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Abstract Response inhibition is essential for navigating everyday life. Its derailment is

considered integral to numerous neurological and psychiatric disorders, and more generally, to a

wide range of behavioral and health problems. Response-inhibition efficiency furthermore

correlates with treatment outcome in some of these conditions. The stop-signal task is an essential

tool to determine how quickly response inhibition is implemented. Despite its apparent simplicity,

there are many features (ranging from task design to data analysis) that vary across studies in ways

that can easily compromise the validity of the obtained results. Our goal is to facilitate a more

accurate use of the stop-signal task. To this end, we provide 12 easy-to-implement consensus

Verbruggen et al. eLife 2019;8:e46323. DOI: https://doi.org/10.7554/eLife.46323 1 of 26

TOOLS AND RESOURCES

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.46323
https://creativecommons.org/
https://creativecommons.org/
http://elifesciences.org/
http://elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


recommendations and point out the problems that can arise when they are not followed.

Furthermore, we provide user-friendly open-source resources intended to inform statistical-power

considerations, facilitate the correct implementation of the task, and assist in proper data analysis.

DOI: https://doi.org/10.7554/eLife.46323.001

Introduction
The ability to suppress unwanted or inappropriate actions and impulses (‘response inhibition’) is a

crucial component of flexible and goal-directed behavior. The stop-signal task (Lappin and Eriksen,

1966; Logan and Cowan, 1984; Vince, 1948) is an essential tool for studying response inhibition in

neuroscience, psychiatry, and psychology (among several other disciplines; see Appendix 1), and is

used across various human (e.g. clinical vs. non-clinical, different age groups) and non-human (pri-

mates, rodents, etc.) populations. In this task, participants typically perform a go task (e.g. press left

when an arrow pointing to the left appears, and right when an arrow pointing to the right appears),

but on a minority of the trials, a stop signal (e.g. a cross replacing the arrow) appears after a variable

stop-signal delay (SSD), instructing participants to suppress the imminent go response (Figure 1).

Unlike the latency of go responses, response-inhibition latency cannot be observed directly (as suc-

cessful response inhibition results in the absence of an observable response). The stop-signal task is

unique in allowing the estimation of this covert latency (stop-signal reaction time or SSRT; Box 1).

Research using the task has revealed links between inhibitory-control capacities and a wide range of

behavioral and impulse-control problems in everyday life, including attention-deficit/hyperactivity

disorder, substance abuse, eating disorders, and obsessive-compulsive behaviors (for meta-analyses,

see e.g. Bartholdy et al., 2016; Lipszyc and Schachar, 2010; Smith et al., 2014).

Today, the stop-signal field is flourishing like never before (see Appendix 1). There is a risk, how-

ever, that the task falls victim to its own success, if it is used without sufficient regard for a number

of important factors that jointly determine its validity. Currently, there is considerable heterogeneity

in how stop-signal studies are designed and executed, how the SSRT is estimated, and how results

of stop-signal studies are reported. This is highly problematic. First, what might seem like small

design details can have an immense impact on the nature of the stop process and the task. The het-

erogeneity in designs also complicates between-study comparisons, and some combinations of

design and analysis features are incompatible. Second, SSRT estimates are unreliable when inappro-

priate estimation methods are used or when the underlying race-model assumptions are (seriously)

violated (see Box 1 for a discussion of the race model). This can lead to artefactual and plainly incor-

rect results. Third, the validity of SSRT can be checked only if researchers report all relevant method-

ological information and data.

Here, we aim to address these issues by consensus. After an extensive consultation round, the

authors of the present paper agreed on 12 recommendations that should safeguard and further

improve the overall quality of future stop-signal research. The recommendations are based on previ-

ous methodological studies or, where further empirical support was required, on novel simulations

(which are reported in Appendices 2–3). A full overview of the stop-signal literature is beyond the

scope of this study (but see e.g. Aron, 2011; Bari and Robbins, 2013; Chambers et al., 2009;

Schall et al., 2017; Verbruggen and Logan, 2017, for comprehensive overviews of the clinical, neu-

roscience, and cognitive stop-signal domains; see also the meta-analytic reviews mentioned above).

Below, we provide a concise description of the recommendations. We briefly introduce all impor-

tant concepts in the main manuscript and the boxes. Appendix 4 provides an additional systematic

overview of these concepts and their common alternative terms. Moreover, this article is accompa-

nied by novel open-source resources that can be used to execute a stop-signal task and analyze the

resulting data, in an easy-to-use way that complies with our present recommendations (https://osf.

io/rmqaw/). The source code of the simulations (Appendices 2–3) is also provided, and can be used

in the planning stage (e.g. to determine the required sample size under varying conditions, or

acceptable levels of go omissions and RT distribution skew).
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Results and discussion
The following recommendations are for stop-signal users who are primarily interested in obtaining a

reliable SSRT estimate under standard situations. The stop-signal task (or one of its variants) can also

be used to study various aspects of executive control (e.g. performance monitoring, strategic adjust-

ments, or learning) and their interactions, for which the design might have to be adjusted. However,

researchers should be aware that this will come with specific challenges (e.g. Bissett and Logan,

2014; Nelson et al., 2010; Verbruggen et al., 2013; Verbruggen and Logan, 2015).

How to design stop-signal experiments
Recommendation 1: Use an appropriate go task
Standard two-choice reaction time tasks (e.g. in which participants have to discriminate between left

and right arrows) are recommended for most purposes and populations. When very simple go tasks

are used, the go stimulus and the stop signal will closely overlap in time (because the SSD has to be

very short to still allow for the possibility to inhibit a response), leading to violations of the race

model as stop-signal presentation might interfere with encoding of the go stimulus. Substantially

increasing the difficulty of the go task (e.g. by making the discrimination much harder) might also

influence the stop process (e.g. the underlying latency distribution or the probability that the stop

process is triggered). Thus, very simple and very difficult go tasks should be avoided unless the

researcher has theoretical or methodological reasons for using them (for example, simple detection

tasks have been used in animal studies. To avoid responses before the go stimulus is presented or

close overlap between the presentation of go stimulus and stop signal, the intertrial interval can be

drawn from a random exponential distribution. This will make the occurrence of the go stimulus

unpredictable, discouraging anticipatory responses). While two-choice tasks are the most common,

we note that the ‘anticipatory response’ variant of the stop-signal task (in which participants have to

Fixation

Go stimulus

Fixation

Go stimulus

Stop signal
FIX

responseor MAX.RT ITI

FIX

SSD
response

or MAX.RT - SSD

...

’Go trial’

’Stop trial’

Figure 1. Depiction of the sequence of events in a stop-signal task (see https://osf.io/rmqaw/ for open-source

software to execute the task). In this example, participants respond to the direction of green arrows (by pressing

the corresponding arrow key) in the go task. On one fourth of the trials, the arrow is replaced by ‘XX’ after a

variable stop-signal delay (FIX = fixation duration; SSD = stop signal delay; MAX.RT = maximum reaction time;

ITI = intertrial interval).

DOI: https://doi.org/10.7554/eLife.46323.002
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press a key when a moving indicator reaches a stationary target) also holds promise (e.g.

Leunissen et al., 2017).
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Figure 2. Main results of the simulations reported in Appendix 2. Here, we show a comparison of the integration method (with replacement of go

omissions) and the mean method, as a function of percentage of go omissions, skew of the RT distribution (tgo), and number of trials. Appendix 2

provides a full overview of all methods. (A) The number of excluded ‘participants’ (RT on unsuccessful stop trials > RT on go trials). As this check was

performed before SSRTs were estimated (see Recommendation 7), the number was the same for both estimation methods. (B) The average difference

between the estimated and true SSRT (positive values = overestimation; negative values = underestimation). SD = standard deviation of the difference

scores (per panel). (C) Correlation between the estimated and true SSRT (higher values = more reliable estimate). Overall R = correlation when

collapsed across percentage of go omissions and tgo. Please note that the overall correlation does not necessarily correspond to the average of

individual correlations.

