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Abstract Perceptual choices depend not only on the current sensory input but also on the

behavioral context, such as the history of one’s own choices. Yet, it remains unknown how such

history signals shape the dynamics of later decision formation. In models of decision formation, it is

commonly assumed that choice history shifts the starting point of accumulation toward the bound

reflecting the previous choice. We here present results that challenge this idea. We fit bounded-

accumulation decision models to human perceptual choice data, and estimated bias parameters

that depended on observers’ previous choices. Across multiple task protocols and sensory

modalities, individual history biases in overt behavior were consistently explained by a history-

dependent change in the evidence accumulation, rather than in its starting point. Choice history

signals thus seem to bias the interpretation of current sensory input, akin to shifting endogenous

attention toward (or away from) the previously selected interpretation.

DOI: https://doi.org/10.7554/eLife.46331.001

Introduction
Decisions are not isolated events, but are embedded in a sequence of choices. Choices, or their out-

comes (e.g. rewards), exert a large influence on subsequent decisions (Sutton and Barto, 1998;

Sugrue et al., 2004). This holds even for low-level perceptual choices (Fernberger, 1920;

Rabbitt and Rodgers, 1977; Treisman and Williams, 1984). In most perceptual choice tasks used in

the laboratory, the decision should only be based on current sensory input, the momentary ‘evi-

dence’ for the decision. Thus, most work on their computational and neurophysiological mechanisms

has largely focused on the transformation of sensory evidence into choice (Shadlen and Kiani,

2013). Yet, perceptual decisions are strongly influenced by experimental history: whether or not pre-

vious choices led to positive outcomes (Rabbitt and Rodgers, 1977; Dutilh et al., 2012), the confi-

dence in them (Desender et al., 2018), and the content of the previous choice (i.e. which stimulus

category was selected; Akaishi et al., 2014; Fründ et al., 2014; Urai et al., 2017). The latter type

of sequential effect, which we call ‘choice history bias’, refers to the selective tendency to repeat (or

alternate) previous choices. It is distinct and dissociable from effects of reward, performance feed-

back or subjective error awareness in previous trials.

Choice history biases are prevalent in human (Fründ et al., 2014; Urai et al., 2017), monkey

(Gold et al., 2008) and rodent (Busse et al., 2011; Odoemene et al., 2018) perceptual decision-

making. Remarkably, this holds even for environments lacking any correlations between stimuli pre-

sented on successive trials – the standard in psychophysical laboratory experiments. Choice history

biases vary substantially across individuals (Abrahamyan et al., 2016; Urai et al., 2017). Neural sig-

nals reflecting previous choices have been found across the sensorimotor pathways of the cerebral

cortex, from sensory to associative and motor regions (Gold et al., 2008; de Lange et al., 2013;
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Akaishi et al., 2014; Pape and Siegel, 2016; Purcell and Kiani, 2016a; St John-Saaltink et al.,

2016; Thura et al., 2017; Hwang et al., 2017; Scott et al., 2017).

By which mechanism are choice history signals incorporated into the formation of a decision? Cur-

rent models of perceptual decision-making posit the temporal accumulation of sensory evidence,

resulting in an internal decision variable that grows with time (Bogacz et al., 2006; Gold and Shad-

len, 2007; Ratcliff and McKoon, 2008; Brody and Hanks, 2016). When this decision variable

reaches one of two decision bounds, a choice is made and the corresponding motor response is initi-

ated. In this framework, a bias can arise in two ways: (i) by shifting the starting point of accumulation

toward one of the bounds or (ii) by selectively changing the rate at which evidence for one versus

the other choice alternative is accumulated. Figure 1 illustrates these two biasing mechanisms for a

simple and widely used form of accumulation-to-bound model: the drift diffusion model (DDM). Sim-

ilar principles apply to more complex accumulation-to-bound models. The starting point shift can be

thought of as adding an offset to the perceptual interpretation of the current sensory evidence. By

contrast, the evidence accumulation bias corresponds to biasing that perceptual interpretation

toward one of the two stimulus categories.

It is currently unknown which of those two principal mechanisms accounts for the choice history

biases observed in overt behavior. Previous theoretical accounts have postulated a shift in the start-

ing point of the decision variables toward the bound of the previous choice (Yu and Cohen, 2008;

Zhang et al., 2014; Glaze et al., 2015). This is based on the assumption that the representation of

the decision variable decays slowly, leaving a trace of the observer’s choice in the next trial

(Cho et al., 2002; Gao et al., 2009; Gao et al., 2009; Bonaiuto et al., 2016). However, choice his-

tory biases might also originate from a slower (i.e. tens of seconds) across-trial accumulation of inter-

nal decision variables – analogous to the accumulation of external outcomes in value-based

decisions (Sutton and Barto, 1998; Sugrue et al., 2004). Previous experimental work on perceptual

choice history biases either did not analyze the within-trial decision dynamics (Busse et al., 2011;

de Lange et al., 2013; Akaishi et al., 2014; Fründ et al., 2014; Urai et al., 2017; Braun et al.,

2018), or only tested for starting point biases, not accumulation biases (Cho et al., 2002;

Gold et al., 2008; Yu and Cohen, 2008; Gao et al., 2009; Wilder et al., 2009; Bode et al., 2012;

Jones et al., 2013; Zhang et al., 2014).

