. Tomohiro Seki

    Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, United States
    Competing interests
    No competing interests declared.
  6. Nobu Oshima

    Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, United States
    Competing interests
    No competing interests declared.
  7. Hellmut Merkle

    National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
    Competing interests
    No competing interests declared.
  8. Penghui Lin

    Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, United States
    Competing interests
    No competing interests declared.
  9. Galen Reed

    Research Circle Technology, GE Healthcare, Toronto, Canada
    Competing interests
    Galen Reed, is affiliated with GE HealthCare. The author has no other competing interests to declare..
  10. Albert P Chen

    Research Circle Technology, GE Healthcare, Toronto, Canada
    Competing interests
    Albert P Chen, is affiliated with GE HealthCare. The author has no other competing interests to declare..
  11. Jan Henrik Ardenkjaer-Larsen

    Research Circle Technology, GE Healthcare, Toronto, Canada
    Competing interests
    Jan Henrik Ardenkjaer-Larsen, is affiliated with GE HealthCare. The author has no other competing interests to declare..
  12. Jeeva Munasinghe

    In Vivo NMR Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
    Competing interests
    No competing interests declared.
  13. Keita Saito

    Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, United States
    Competing interests
    No competing interests declared.
  14. Kazutoshi Yamamoto

    Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, United States
    Competing interests
    No competing interests declared.
  15. Peter L Choyke

    Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, United States
    Competing interests
    No competing interests declared.
  16. James Mitchell

    Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, United States
    Competing interests
    No competing interests declared.
  17. Andrew N Lane

    Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, United States
    Competing interests
    No competing interests declared.
  18. Teresa Fan

    Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, United States
    Competing interests
    No competing interests declared.
  19. W Marston Linehan

    Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, United States
    Competing interests
    No competing interests declared.
  20. Murali C Krishna

    Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, United States
    For correspondence
    murali@helix.nih.gov
    Competing interests
    No competing interests declared.

Funding

National Cancer Institute (1ZIASC006321-39)

  • James Mitchell

National Cancer Institute (Intramural Research Program)

  • Murali C Krishna

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The animal experiments were conducted according to a protocol approved by the Animal Research Advisory Committee of the NIH (RBB-159-2SA) in accordance with the National Institutes of Health Guidelines for Animal Research.

Reviewing Editor

  1. Ralph DeBerardinis, UT Southwestern Medical Center, United States

Publication history

  1. Received: February 23, 2019
  2. Accepted: August 8, 2019
  3. Accepted Manuscript published: August 13, 2019 (version 1)
  4. Version of Record published: August 22, 2019 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 3,184
    Page views
  • 398
    Downloads
  • 16
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shun Kishimoto
  2. Jeffrey R Brender
  3. Daniel R Crooks
  4. Shingo Matsumoto
  5. Tomohiro Seki
  6. Nobu Oshima
  7. Hellmut Merkle
  8. Penghui Lin
  9. Galen Reed
  10. Albert P Chen
  11. Jan Henrik Ardenkjaer-Larsen
  12. Jeeva Munasinghe
  13. Keita Saito
  14. Kazutoshi Yamamoto
  15. Peter L Choyke
  16. James Mitchell
  17. Andrew N Lane
  18. Teresa Fan
  19. W Marston Linehan
  20. Murali C Krishna
(2019)
Imaging of glucose metabolism by 13C-MRI distinguishes pancreatic cancer subtypes in mice
eLife 8:e46312.
https://doi.org/10.7554/eLife.46312

Further reading

    1. Cancer Biology
    2. Cell Biology
    Katarzyna Bogucka-Janczi, Gregory Harms ... Krishnaraj Rajalingam
    Research Advance Updated

    The actin cytoskeleton is tightly controlled by RhoGTPases, actin binding-proteins and nucleation-promoting factors to perform fundamental cellular functions. We have previously shown that ERK3, an atypical MAPK, controls IL-8 production and chemotaxis (Bogueka et al., 2020). Here, we show in human cells that ERK3 directly acts as a guanine nucleotide exchange factor for CDC42 and phosphorylates the ARP3 subunit of the ARP2/3 complex at S418 to promote filopodia formation and actin polymerization, respectively. Consistently, depletion of ERK3 prevented both basal and EGF-dependent RAC1 and CDC42 activation, maintenance of F-actin content, filopodia formation, and epithelial cell migration. Further, ERK3 protein bound directly to the purified ARP2/3 complex and augmented polymerization of actin in vitro. ERK3 kinase activity was required for the formation of actin-rich protrusions in mammalian cells. These findings unveil a fundamentally unique pathway employed by cells to control actin-dependent cellular functions.

    1. Cancer Biology
    2. Cell Biology
    Julieta Martino, Sebastián Omar Siri ... Vanesa Gottifredi
    Research Article Updated

    The trapping of Poly-ADP-ribose polymerase (PARP) on DNA caused by PARP inhibitors (PARPi) triggers acute DNA replication stress and synthetic lethality (SL) in BRCA2-deficient cells. Hence, DNA damage is accepted as a prerequisite for SL in BRCA2-deficient cells. In contrast, here we show that inhibiting ROCK in BRCA2-deficient cells triggers SL independently from acute replication stress. Such SL is preceded by polyploidy and binucleation resulting from cytokinesis failure. Such initial mitosis abnormalities are followed by other M phase defects, including anaphase bridges and abnormal mitotic figures associated with multipolar spindles, supernumerary centrosomes and multinucleation. SL was also triggered by inhibiting Citron Rho-interacting kinase, another enzyme that, similarly to ROCK, regulates cytokinesis. Together, these observations demonstrate that cytokinesis failure triggers mitotic abnormalities and SL in BRCA2-deficient cells. Furthermore, the prevention of mitotic entry by depletion of Early mitotic inhibitor 1 (EMI1) augmented the survival of BRCA2-deficient cells treated with ROCK inhibitors, thus reinforcing the association between M phase and cell death in BRCA2-deficient cells. This novel SL differs from the one triggered by PARPi and uncovers mitosis as an Achilles heel of BRCA2-deficient cells.