DOI: https://doi.org/10.7554/eLife.46323.008
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Recommendation 2: Use a salient stop signal
SSRT is the overall latency of a chain of processes involved in stopping a response, including the

detection of the stop signal. Unless researchers are specifically interested in such perceptual or

attentional processes, salient, easily detectable stop signals should be used (when auditory stop sig-

nals are used, these should not be too loud either, as very loud (i.e. >80 dB) auditory stimuli may

produce a startle reflex). Salient stop signals will reduce the relative contribution of perceptual (affer-

ent) processes to the SSRT, and the probability that within- or between-group differences can be

attributed to them. Salient stop signals might also reduce the probability of a ‘trigger failures’ on

stop trials (see Box 2).

Recommendation 3: Present stop signals on a minority of trials
When participants strategically wait for a stop signal to occur, the nature of the stop-signal process

and task change (complicating the comparison between conditions or groups; e.g. SSRT group dif-

ferences might be caused by differential slowing or strategic adjustments). Importantly, SSRT esti-

mates will also become less reliable when participants wait for the stop signal to occur

Box 1. The independent race model

Here, we provide a brief discussion of the independent race model, without the specifics of

the underlying mathematical basis. However, we recommend that stop-signal users read the

original modelling papers (e.g. Logan and Cowan, 1984) to fully understand the task and the

main behavioral measures, and to learn more about variants of the race model (e.g.

Boucher et al., 2007; Colonius and Diederich, 2018; Logan et al., 2014; Logan et al.,

2015).

Response inhibition in the stop-signal task can be conceptualized as an independent race

between a ‘go runner’, triggered by the presentation of a go stimulus, and a ‘stop runner’,

triggered by the presentation of a stop signal (Logan and Cowan, 1984). When the ‘stop run-

ner’ finishes before the ‘go runner’, response inhibition is successful and no response is emit-

ted (successful stop trial); but when the ‘go runner’ finishes before the ‘stop runner’, response

inhibition is unsuccessful and the response is emitted (unsuccessful stop trial). The indepen-

dent race model mathematically relates (a) the latencies (RT) of responses on unsuccessful

stop trials; (b) RTs on go trials; and (c) the probability of responding on stop trials [p(respond|

stop signal)] as a function of stop-signal delay (yielding ‘inhibition functions’). Importantly, the

independent race model provides methods for estimating the covert latency of the stop pro-

cess (stop-signal reaction time; SSRT). These estimation methods are described in Materials

and methods.

go

stim.

time

stop

signal

p(respond|signal)

finishing time stop

(nth RT)

SSD SSRT Avg. RT go trials

Avg. RT unsuccessful stop

Box 1—figure 1. The independent race between go and stop.

DOI: https://doi.org/10.7554/eLife.46323.004
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(Verbruggen et al., 2013, see also Figure 2 and Appendix 2). Such waiting strategies can be dis-

couraged by reducing the overall probability of a stop signal. For standard stop-signal studies, 25%

stop signals is recommended. When researchers prefer a higher percentage of stop signals, addi-

tional measures to minimize slowing are required (see Recommendation 5).

Recommendation 4: Use the tracking procedure to obtain a broad range of
stop-signal delays
If participants can predict when a stop signal will occur within a trial, they might also wait for it.

Therefore, a broad range of SSDs is required. The stop-signal delay can be continuously adjusted via

a standard adaptive tracking procedure: SSD increases after each successful stop, and decreases

after each unsuccessful stop; this converges on a probability of responding [p(respond|signal)]

» 0.50. Many studies adjust SSD in steps of 50 ms (which corresponds to three screen ‘refreshes’ for

60 Hz monitors). When step size is too small (for example 16 ms) the tracking may not converge in

short experiments, whereas it may not be sensitive enough if step size is too large. Importantly, SSD

should decrease after all responses on unsuccessful stop trials; this includes premature responses on

unsuccessful stop trials (i.e. responses executed before the stop signal was presented) and choice

errors on unsuccessful stop trials (e.g. when a left go response would have been executed on the

stop trial depicted in Figure 1, even though the arrow was pointing to the right).

An adaptive tracking procedure typically results in a sufficiently varied set of SSD values. An addi-

tional advantage of the tracking procedure is that fewer stop trials are required to obtain a reliable

SSRT estimate (Band et al., 2003). Thus, the tracking procedure is recommended for standard

applications.

Recommendation 5: Instruct participants not to wait and include block-
based feedback
In human studies, task instructions should also be used to discourage waiting. At the very least, par-

ticipants should be told that ‘[they] should respond as quickly as possible to the go stimulus and not

wait for the stop signal to occur’ (or something along these lines). To adults, the tracking procedure

(if used) can also be explained to further discourage a waiting strategy (i.e. inform participants that

the probability of an unsuccessful stop trial will approximate 0.50, and that SSD will increase if they

gradually slow their responses).

Inclusion of a practice block in which adherence to instructions is carefully monitored is recom-

mended. In certain populations, such as young children, it might furthermore be advisable to start

with a practice block without stop signals to emphasize the importance of the go component of the

task.

Between blocks, participants should also be reminded about the instructions. Ideally, this is com-

bined with block-based feedback, informing participants about their mean RT on go trials, number

of go omissions (with a reminder that this should be 0), and p(respond|signal) (with a reminder that

this should be close to .50). The feedback could even include an explicit measure of response

slowing.

Recommendation 6: Include sufficient trials
The number of stop trials varies widely between studies. Our novel simulation results (see Figure 2

and Appendix 2) indicate that reliable and unbiased SSRT group-level estimates can be obtained

with 50 stop trials (with 25% stop signals in an experiment, this amounts to 200 trials in total. Usually,

this corresponds to an experiment of 7–10 min including breaks), but only under ‘optimal’ or very

specific circumstances (e.g. when the probability of go omissions is low and the go-RT distribution is

not strongly skewed). Lower trial numbers (here we tested 25 stop trials) rarely produced reliable

SSRT estimates (and the number of excluded subjects was much higher; see Figure 2). Thus, as a

general rule of thumb, we recommend to have at least 50 stop trials for standard group-level com-

parisons. However, it should again be stressed that this may not suffice to obtain reliable individual

estimates (which are required for e.g. individual-differences research or diagnostic purposes).

Thus, our simulations reported in Appendix 2 suggest that reliability increases with number of tri-

als. However, in some clinical populations, adding trials may not always be possible (e.g. when

patients cannot concentrate for a sufficiently long period of time), and might even be
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counterproductive (as strong fluctuations over time can induce extra noise). Our simulations

reported in Appendix 3 show that for standard group-level comparisons, researchers can compen-

sate for lower trial numbers by increasing sample size. Above all, we strongly encourage researchers

to make informed decisions about number of trials and participants, aiming for sufficiently powered

studies. The accompanying open-source simulation code can be used for this purpose.

When and how to estimate SSRT
Recommendation 7: Do not estimate the SSRT when the assumptions of the
race model are violated
SSRTs can be estimated based on the independent race model, which assumes an independent race

between a go and a stop runner (Box 1). When this independence assumption is (seriously) violated,

SSRT estimates become unreliable (Band et al., 2003). Therefore, the assumption should be

checked. This can be done by comparing the mean RT on unsuccessful stop trials with the mean RT

on go trials. Note that this comparison should include all trials with a response (including choice

errors and premature responses), and it should be done for each participant and condition sepa-

rately. SSRT should not be estimated when RT on unsuccessful stop trials is numerically longer than

RT on go trials (see also, Appendix 2—table 1). More formal and in-depth tests of the race model

can be performed (e.g. examining probability of responding and RT on unsuccessful stop trials as a

function of delay); however, a large number of stop trials is required for such tests to be meaningful

and reliable.

Box 2. Failures to trigger the stop process

The race model assumes that the go runner is triggered by the presentation of the go stimu-

lus, and the stop runner by the presentation of the stop signal. However, go omissions (i.e. go

trials without a response) are often observed in stop-signal studies. Our preferred SSRT

method compensates for such go omissions (see Materials and methods). However, turning to

the stopping process, studies using fixed SSDs have found that p(respond|signal) at very short

delays (including SSD = 0 ms, when go and stop are presented together) is not always zero;

this finding indicates that the stop runner may also not be triggered on all stop trials (‘trigger

failures’).