Here, we untangle how history-dependent changes in evidence accumulation and starting point

contribute to history biases in overt choice behavior. Across a range of perceptual choice tasks, we
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Figure 1. Two biasing mechanisms within the DDM. The DDM postulates that noisy sensory evidence is accumulated over time, until the resulting

decision variable y reaches one of two bounds (dashed black lines at y = 0 and y = a) for the two choice options. Repeating this process over many

trials yields RT distributions for both choices (plotted above and below the bounds). Gray line: example trajectory of the decision variable from a single

trial. Black lines: mean drift and resulting RT distributions under unbiased conditions. (a) Choice history-dependent shift in starting point. Green lines:

mean drift and RT distributions under biased starting point. Gray-shaded area indicates those RTs for which starting point leads to choice bias. (b)

Choice history-dependent shift in drift bias. Blue lines: mean drift and RT distributions under biased drift. Gray shaded area indicates those RTs for

which drift bias leads to choice bias. (c) Both mechanisms differentially affect the shape of RT distributions. Conditional bias functions (White and

Poldrack, 2014), showing the fraction of biased choices as a function of RT, demonstrate the differential effect of starting point and drift bias shift.
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found that individual differences in choice repetition are explained by history-dependent biases in

accumulation, not starting point. Thus, the interaction between choice history and decision formation

seems to be more complex than previously thought: choices may bias later evidence accumulation

processes towards (or away from) the previous chosen perceptual interpretation of the sensory

input.

Results
We fit different bounded-accumulation models to human behavioral data:choices and response

times (RT). The DDM estimates model parameters from joint choices and RT distributions, and pro-

vides good fits to behavioral data from a large array of two-choice task (Ratcliff and McKoon,

2008). We estimated the following parameters: non-decision time (the time needed for sensory

encoding and response execution), starting point of the decision variable, separation of the decision

bounds, mean drift rate, and a stimulus-independent constant added to the mean drift. We refer to

the latter parameter (termed ‘drift criterion’ by Ratcliff and McKoon, 2008) as ‘drift bias’.

Within the DDM, choice behavior can be selectively biased toward repetition or alternation by

two mechanisms: shifting the starting point, or biasing the drift toward (or away from) the bound for

the previous choice (Figure 1). These biasing mechanisms are hard to differentiate based on the pro-

portion of choices alone, but they are readily distinguishable by the relationship between choice

bias and RT (Figure 1c). Specifically, the conditional bias function (White and Poldrack, 2014) shows

the fraction of choice repetitions as a function of their RT (binned in quantiles). A shift in starting

point is most influential early in the decision process: it affects the leading edge of the RT distribu-

tion and shifts its mode. It predicts that the majority of history-dependent choice biases occur on tri-

als with fast RTs (Figure 1c, green). A drift bias is instead accumulated along with the evidence and

therefore grows as a function of elapsed time. Thus, drift bias strongly affects the trailing edge of

the RT distribution with only a minor effect on the mode, altering choice fractions across the whole

range of RTs (Figure 1c, blue). History-dependent changes in bound separation or mean drift rate

may also occur, but they can only change overall RT and accuracy: those changes are by themselves

not sufficient to bias the accumulation process toward one or the other bound, and thus toward

choice repetition or alternation (see Figure 4—figure supplement 1).

We fit different variants of the DDM (Figure 3—figure supplement 1) to data from six experi-

ments. These covered a range of task protocols and sensory modalities commonly used in studies of

perceptual decision-making (Figure 2a): two alternative forced-choice, two interval forced-choice,

and yes-no (simple forced choice) tasks; RT and so-called fixed duration tasks; visual motion direc-

tion and coherence discrimination, visual contrast and auditory detection; and experiments with and

without single-trial performance feedback. As found in previous work (Fründ et al., 2014;

Abrahamyan et al., 2016; Urai et al., 2017), observers exhibited a wide range of idiosyncratic

choice history biases across all experiments (Figure 2b,c). To ensure that the DDM is an appropriate

(simplified) modeling framework for these data, we first fit a basic version of the DDM that contained

the above-described parameters, without allowing bias parameters to vary with choice history. We

then fit the DDM while also allowing starting point, drift bias, or both to vary as a function of the

observer’s choice on the previous trial.

