Improved CUT&RUN chromatin profiling tools

  1. Michael P Meers
  2. Terri D Bryson
  3. Jorja G Henikoff
  4. Steven Henikoff  Is a corresponding author
  1. Fred Hutchinson Cancer Research Center, United States

Abstract

Previously we described a novel alternative to Chromatin Immunoprecipitation, CUT&RUN, in which unfixed permeabilized cells are incubated with antibody, followed by binding of a Protein A-Micrococcal Nuclease (pA/MNase) fusion protein (Skene and Henikoff, 2017). Here we introduce three enhancements to CUT&RUN: A hybrid Protein A-Protein G-MNase construct that expands antibody compatibility and simplifies purification, a modified digestion protocol that inhibits premature release of the nuclease-bound complex, and a calibration strategy based on carry-over of E. coli DNA introduced with the fusion protein. These new features, coupled with the previously described low-cost, high efficiency, high reproducibility and high-throughput capability of CUT&RUN make it the method of choice for routine epigenomic profiling.

Data availability

The plasmid pAG-ERH-MNase-6xHIS-HA is available from Addgene. Sequencing datasets are available from GEO (GSE126612).

The following data sets were generated

Article and author information

Author details

  1. Michael P Meers

    Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Terri D Bryson

    Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jorja G Henikoff

    Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Steven Henikoff

    Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    For correspondence
    steveh@fhcrc.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7621-8685

Funding

Howard Hughes Medical Institute

  • Michael P Meers

National Institutes of Health (4DN TCPA A093)

  • Terri D Bryson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Stephen Parker, University of Michigan, United States

Publication history

  1. Received: February 22, 2019
  2. Accepted: June 22, 2019
  3. Accepted Manuscript published: June 24, 2019 (version 1)
  4. Version of Record published: June 28, 2019 (version 2)

Copyright

© 2019, Meers et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 36,804
    Page views
  • 3,840
    Downloads
  • 101
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michael P Meers
  2. Terri D Bryson
  3. Jorja G Henikoff
  4. Steven Henikoff
(2019)
Improved CUT&RUN chromatin profiling tools
eLife 8:e46314.
https://doi.org/10.7554/eLife.46314

Further reading

    1. Chromosomes and Gene Expression
    2. Developmental Biology
    Lewis Macdonald et al.
    Tools and Resources

    Auxin-inducible degrons are a chemical genetic tool for targeted protein degradation and are widely used to study protein function in cultured mammalian cells. Here we develop CRISPR-engineered mouse lines that enable rapid and highly specific degradation of tagged endogenous proteins in vivo. Most but not all cell types are competent for degradation. By combining ligand titrations with genetic crosses to generate animals with different allelic combinations, we show that degradation kinetics depend upon the dose of the tagged protein, ligand, and the E3 ligase substrate receptor TIR1. Rapid degradation of condensin I and condensin II - two essential regulators of mitotic chromosome structure - revealed that both complexes are individually required for cell division in precursor lymphocytes, but not in their differentiated peripheral lymphocyte derivatives. This generalisable approach provides unprecedented temporal control over the dose of endogenous proteins in mouse models, with implications for studying essential biological pathways and modelling drug activity in mammalian tissues.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Jakub Gemperle et al.
    Tools and Resources

    CRISPR technology has made generation of gene knock-outs widely achievable in cells. However, once inactivated, their re-activation remains difficult, especially in diploid cells. Here, we present DExCon (Doxycycline-mediated endogenous gene Expression Control), DExogron (DExCon combined with auxin-mediated targeted protein degradation), and LUXon (light responsive DExCon) approaches which combine one-step CRISPR-Cas9-mediated targeted knockin of fluorescent proteins with an advanced Tet-inducible TRE3GS promoter. These approaches combine blockade of active gene expression with the ability to re-activate expression on demand, including activation of silenced genes. Systematic control can be exerted using doxycycline or spatiotemporally by light, and we demonstrate functional knock-out/rescue in the closely related Rab11 family of vesicle trafficking regulators. Fluorescent protein knock-in results in bright signals compatible with low-light live microscopy from monoallelic modification, the potential to simultaneously image different alleles of the same gene, and bypasses the need to work with clones. Protein levels are easily tunable to correspond with endogenous expression through cell sorting (DExCon), timing of light illumination (LUXon), or by exposing cells to different levels of auxin (DExogron). Furthermore, our approach allowed us to quantify previously unforeseen differences in vesicle dynamics, transferrin receptor recycling, expression kinetics, and protein stability among highly similar endogenous Rab11 family members and their colocalization in triple knock-in ovarian cancer cell lines.