The non-parametric estimation methods described in Materials and methods (see also Appen-

dix 2) will overestimate SSRT when trigger failures are present on stop trials (Band et al.,

2003). Unfortunately, these estimation methods cannot determine the presence or absence of

trigger failures on stop trials. In order to diagnose in how far trigger failures are present in

their data, researchers can include extra stop signals that occur at the same time of the go

stimulus (i.e. SSD = 0, or shortly thereafter). Note that this number of zero-SSD trials should

be sufficiently high to detect (subtle) within- or between-group differences in trigger failures.

Furthermore, p(respond|signal) should be reported separately for these short-SSD trials, and

these trials should not be included when calculating mean SSD or estimating SSRT (see Rec-

ommendation one for a discussion of problems that arise when SSDs are very short. Note that

the (neural) mechanisms involved in stopping might also partly differ when SSD = 0; see for

example Swick et al., 2011). Alternatively, researchers can use a parametric method to esti-

mate SSRT. Such methods describe the whole SSRT distribution (unlike the non-parametric

methods that estimate summary measures, such as the mean stop latency). Recent variants of

such parametric methods also provide an estimate of the probability of trigger failures on stop

trials (for the most recent version and specialized software, see Matzke et al., 2019).

DOI: https://doi.org/10.7554/eLife.46323.005
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Box 3. Check-lists for reporting stop-signal studies

The description of every stop-signal study should include the following information:

. Stimuli and materials

. Properties of the go stimuli, responses, and their mapping

. Properties of the stop signal

. Equipment used for testing

. The procedure

. The number of blocks (including practice blocks)

. The number of go and stop trials per block

. Detailed description of the randomization (e.g. is the order of go and stop trials fully
randomized or pseudo-randomized?)

. Detailed description of the tracking procedure (including start value, step size, mini-
mum and maximum value) or the range and proportion of fixed stop-signal delays.

. Timing of all events. This can include intertrial intervals, fixation intervals (if applica-
ble), stimulus-presentation times, maximum response latency (and whether a trial is
terminated when a response is executed or not), feedback duration (in case immedi-
ate feedback is presented), etc.

. A summary of the instructions given to the participant, and any feedback-related
information (full instructions can be reported in Supplementary Materials).

. Information about training procedures (e.g. in case of animal studies)

. The analyses

. Which trials were included when analyzing go and stop performance

. Which SSRT estimation method was used (see Materials and methods), providing
additional details on the exact approach (e.g. whether or not go omissions were
replaced; how go and stop trials with a choice errors–e.g. left response for right
arrows–were handled; how the nth quantile was estimated; etc.)

. Which statistical tests were used for inferential statistics

Stop-signal studies should also report the following descriptive statistics for each group and

condition separately (see Appendix 4 for a description of all labels):

. Probability of go omissions (no response)

. Probability of choice errors on go trials

. RT on go trials (mean or median). We recommend to report intra-subject variability as well
(especially for clinical studies).

. Probability of responding on a stop trial (for each SSD when fixed delays are used)

. Average stop-signal delay (when the tracking procedure is used); depending on the set-
up, it is advisable to report (and use) the ‘real’ SSDs (e.g. for visual stimuli, the requested
SSD may not always correspond to the real SSD due to screen constraints).

. Stop-signal reaction time

. RT of go responses on unsuccessful stop trials

DOI: https://doi.org/10.7554/eLife.46323.006
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Recommendation 8: If using a non-parametric approach, estimate SSRT
using the integration method (with replacement of go omissions)
Different SSRT estimation methods have been proposed (see Materials and methods). When the

tracking procedure is used, the ‘mean estimation’ method is still the most popular (presumably

because it is very easy to use). However, the mean method is strongly influenced by the right tail

(skew) of the go RT distribution (see Appendix 2 for examples), as well as by go omissions (i.e. go tri-

als on which no response is executed). The simulations reported in Appendix 2 and summarized in

Figure 2 indicate that the integration method (which replaces go omissions with the maximum RT in

order to compensate for the lacking response) is generally less biased and more reliable than the

mean method when combined with the tracking procedure. Unlike the mean method, the integra-

tion method also does not assume that p(respond|signal) is exactly 0.50 (an assumption that is often

not met in empirical data). Therefore, we recommend the use of the integration method (with

replacement of go omissions) when non-parametric estimation methods are used. We provide soft-

ware and the source code for this estimation method (and all other recommended measures; Rec-

ommendation 12).

Please note that some parametric SSRT estimation methods are less biased than even the best

non-parametric methods and avoid other problems that can beset them (see Box 2); however, they

can be harder for less technically adept researchers to use, and they may require more trials (see

Matzke et al., 2018, for a discussion).

Recommendation 9: Refrain from estimating SSRT when the probability of
responding on stop trials deviates substantially from 0.50 or when the
probability of omissions on go trials is high
Even though the preferred integration method (with replacement of go omissions) is less influenced

by deviations in p(respond|signal) and go omissions than other methods, it is not completely immune

to them either (Figure 2 and Appendix 2). Previous work suggests that SSRT estimates are most reli-

able (Band et al., 2003) when probability of responding on a stop trial is relatively close to 0.50.

Therefore, we recommend that researchers refrain from estimating individual SSRTs when p

(respond|signal) is lower than 0.25 or higher than 0.75 (Congdon et al., 2012). Reliability of the esti-

mates is also influenced by go performance. As the probability of a go omission increases, SSRT esti-

mates also become less reliable. Figure 2 and the resources described in Appendix 3 can be used

to determine an acceptable level of go omissions at a study level. Importantly, researchers should

decide on these cut-offs or exclusion criteria before data collection has started.

How to report stop-signal experiments
Recommendation 10: Report the methods in enough detail
To allow proper evaluation and replication of the study findings, and to facilitate follow-up studies,

researchers should carefully describe the stimuli, materials, and procedures used in the study, and

provide a detailed overview of the performed analyses (including a precise description of how SSRT

was estimated). This information can be presented in Supplementary Materials in case of journal

restrictions. Box 3 provides a check-list that can be used by authors and reviewers. We also encour-

age researchers to share their software and materials (e.g. the actual stimuli).

Recommendation 11: Report possible exclusions in enough detail
As outlined above, researchers should refrain from estimating SSRT when the independence

assumptions are seriously violated or when sub-optimal task performance might otherwise compro-

mise the reliability of the estimates. The number of participants for whom SSRT was not estimated

should be clearly mentioned. Ideally, dependent variables which are directly observed (see Recom-

mendation 12) are separately reported for the participants that are not included in the SSRT analy-

ses. Researchers should also clearly mention any other exclusion criteria (e.g. outliers based on

distributional analyses, acceptable levels of go omissions, etc.), and whether those were set a-priori

(analytic plans can be preregistered on a public repository, such as the Open Science Framework;

Nosek et al., 2018).
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Recommendation 12: Report all relevant behavioral data
Researchers should report all relevant descriptive statistics that are required to evaluate the findings

of their stop-signal study (see Box 3 for a check-list). These should be reported for each group or

condition separately. As noted above (Recommendation 7), additional checks of the independent

race model can be reported when the number of stop trials is sufficiently high. Finally, we encourage

researchers to share their anonymized raw (single-trial) data when possible (in accordance with the

FAIR data guidelines; Wilkinson et al., 2016).

Conclusion
Response inhibition and impulse control are central topics in various fields of research, including

neuroscience, psychiatry, psychology, neurology, pharmacology, and behavioral sciences, and the

stop-signal task has become an essential tool in their study. If properly used, the task can reveal

unique information about the underlying neuro-cognitive control mechanisms. By providing clear

recommendations, and open-source resources, this paper aims to further increase the quality of

research in the response-inhibition and impulse-control domain and to significantly accelerate its

progress across the various important domains in which it is routinely applied.