The DDM fits matched several aspects of the behavioral data (Figure 3—figure supplement 1).

First, RT distributions matched the model predictions reasonably well (shown separately for each

combination of stimuli and choices in Figure 3—figure supplement 1, darker colors indicate pre-

dicted RTs obtained through model simulations). Second, for the fits obtained with a hierarchical

Bayesian fitting procedure (see Figure 3—figure supplement 1 and Materials and methods), used

for Figures 3–5, the R̂ for group-level parameters ranged between 0.9997 and 1.0406 across data-

sets, indicating good convergence of the sampling procedure (Wiecki et al., 2013). Third, individual

drift rate estimates correlated with individual perceptual sensitivity (d’, Figure 3—figure supple-

ment 1a) and monotonically increased with stronger sensory evidence (Figure 3—figure supple-

ment 1a). In fixed duration tasks, the decision-maker does not need to set a bound for terminating

the decision (Bogacz et al., 2006), so the bounded diffusion process described by the DDM might

seem inappropriate. Yet, the success of the DDM in fitting these data was consistent with previous

work (e.g. Ratcliff, 2006; Bode et al., 2012; Jahfari et al., 2012) and might have reflected the fact
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Figure 2. Behavioral tasks and individual differences. (a) Schematics of perceptual decision-making tasks used in each dataset. See also Materials and

methods section Datasets: behavioral tasks and participants. (b) Distributions of individual choice history biases for each dataset. Gray bars show

individual observers, with colored markers indicating the group mean. (c) Each individual’s tendency to repeat their choices after correct vs. error trials.

The position of each observer in this space reflects their choice- and outcome-dependent behavioral strategy.
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Figure supplement 1. The hierarchical DDM.
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Figure supplement 2. Drift diffusion model fits.

DOI: https://doi.org/10.7554/eLife.46331.006

Urai et al. eLife 2019;8:e46331. DOI: https://doi.org/10.7554/eLife.46331 5 of 34

Research article Neuroscience

https://doi.org/10.7554/eLife.46331.004
https://doi.org/10.7554/eLife.46331.005
https://doi.org/10.7554/eLife.46331.006
https://doi.org/10.7554/eLife.46331


Visual motion 2AFC (RT)

-1 0 1

History shift in vbias

-0.1 0

History shift in z

0.4

0.45

0.5

0.55

P
(r

e
p

e
a

t)

Visual motion 2IFC (FD) #1

-0.5 0 0.5

History shift in vbias

-0.05 0 0.05

History shift in z

0.48

0.5

0.52

0.54

0.56

P
(r

e
p

e
a

t)

Visual contrast yes/no (RT)

0 0.2 0.4 0.6

History shift in vbias

-0.05 0 0.05

History shift in z

0.5

0.55

0.6

P
(r

e
p

e
a

t)

Visual motion 2AFC (FD)

-0.5 0 0.5

History shift in vbias

-0.04 0

History shift in z

0.4

0.45

0.5

0.55

0.6

P
(r

e
p

e
a

t)

Visual motion 2IFC (FD) #2

-0.5 0 0.5

History shift in vbias

-0.06 -0.02 0 0.02

History shift in z

0.44

0.46

0.48

0.5

0.52

0.54

P
(r

e
p

e
a

t)

Auditory yes/no (RT)

-0.5 0 0.5 1

History shift in vbias

-0.05 0 0.05

History shift in z

0.45

0.5

0.55

0.6

P
(r

e
p

e
a

t)

R
e
p
e
titio

n

A
lte

rn
a
tio

n
R

e
p
e
titio

n
A

lte
rn

a
tio

n
R

e
p
e
titio

nA
lte

rn
a
tio

n
R

e
p
e
titio

n
A

lte
rn

a
tio

n
R

e
p
e
titio

n

A
lte

rn
a
tio

n
R

e
p
e
titio

n

a

b

-1 -0.5 0 0.5 1

History shift in z

Auditory yes/no (RT)

Visual contrast yes/no (RT)

Visual motion 2IFC (FD) #2

Visual motion 2IFC (FD) #1

Visual motion 2AFC (FD)

Visual motion 2AFC (RT)

BF
10

 < 1/100

-1 -0.5 0 0.5 1

History shift in v
bias

BF
10

 > 100

 = -0.901, p = 0.0001

 = -1.172, p < 0.0001

 = -0.573, p = 0.0039

 = -0.984, p < 0.0001

 = -0.489, p = 0.1511

 = -1.110, p < 0.0001

Correlation with P(repeat)

N
o
 s

in
g
le

-tria
l fe

e
d
b
a
c
k

S
in

g
le

-tria
l fe

e
d
b
a
c
k

Figure 4. Individual choice history biases are explained by history-dependent changes in drift bias, not starting point. (a) Relationship between

individual choice repetition probabilities, P(repeat), and history shift in starting point (left column, green) and drift bias (right column, blue). Parameter

estimates were obtained from a model in which both bias terms were allowed to vary with previous choice. Horizontal and vertical lines, unbiased
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Figure 4 continued on next page
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that observers set implicit decision bounds also when they do not control the stimulus duration

(Kiani et al., 2008; but see Tsetsos et al., 2015).