Materials and methods
The independent race model (Box 1) provides two common ‘non-parametric’ methods for estimat-

ing SSRT: the integration method and the mean method. Both methods have been used in slightly

different flavors in combination with the SSD tracking procedure (see Recommendation 4). Here, we

discuss the two most typical estimation variants, which we further scrutinized in our simulations

(Appendix 2). We refer the reader to Appendices 2 and 3 for a detailed description of the

simulations.

Integration method (with replacement of go omissions)
In the integration method, the point at which the stop process finishes (Box 1) is estimated by ‘inte-

grating’ the RT distribution and finding the point at which the integral equals p(respond|signal). The

finishing time of the stop process corresponds to the nth RT, with n = the number of RTs in the RT

distribution of go trials multiplied by p(respond|signal). When combined with the tracking procedure,

overall p(respond|signal) is used. For example, when there are 200 go trials, and overall p(respond|

signal) is 0.45, then the nth RT is the 90th fastest go RT. SSRT can then be estimated by subtracting

mean SSD from the nth RT. To determine the nth RT, all go trials with a response are included

(including go trials with a choice error and go trials with a premature response). Importantly, go

omissions (i.e. go trials on which the participant did not respond before the response deadline) are

assigned the maximum RT in order to compensate for the lacking response. Premature responses on

unsuccessful stop trials (i.e. responses executed before the stop signal is presented) should also be

included when calculating p(respond|signal) and mean SSD (as noted in Recommendation 4, SSD

should also be adjusted after such trials). This version of the integration method produces the most

reliable and least biased non-parametric SSRT estimates (Appendix 2).

The mean method
The mean method uses the mean of the inhibition function (which describes the relationship

between p(respond|signal) and SSD). Ideally, this mean corresponds to the average SSD obtained

with the tracking procedure when p(respond|signal) = 0.50 (and often this is taken as a given despite

some variation). In other words, the mean method assumes that the mean RT equals SSRT + mean

SSD, so SSRT can be estimated easily by subtracting mean SSD from mean RT on go trials when the

tracking procedure is used. The ease of use has made this the most popular estimation method.

However, our simulations show that this simple version of the mean method is biased and generally

less reliable than the integration method with replacement of go omissions.
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Poldrack, K Richard Ridderinkhof, Trevor W Robbins, Matthew Roesch, Katya Rubia, Russell J Scha-

char, Jeffrey D Schall, Ann-Kathrin Stock, Nicole C Swann, Katharine N Thakkar, Maurits W van der

Molen, Matthijs Vink, Jan R Wessel, Robert Whelan, Bram B Zandbelt, Conceptualization, Writing—

review and editing; Guido PH Band, Andrew Heathcote, Gordon D Logan, Conceptualization, Meth-

odology, Writing—review and editing; Luc Vermeylen, Conceptualization, Resources, Software, Writ-

ing—review and editing; C Nico Boehler, Conceptualization, Resources, Software, Formal analysis,

Validation, Investigation, Visualization, Methodology, Writing—original draft, Writing—review and

editing

Author ORCIDs

Frederick Verbruggen https://orcid.org/0000-0002-7958-0719

Adam T Brockett http://orcid.org/0000-0001-7712-5053

Hans Colonius http://orcid.org/0000-0002-9733-6939

Brian D Corneil http://orcid.org/0000-0002-4702-7089

James P Coxon http://orcid.org/0000-0003-2351-8489

Ian Greenhouse http://orcid.org/0000-0003-1467-739X

Sara Jahfari http://orcid.org/0000-0002-1979-589X

Russell A Poldrack http://orcid.org/0000-0001-6755-0259

Verbruggen et al. eLife 2019;8:e46323. DOI: https://doi.org/10.7554/eLife.46323 11 of 26

Tools and resources Human Biology and Medicine Neuroscience

https://orcid.org/0000-0002-7958-0719
http://orcid.org/0000-0001-7712-5053
http://orcid.org/0000-0002-9733-6939
http://orcid.org/0000-0002-4702-7089
http://orcid.org/0000-0003-2351-8489
http://orcid.org/0000-0003-1467-739X
http://orcid.org/0000-0002-1979-589X
http://orcid.org/0000-0001-6755-0259
https://doi.org/10.7554/eLife.46323


Matthew Roesch https://orcid.org/0000-0003-2854-6593

Nicole C Swann https://orcid.org/0000-0003-2463-5134

Jan R Wessel http://orcid.org/0000-0002-7298-6601

C Nico Boehler http://orcid.org/0000-0001-5963-2780

Decision letter and Author response

Decision letter https://doi.org/10.7554/eLife.46323.026

Author response https://doi.org/10.7554/eLife.46323.027

Additional files
Supplementary files
. Transparent reporting form

DOI: https://doi.org/10.7554/eLife.46323.007

Data availability

The code used for the simulations and all simulated data can be found on Open Science Framework

(https://osf.io/rmqaw/).

The following dataset was generated:

Author(s) Year Dataset title Dataset URL
Database and
Identifier

Verbruggen F 2019 Race model simulations to
determine estimation bias and
reliability of SSRT estimates

https://dx.doi.org/10.
17605/OSF.IO/JWSF9

Open Science
Framework, 10.17605/
OSF.IO/JWSF9

References
Aron AR. 2011. From reactive to proactive and selective control: developing a richer model for stopping
inappropriate responses. Biological Psychiatry 69:e55–e68. DOI: https://doi.org/10.1016/j.biopsych.2010.07.
024, PMID: 20932513

Band GP, van der Molen MW, Logan GD. 2003. Horse-race model simulations of the stop-signal procedure. Acta
Psychologica 112:105–142. DOI: https://doi.org/10.1016/S0001-6918(02)00079-3, PMID: 12521663

Bari A, Robbins TW. 2013. Inhibition and impulsivity: behavioral and neural basis of response control. Progress in
Neurobiology 108:44–79. DOI: https://doi.org/10.1016/j.pneurobio.2013.06.005, PMID: 23856628

Bartholdy S, Dalton B, O’Daly OG, Campbell IC, Schmidt U. 2016. A systematic review of the relationship
between eating, weight and inhibitory control using the stop signal task. Neuroscience & Biobehavioral
Reviews 64:35–62. DOI: https://doi.org/10.1016/j.neubiorev.2016.02.010, PMID: 26900651

Bissett PG, Logan GD. 2014. Selective stopping? maybe not. Journal of Experimental Psychology: General 143:
455–472. DOI: https://doi.org/10.1037/a0032122, PMID: 23477668

Boucher L, Palmeri TJ, Logan GD, Schall JD. 2007. Inhibitory control in mind and brain: an interactive race model
of countermanding saccades. Psychological Review 114:376–397. DOI: https://doi.org/10.1037/0033-295X.114.
2.376, PMID: 17500631

Chambers CD, Garavan H, Bellgrove MA. 2009. Insights into the neural basis of response inhibition from
cognitive and clinical neuroscience. Neuroscience & Biobehavioral Reviews 33:631–646. DOI: https://doi.org/
10.1016/j.neubiorev.2008.08.016, PMID: 18835296

Colonius H, Diederich A. 2018. Paradox resolved: Stop signal race model with negative dependence.
Psychological Review 125:1051–1058. DOI: https://doi.org/10.1037/rev0000127, PMID: 30272461

Congdon E, Mumford JA, Cohen JR, Galvan A, Canli T, Poldrack RA. 2012. Measurement and reliability of
response inhibition. Frontiers in Psychology 3. DOI: https://doi.org/10.3389/fpsyg.2012.00037, PMID: 2236330
8

Lappin JS, Eriksen CW. 1966. Use of a delayed signal to stop a visual reaction-time response. Journal of
Experimental Psychology 72:805–811. DOI: https://doi.org/10.1037/h0021266

Leunissen I, Zandbelt BB, Potocanac Z, Swinnen SP, Coxon JP. 2017. Reliable estimation of inhibitory efficiency:
to anticipate, choose or simply react? European Journal of Neuroscience 45:1512–1523. DOI: https://doi.org/
10.1111/ejn.13590, PMID: 28449195

Lipszyc J, Schachar R. 2010. Inhibitory control and psychopathology: a meta-analysis of studies using the stop
signal task. Journal of the International Neuropsychological Society 16:1064–1076. DOI: https://doi.org/10.
1017/S1355617710000895, PMID: 20719043

Logan GD, Van Zandt T, Verbruggen F, Wagenmakers EJ. 2014. On the ability to inhibit thought and action:
general and special theories of an act of control. Psychological Review 121:66–95. DOI: https://doi.org/10.
1037/a0035230, PMID: 24490789

Verbruggen et al. eLife 2019;8:e46323. DOI: https://doi.org/10.7554/eLife.46323 12 of 26

Tools and resources Human Biology and Medicine Neuroscience

https://orcid.org/0000-0003-2854-6593
https://orcid.org/0000-0003-2463-5134
http://orcid.org/0000-0002-7298-6601
http://orcid.org/0000-0001-5963-2780
https://doi.org/10.7554/eLife.46323.026
https://doi.org/10.7554/eLife.46323.027
https://doi.org/10.7554/eLife.46323.007
https://osf.io/rmqaw/
https://dx.doi.org/10.17605/OSF.IO/JWSF9
https://dx.doi.org/10.17605/OSF.IO/JWSF9
https://doi.org/10.1016/j.biopsych.2010.07.024
https://doi.org/10.1016/j.biopsych.2010.07.024
http://www.ncbi.nlm.nih.gov/pubmed/20932513
https://doi.org/10.1016/S0001-6918(02)00079-3
http://www.ncbi.nlm.nih.gov/pubmed/12521663
https://doi.org/10.1016/j.pneurobio.2013.06.005
http://www.ncbi.nlm.nih.gov/pubmed/23856628
https://doi.org/10.1016/j.neubiorev.2016.02.010
http://www.ncbi.nlm.nih.gov/pubmed/26900651
https://doi.org/10.1037/a0032122
http://www.ncbi.nlm.nih.gov/pubmed/23477668
https://doi.org/10.1037/0033-295X.114.2.376
https://doi.org/10.1037/0033-295X.114.2.376
http://www.ncbi.nlm.nih.gov/pubmed/17500631
https://doi.org/10.1016/j.neubiorev.2008.08.016
https://doi.org/10.1016/j.neubiorev.2008.08.016
http://www.ncbi.nlm.nih.gov/pubmed/18835296
https://doi.org/10.1037/rev0000127
http://www.ncbi.nlm.nih.gov/pubmed/30272461
https://doi.org/10.3389/fpsyg.2012.00037
http://www.ncbi.nlm.nih.gov/pubmed/22363308
http://www.ncbi.nlm.nih.gov/pubmed/22363308
https://doi.org/10.1037/h0021266
https://doi.org/10.1111/ejn.13590
https://doi.org/10.1111/ejn.13590
http://www.ncbi.nlm.nih.gov/pubmed/28449195
https://doi.org/10.1017/S1355617710000895
https://doi.org/10.1017/S1355617710000895
http://www.ncbi.nlm.nih.gov/pubmed/20719043
https://doi.org/10.1037/a0035230
https://doi.org/10.1037/a0035230
http://www.ncbi.nlm.nih.gov/pubmed/24490789
https://doi.org/10.7554/eLife.46323


Logan GD, Yamaguchi M, Schall JD, Palmeri TJ. 2015. Inhibitory control in mind and brain 2.0: blocked-input
models of saccadic countermanding. Psychological Review 122:115–147. DOI: https://doi.org/10.1037/
a0038893, PMID: 25706403

Logan GD, Cowan WB. 1984. On the ability to inhibit thought and action: A theory of an act of control.
Psychological Review 91:295–327. DOI: https://doi.org/10.1037/0033-295X.91.3.295

Matzke D, Verbruggen F, Logan GD. 2018. The Stop-Signal Paradigm. In: Wixted J. T (Ed). Stevens’ Handbook
of Experimental Psychology and Cognitive Neuroscience. John Wiley & Sons, Inc. DOI: https://doi.org/10.1002/
9781119170174.epcn510

Matzke D, Curley S, Gong CQ, Heathcote A. 2019. Inhibiting responses to difficult choices. Journal of
experimental psychology. General 148:124142. DOI: https://doi.org/10.1037/xge0000525, PMID: 30596441

Nelson MJ, Boucher L, Logan GD, Palmeri TJ, Schall JD. 2010. Nonindependent and nonstationary response
times in stopping and stepping saccade tasks. Attention, Perception & Psychophysics 72:1913–1929.
DOI: https://doi.org/10.3758/APP.72.7.1913, PMID: 20952788

Nosek BA, Ebersole CR, DeHaven AC, Mellor DT. 2018. The preregistration revolution. PNAS 115:2600–2606.
DOI: https://doi.org/10.1073/pnas.1708274114

R Development Core Team. 2017. R: a language and environment for statistical computing. R Foundation for
Statistical Computing. 3.4.2. Vienna, Austria: http://www.r-project.org/.

Rigby RA, Stasinopoulos DM. 2005. Generalized additive models for location, scale and shape (with discussion).
Journal of the Royal Statistical Society: Series C 54:507–554. DOI: https://doi.org/10.1111/j.1467-9876.2005.
00510.x

Schall JD, Palmeri TJ, Logan GD. 2017. Models of inhibitory control. Philosophical Transactions of the Royal
Society B: Biological Sciences 372:20160193. DOI: https://doi.org/10.1098/rstb.2016.0193

Smith JL, Mattick RP, Jamadar SD, Iredale JM. 2014. Deficits in behavioural inhibition in substance abuse and
addiction: a meta-analysis. Drug and Alcohol Dependence 145:1–33. DOI: https://doi.org/10.1016/j.
drugalcdep.2014.08.009, PMID: 25195081

Swick D, Ashley V, Turken U. 2011. Are the neural correlates of stopping and not going identical? quantitative
meta-analysis of two response inhibition tasks. NeuroImage 56:1655–1665. DOI: https://doi.org/10.1016/j.
neuroimage.2011.02.070, PMID: 21376819

Tannock R, Schachar RJ, Carr RP, Chajczyk D, Logan GD. 1989. Effects of methylphenidate on inhibitory control
in hyperactive children. Journal of Abnormal Child Psychology 17:473–491. DOI: https://doi.org/10.1007/
BF00916508, PMID: 2681316

Verbruggen F, Chambers CD, Logan GD. 2013. Fictitious inhibitory differences: how skewness and slowing
distort the estimation of stopping latencies. Psychological Science 24. DOI: https://doi.org/10.1177/
0956797612457390, PMID: 23399493

Verbruggen F, Logan GD. 2015. Evidence for capacity sharing when stopping. Cognition 142:81–95.
DOI: https://doi.org/10.1016/j.cognition.2015.05.014, PMID: 26036922

Verbruggen F, Logan GD. 2017. Control in response inhibition. In: Egner T (Ed). The Wiley Handbook of
Cognitive Control. Wiley. DOI: https://doi.org/10.1002/9781118920497.ch6

Vince MA. 1948. The intermittency of control movements and the psychological refractory period1. British
Journal of Psychology. General Section 38:149–157. DOI: https://doi.org/10.1111/j.2044-8295.1948.tb01150.x

Wickham H. 2016. ggplot2: Elegant Graphics for Data Analysis. New York: Springer. DOI: https://doi.org/10.
1007/978-0-387-98141-3

Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A, Blomberg N, Boiten JW, da Silva
Santos LB, Bourne PE, Bouwman J, Brookes AJ, Clark T, Crosas M, Dillo I, Dumon O, Edmunds S, Evelo CT,
Finkers R, Gonzalez-Beltran A, et al. 2016. The FAIR Guiding Principles for scientific data management and
stewardship. Scientific Data 3:160018. DOI: https://doi.org/10.1038/sdata.2016.18, PMID: 26978244

Verbruggen et al. eLife 2019;8:e46323. DOI: https://doi.org/10.7554/eLife.46323 13 of 26

Tools and resources Human Biology and Medicine Neuroscience

https://doi.org/10.1037/a0038893
https://doi.org/10.1037/a0038893
http://www.ncbi.nlm.nih.gov/pubmed/25706403
https://doi.org/10.1037/0033-295X.91.3.295
https://doi.org/10.1002/9781119170174.epcn510
https://doi.org/10.1002/9781119170174.epcn510
https://doi.org/10.1037/xge0000525
http://www.ncbi.nlm.nih.gov/pubmed/30596441
https://doi.org/10.3758/APP.72.7.1913
http://www.ncbi.nlm.nih.gov/pubmed/20952788
https://doi.org/10.1073/pnas.1708274114
https://doi.org/10.1111/j.1467-9876.2005.00510.x
https://doi.org/10.1111/j.1467-9876.2005.00510.x
https://doi.org/10.1098/rstb.2016.0193
https://doi.org/10.1016/j.drugalcdep.2014.08.009
https://doi.org/10.1016/j.drugalcdep.2014.08.009
http://www.ncbi.nlm.nih.gov/pubmed/25195081
https://doi.org/10.1016/j.neuroimage.2011.02.070
https://doi.org/10.1016/j.neuroimage.2011.02.070
http://www.ncbi.nlm.nih.gov/pubmed/21376819
https://doi.org/10.1007/BF00916508
https://doi.org/10.1007/BF00916508
http://www.ncbi.nlm.nih.gov/pubmed/2681316
https://doi.org/10.1177/0956797612457390
https://doi.org/10.1177/0956797612457390
http://www.ncbi.nlm.nih.gov/pubmed/23399493
https://doi.org/10.1016/j.cognition.2015.05.014
http://www.ncbi.nlm.nih.gov/pubmed/26036922
https://doi.org/10.1002/9781118920497.ch6
https://doi.org/10.1111/j.2044-8295.1948.tb01150.x
https://doi.org/10.1007/978-0-387-98141-3
https://doi.org/10.1007/978-0-387-98141-3
https://doi.org/10.1038/sdata.2016.18
http://www.ncbi.nlm.nih.gov/pubmed/26978244
https://doi.org/10.7554/eLife.46323


Appendix 1

DOI: https://doi.org/10.7554/eLife.46323.003

neurosciences
874

psychiatry
385

experimental
psychology

336

psychology
283

behavioral
sciences

177

clinical
neurology

167

neuroimaging
144

pharmacology
137

clinical
psychology

136

medical imaging
107

substance abuse
100

biological psychology
97

multidisciplinary
sciences

89

physiology
87

developmental
psychology

84

A

0

2500

5000

7500

1
9

9
2

1
9

9
3

1
9

9
4

1
9

9
5

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

2
0

0
1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

2
0

1
5

2
0

1
6

2
0

1
7

2
0

1
8

Year of publication

N
u
m

b
e
r 

o
f 
ci

ta
tio

n
s

B

Appendix 1—figure 1. The number of stop-signal publications per research area (Panel A) and

the number of articles citing the ‘stop-signal task’ per year (Panel B). Source: Web of Science,

27/01/2019, search term: ‘topic = stop signal task’. The research areas in Panel A are also

taken from Web of Science.

DOI: https://doi.org/10.7554/eLife.46323.010
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Appendix 2
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Race model simulations to determine estimation bias and
reliability of SSRT estimates

Simulation procedure
To compare different SSRT estimation methods, we ran a set of simulations which simulated

performance in the stop-signal task based on assumptions of the independent race model: on

stop trials, a response was deemed to be stopped (successful stop) when the RT was larger

than SSRT + SSD; a response was deemed to be executed (unsuccessful stop) when RT was

smaller than SSRT + SSD. Go and stop were completely independent.

All simulations were done using R (R Development Core Team, 2017, version 3.4.2).

Latencies of the go and stop runners were sampled from an ex-Gaussian distribution, using

the rexGaus function (Rigby and Stasinopoulos, 2005, version 5.1.2). The ex-Gaussian

distribution has a positively skewed unimodal shape and results from a convolution of a normal

(Gaussian) distribution and an exponential distribution. It is characterized by three parameters:

� (mean of the Gaussian component), s (SD of Gaussian component), and t (both the mean

and SD of the exponential component). The mean of the ex-Gaussian distribution = � + t, and

variance = s
2 + t

2. Previous simulation studies of the stop-signal task also used ex-Gaussian

distributions to model their reaction times (e.g. Band et al., 2003; Verbruggen et al., 2013;

Matzke et al., 2019).

For each simulated ‘participant’, �go of the ex-Gaussian go RT distribution was sampled

from a normal distribution with mean = 500 (i.e. the population mean) and SD = 50, with the

restriction that it was larger than 300 (see Verbruggen et al., 2013, for a similar procedure).

sgo was fixed at 50, and tgo was either 1, 50, 100, 150, and 200 (resulting in increasingly

skewed distributions). The RT cut-off was set at 1,500 ms. Thus, go trials with an RT >1,500 ms

were considered go omissions. For some simulations, we also inserted extra go omissions,

resulting in five ‘go omission’ conditions: 0% inserted go omissions (although the occasional

go omission was still possible when tgo was high), 5%, 10%, 15%, or 20%. These go omissions

were randomly distributed across go and stop trials. For the 5%, 10%, 15%, and 20% go-

omission conditions, we first checked if there were already go omissions due to the random

sampling from the ex-Gaussian distribution. If such go omissions occurred ‘naturally’, fewer

‘artificial’omissions were inserted.

0.000

0.002

0.004

0.006

0.008

400 800 1200
Go RT (in ms)

D
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n
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tau

1
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Appendix 2—figure 1. Examples of ex-Gaussian (RT) distributions used in our simulations. For

all distributions, �go = 500 ms, and sgo = 50 ms. tgo was either 1, 50, 100, 150, and 200

(resulting in increasingly skewed distributions). Note that for a given RT cut-off (1,500 ms in

the simulations), cut-off-related omissions are rare, but systematically more likely as tau
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increases. In addition to such ‘natural’ go omissions, we introduced ‘artificial’ ones in the

different go-omission conditions of the simulations (not depicted).

DOI: https://doi.org/10.7554/eLife.46323.012

For each simulated ‘participant’, �stop of the ex-Gaussian SSRT distribution was sampled

from a normal distribution with mean = 200 (i.e. the population mean) and SD = 20, with the

restriction that it was larger than 100. sstop and tstop were fixed at 20 and 10, respectively. For

each ‘participant’, the start value of SSD was 300 ms, and was continuously adjusted using a

standard tracking procedure (see main text) in steps of 50 ms. In the present simulations, we

did not set a minimum or maximum SSD.

The total number of trials simulated per participant was either 100, 200, 400, or 800,

whereas the probability of a stop signal was fixed at .25; thus, the number of stop trials was

25, 50, 100, or 200, respectively. This resulted in 5 (go omission: 0, 5, 10, 15, or 20%) x 5 (tgo:

1, 50, 100, 150, 200) x 4 (total number of trials: 100, 200, 400, 800) conditions. For each

condition, we simulated 1000 participants. Overall, this resulted in 100,000 participants (and

375,000,000 trials).

The code used for the simulations and all simulated data can be found on Open Science

Framework (https://osf.io/rmqaw/).

Analyses
We performed three sets of analyses. First, we checked if RT on unsuccessful stop trials was

numerically shorter than RT on go trials. Second, we estimated SSRTs using the two estimation

methods described in the main manuscript (Materials and methods), and two other methods

that have been used in the stop-signal literature. The first additional approach is a variant of

the integration method described in the main manuscript. The main difference is the exclusion

of go omissions (and sometimes choice errors on unsuccessful stop trials) from the go RT

distribution when determining the nth RT. The second additional variant also does not assign

go omissions the maximum RT. Rather, this method adjusts p(respond|signal) to compensate

for go omissions (Tannock et al., 1989):

pðrespondjsignalÞadjusted ¼ 1�
pðinhibitjsignalÞ� pðomissionjgoÞ

1� pðomissionjgoÞ

The nth RT is then determined using the adjusted p(respond|signal) and the distribution of

RTs of all go trials with a response.

Thus, we estimated SSRT using four different methods: (1) integration method with

replacement of go omissions; (2) integration method with exclusion of go omissions; (3)

integration method with adjustment of p(respond|signal); and (4) the mean method. For each

estimation method and condition (go omission x tgo x number of trials), we calculated the

difference between the estimated SSRT and the actual SSRT; positive values indicate that

SSRT is overestimated, whereas negative values indicate that SSRT is underestimated. For

each estimation method, we also correlated the true and estimated values across participants;

higher values indicate more reliable SSRT estimates.

We investigated all four mentioned estimation approaches in the present appendix. In the

main manuscript, we provide a detailed overview focussing on (1) the integration method with

replacement of go omissions and (2) the mean method. As described below, the integration

method with replacement of go omissions was the least biased and most reliable, but we also

show the mean method in the main manuscript to further highlight the issues that arise when

this (still popular) method is used.

Results
All figures were produced using the ggplot2 package (version 3.1.0 Wickham, 2016). The

number of excluded ‘participants’ (i.e. RT on unsuccessful stop trials > RT on go trials) is

presented in Figure 2 of the main manuscript. Note that these are only apparent violations of
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the independent race model, as go and stop were always modelled as independent runners.

Instead, the longer RTs on unsuccessful stop trials result from estimation uncertainty

associated with estimating mean RTs using scarce data. However, as true SSRT of all

participants was known, we could nevertheless compare the SSRT bias for included and

excluded participants. As can be seen in the table below, estimates were generally much more

biased for ‘excluded’ participants than for ‘included’ participants. Again this indicates that

extreme data are more likely to occur when the number of trials is low.

Appendix 2—table 1. The mean difference between estimated and true SSRT for participants

who were included in the main analyses and participants who were excluded (because average

RT on unsuccessful stop trials > average RT on go trials). We did this only for tgo = 1 or 50, p(go

omission)=10, 15, or 20, and number of trials = 100 (i.e. when the number of excluded

participants was high; see Panel A, Figure 2 of the main manuscript).

Estimation method Included Excluded

Integration with replacement of go omissions �6.4 �35.8

Integration without replacement of go omissions �19.4 �48.5

Integration with adjusted p(respond|signal) 12.5 �17.4

Mean �16.0 �46.34

DOI: https://doi.org/10.7554/eLife.46323.013

To further compare differences between estimated and true SSRTs for the included

participants, we used ‘violin plots’. These plots show the distribution and density of SSRT

difference values. We created separate plots as a function of the total number of trials (100,

200, 400, and 800), and each plot shows the SSRT difference as a function of estimation

method, percentage of go omissions, and tgo (i.e. the skew of the RT distribution on go trials;

see Appendix 2—figure 1). The plots can be found below. The first important thing to note

is that the scales differ between subplots. This was done intentionally, as the distribution of

difference scores was wider when the number of trials was lower (with fixed scales, it is

difficult to detect meaningful differences between estimation methods and conditions for

higher trial numbers; i.e. Panels C and D). In other words, low trial numbers will produce

more variable and less reliable SSRT estimates.

Second, the violin plots show that SSRT estimates are strongly influenced by an increasing

percentage of go omissions. The figures show that the integration method with replacement

of go omissions, integration method with exclusion of go omissions, and the mean method

all have a tendency to underestimate SSRT as the percentage of go omissions increases;

importantly, this underestimation bias is most pronounced for the integration method with

exclusion of go omissions. By contrast, the integration method which uses the adjusted p

(respond|signal) will overestimate SSRT when go omissions are present; compared with the

other methods, this bias was the strongest in absolute terms.

Consistent with previous work (Verbruggen et al., 2013), skew of the RT distribution also

strongly influenced the estimates. SSRT estimates were generally more variable as tgo
increased. When the probability of a go omission was low, the integration methods showed

a small underestimation bias for high levels of tgo, whereas the mean method showed a clear

overestimation bias for high levels of tgo. In absolute terms, this overestimation bias for the

mean method was more pronounced than the underestimation bias for the integration

methods. For higher levels of go omissions, the pattern became more complicated as the

various biases started to interact. Therefore, we also correlated the true SSRT with the

estimated SSRT to compare the different estimation methods.

To calculate the correlation between true and estimated SSRT for each method, we

collapsed across all combinations of tgo, go-omission rate, and number of trials. The

correlation (i.e. reliability of the estimate) was highest for the integration method with

replacement of go omissions, r = 0.57 (as shown in the violin plots, this was also the least

biased method); intermediate for the mean method, r = 0.53, and the integration method
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with exclusion of go errors, r = 0.51; and lowest for the integration method using adjusted p

(respond|signal), r = 0.43.
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Appendix 2—figure 2. Violin plots showing the distribution and density of the difference

scores between estimated and true SSRT as a function of condition and estimation method

when the total number of trials is 100 (25 stop trials). Values smaller than zero indicate

underestimation; values larger than zero indicate overestimation.

DOI: https://doi.org/10.7554/eLife.46323.014
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Appendix 2—figure 3. Violin plots showing the distribution and density of the difference

scores between estimated and true SSRT as a function of condition and estimation method

when the total number of trials is 200 (50 stop trials). Values smaller than zero indicate

underestimation; values larger than zero indicate overestimation.

DOI: https://doi.org/10.7554/eLife.46323.015
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Appendix 2—figure 4. Violin plots showing the distribution and density of the difference

scores between estimated and true SSRT as a function of condition and estimation method

when the total number of trials is 400 (100 stop trials). Values smaller than zero indicate

underestimation; values larger than zero indicate overestimation.

DOI: https://doi.org/10.7554/eLife.46323.016
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Appendix 2—figure 5. Violin plots showing the distribution and density of the difference

scores between estimated and true SSRT as a function of condition and estimation method

when the total number of trials is 800 (200 stop trials). Values smaller than zero indicate

underestimation; values larger than zero indicate overestimation.

DOI: https://doi.org/10.7554/eLife.46323.017
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Appendix 3

DOI: https://doi.org/10.7554/eLife.46323.003

Race model simulations to determine achieved power

Simulation procedure
To determine how different parameters affected the power to detect SSRT differences, we

simulated ‘experiments’. We used the same general procedure as described in Appendix 2. In

the example described below, we used a simple between-groups design with a control group

and an experimental group.

For each simulated ‘participant’ of the ‘control group’, �go of the ex-Gaussian go RT

distribution was sampled from a normal distribution with mean = 500 (i.e. the population

mean) and SD = 100, with the restriction that it was larger than 300. sgo and tgo were both

fixed at 50, and the percentage of (artificially inserted) go omissions was 0% (see Appendix 2).

�stop of the ex-Gaussian SSRT distribution was also sampled from a normal distribution with

mean = 200 (i.e. the population mean) and SD = 40, with the restriction that it was larger than

100. sstop and tstop were fixed at 20 and 10, respectively. Please note that the SDs for the

population means were higher than the values used for the simulations reported in Appendix

2 to allow for extra between-subjects variation in our groups.

For the ‘experimental group’, the go and stop parameters could vary across ‘experiments’.

�go was sampled from a normal distribution with population mean = 500, 525, or 575

(SD = 100). sgo was 50, 52.5, or 57.5 (for population mean of �go = 500, 525, and 575,

respectively), and tgo was either 50, 75, or 125 (also for population mean of �go = 500, 525,

and 575, respectively). Remember that the mean of the ex-Gaussian distribution = � + t

(Appendix 2). Thus, mean go RT of the experimental group was either 550 ms (500 + 50,

which is the same as the control group), 600 (525 + 75), or 700 (575 + 125). The percentage of

go omissions for the experimental group was either 0% (the same as the experimental group),

5% (for �go = 525) or 10% (for �go = 575).

Appendix 3—table 1. Parameters of the go distribution for the control group and the three

experimental conditions. SSRT of all experimental groups differed from SSRT in the control

group (see below).

Parameters of go distribution Control Experimental 1 Experimental 2 Experimental 3

�go
500 500 525 575

sgo
50 50 52.5 57.5

tgo
50 50 75 125

go omission 0 0 5 10

DOI: https://doi.org/10.7554/eLife.46323.019

�stop of the ‘experimental-group’ SSRT distribution was sampled from a normal

distribution with mean = 210 or 215 (SD = 40). sstop was 21 or 21.5 (for �stop = 210 and 215,

respectively), and tstop was either 15 or 20 (for �stop = 210 and 215, respectively). Thus, mean

SSRT of the experimental group was either 225 ms (210 + 15, corresponding to a medium

effect size; Cohen’s d » 0.50–0.55. Note that the exact value could differ slightly between

simulations as random samples were taken) or 235 (215 + 20, corresponding to a large effect

size; Cohen’s d » 0.85–0.90). SSRT varied independently from the go parameters (i.e. �go +

tgo, and % go omissions).

The total number of trials per experiment was either 100 (25 stop trials), 200 (50 stop

trials) or 400 (100 stop trials). Other simulation parameters were the same as those described

in Appendix 2. Overall, this resulted in 18 different combinations: 3 (go difference between

control and experimental; see Appendix 3—table 1 above) x 2 (mean SSRT difference

Verbruggen et al. eLife 2019;8:e46323. DOI: https://doi.org/10.7554/eLife.46323 22 of 26

Tools and resources Human Biology and Medicine Neuroscience

https://doi.org/10.7554/eLife.46323.019
https://doi.org/10.7554/eLife.46323


between control and experimental: 15 or 30) x 3 (total number of trials: 100, 200 or 400). For

each parameter combination, we simulated 5000 ‘pairs’ of subjects.

The code and results of the simulations are available via the Open Science Framework

(https://osf.io/rmqaw/); stop-signal users can adjust the scripts (e.g. by changing parameters

or even the design) to determine the required sample size given some consideration about

the expected results. Importantly, the present simulation code provides access to a wide set

of parameters (i.e. go omission, parameters of the go distribution, and parameters of the

SSRT distribution) that could differ across groups or conditions.

Analyses
SSRTs were estimated using the integration method with replacement of go omissions (i.e.

the method that came out on top in the other set of simulations). Once the SSRTs were

estimated, we randomly sampled ‘pairs’ to create the two groups for each ‘experiment’. For

the ’medium’ SSRT difference (i.e. 210 vs. 225 ms), group size was either 32, 64, 96, 128,

160, or 192 (the total number of participants per experiment was twice the group size). For

the ‘large’ SSRT difference (i.e. 210 vs. 235 ms), group size was either 16, 32, 48, 64, 80, or

96 (the total number of participants per experiment was twice the group size). For each

sample size and parameter combination (see above), we repeated this procedure 1000 times

(or 1000 experiments).

For each experiment, we subsequently compared the estimated SSRTs of the control and

experiment groups with an independent-samples t-test (assuming unequal variances). Then

we determined for each sample size x parameter combination the proportion of t-tests that

were significant (with a = 0.05).

Results
The figure below plots achieved power as a function of sample size (per group),

experimental vs. control group difference in true SSRT, and group differences in go

performance. Note that if true and estimated SSRTs would exactly match (i.e. estimations

reliability = 1), approximately 58 participants per group would be required to detect a

medium-sized true SSRT difference with power = 0.80 (i.e. when Cohen’s d »0.525), and 22

participants per group for a large-sized true SSRT difference (Cohen’s d »0.875).

Inspection of the figure clearly reveals that achieved power generally increases when

sample size and number of trials increase. Obviously achieved power is also strongly

dependent on effect size (Panel A vs. B). Interestingly, the figure also shows that the ability

to detect SSRT differences is reduced when go performance of the groups differ

substantially (see second and third columns of Panel A). As noted in the main manuscript and

Appendix 2, even the integration method (with replacement of go omissions) is not immune

to changes in the go performance. More specifically, SSRT will be underestimated when the

RT distribution is skewed (note that all other approaches produce even stronger biases). In

this example, the underestimation bias will reduce the observed SSRT difference (as the

underestimation bias is stronger for the experimental group than for the control group).

Again, this highlights the need to encourage consistent fast responding (reducing the right-

end tail of the distribution).
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Appendix 3—figure 1. Achieved power for an independent two-groups design as function of

differences in go omission, go distribution, SSRT distribution, and the number of trials in the

‘experiments’.

DOI: https://doi.org/10.7554/eLife.46323.020
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Appendix 4

DOI: https://doi.org/10.7554/eLife.46323.003

Overview of the main labels and common alternatives

Label Description Common alternative labels

Stop-signal task A task used to measure response inhibi-
tion in the lab. Consists of a go compo-
nent (e.g. a two-choice discrimination
task) and a stop component (suppressing
the response when an extra signal ap-
pears).

Stop-signal reaction time task, stop-signal
paradigm, countermanding task

Go trial On these trials (usually the majority),
participants respond to the go stimulus as
quickly and accurately as possible (e.g. left
arrow = left key, right arrow = right key).

No-signal trial, no-stop-signal trial

Stop trial On these trials (usually the minority), an
extra signal is presented after a variable
delay, instructing participants to stop their
response to the go stimulus.

Stop-signal trial, signal trial

Successful stop
trial

On these stop trials, the participants
successfully stopped (inhibited) their go
response.

Stop-success trial, signal-inhibit trial, can-
celed trial

Unsuccessful
stop trial

On these stop trials, the participants could
not inhibit their go response; hence, they
responded despite the (stop-signal) in-
struction not to do so.

Stop-failure trial, signal-respond trial,
noncanceled trial, stop error

Go omission Go trials without a go response. Go-omission error, misses, missed re-
sponses

Choice errors on
go trials

Incorrect response on a go trial (e.g. the
go stimulus required a left response but a
right response was executed).

(Go) errors, incorrect (go or no-signal)
trials

Premature re-
sponse on a go
trial

A response executed before the presen-
tation of the go stimulus on a go trial. This
can happen when go-stimulus presenta-
tion is highly predictable in time (and
stimulus identity is not relevant to the go
task; e.g. in a simple detection task) or
when participants are ‘impulsive’. Note
that response latencies will be negative on
such trials.

p(respond|signal) Probability of responding on a stop trial.
Non-parametric estimation methods (Ma-
terials and Methods) use p(respond|signal)
to determine SSRT.

P(respond), response rate, p(inhibit)=1 p
(respond|signal)

Choice errors on
unsuccessful stop
trials

Unsuccessful stop trials on which the
incorrect go response was executed (e.g.
the go stimulus required a left response
but a right response was executed).

Incorrect signal-respond trials

Premature re-
sponses on un-
successful stop
trials

This is a special case of unsuccessful stop
trials, referring to go responses executed
after the presentation of the go stimulus
but before the presentation of the stop
signal. In some studies, this label is also
used for go responses executed before
the presentation of the go stimulus on
stop trials (see description premature
responses on go trials).

Premature signal-respond

continued on next page
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continued

Label Description Common alternative labels

Trigger failures
on stop trials

Failures to launch the stop process or
‘runner’ on stop trials (see Box 2 for
further discussion).

Reaction time
(RT) on go trials

How long does it take to respond to the
stimulus on go trials? This corresponds to
the finishing time of the go runner in the
independent race model.

Go RT, go latency, no-signal RT

Stop-signal delay
(SSD)

The delay between the presentation of the
go stimulus and the stop signal

Stimulus-onset asynchrony (SOA)

Stop-signal reac-
tion time (SSRT)

How long does it take to stop a response?
SSD + SSRT correspond to the finishing
time of the stop runner in the indepen-
dent race model.

Stop latency

RT on unsuccess-
ful stop trials

Reaction time of the go response on
unsuccessful stop trials

Signal-respond RT, SR-RT (note that this
abbreviation is highly similar to the
abbreviation for stop-signal reaction time,
which can cause confusion)

Note: The different types of unsuccessful stop trials (including choice errors and premature responses) are
usually collapsed when calculating p(respond|signal), estimating SSRT, or tracking SSD.
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