History-dependent accumulation bias, not starting point bias, explains
individual differences in choice repetition behavior
Models with history-dependent biases better explained the data than the baseline model without

such history dependence (Figure 3a), corroborating the observation that observers’ behavior

showed considerable dependence on previous choices (Figure 2f). The model with both history-

dependent starting point and drift bias provided the best fit to five out of six datasets (Figure 3a),

based on the Akaike Information Criterion (AIC; Akaike, 1974 - note that we obtained the same

results when instead using the hierarchical Deviance Information Criterion).

The above model comparison pointed to the importance of including a history-dependency into

the model. We further examined the ability of each model to explain specific diagnostic features in

the data (Palminteri et al., 2017) that distinguished starting point from drift bias. A history-depen-

dent shift in the starting point leads to biased choices primarily when responses are fast (early RT

quantiles), whereas a history-dependent shift in drift leads to biased choices across all trials, includ-

ing those with slow responses (Figure 1). We simulated choices and RTs from the three different

model variants and computed so-called ‘conditional bias functions’ (White and Poldrack, 2014): the

fraction of choices in line with each observer’s choice repetition tendency (i.e. repetition

probability), in each quantile of their RT distribution. For observers whose choice repetition probabil-

ity was >0.5, this was the fraction of repetitions; for the other observers, this was the fraction of

alternations. Consistent with a shift in drift bias, observers exhibited history-dependent choice biases

across the entire range of RTs (Figure 3b). In particular, the biased choices on slow RTs could only

be captured by models that included a history-dependent shift in drift bias (Figure 3c, blue and dark

green bars).

We used the parameter estimates obtained from the full model (with both history-dependent

starting point and drift bias) to investigate how history-dependent variations in starting point and

drift bias related to each individual’s tendency to repeat their previous choices. We call each bias

parameter’s dependence on the previous choice its ‘history shift’. For instance, in the left vs. right

motion discrimination task, the history shift in starting point was computed as the difference

between the starting point estimate for previous ‘left’ and previous ‘right’ choices, irrespective of

the category of the current stimulus. The history shift in drift bias, but not the history shift in starting

point, was robustly correlated to the individual probability of choice repetition (Figure 4a, significant

correlations indicated with solid regression lines). In five out of six datasets, the correlation with the

history shift in drift bias was significantly stronger than the correlation with the history shift in starting

point (Figure 4b, D� values).

We quantified the total evidence by computing a Bayes factor for each correlation (Wetzels and

Wagenmakers, 2012), and multiplying these across datasets (Scheibehenne et al., 2016). This

Figure 4 continued

which the two DDM parameters are differentially able to predict individual choice repetition (p-values from Steiger’s test). The black diamond indicates

the mean correlation coefficient across datasets. The Bayes factor (BF10) quantifies the relative evidence for the alternative over the null hypothesis, with

values < 1 indicating evidence for the null hypothesis of no correlation, and >1 indicating evidence for a correlation.

DOI: https://doi.org/10.7554/eLife.46331.007

The following figure supplements are available for figure 4:

Figure supplement 1. Post-error slowing.

DOI: https://doi.org/10.7554/eLife.46331.011

Figure supplement 2. Control model fits.

DOI: https://doi.org/10.7554/eLife.46331.008

Figure supplement 3. Same biasing mechanism under two pharmacological interventions.

DOI: https://doi.org/10.7554/eLife.46331.009

Figure supplement 4. Repeaters vs. alternators.

DOI: https://doi.org/10.7554/eLife.46331.010

Figure supplement 5. Group-level posterior distributions of history bias parameters.

DOI: https://doi.org/10.7554/eLife.46331.012
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further confirmed that individual choice history biases were not captured by history shifts in starting

point, but consistently captured by history shifts in drift (Figure 4b). Specifically, the Bayes factor for

the history shift in starting point approached zero, indicating strong evidence for the null hypothesis

of no correlation. The Bayes factor for the history shift in drift indicated strong evidence for a corre-

lation (Kass and Raftery, 1995).

Correlations between estimated history shifts in starting point and drift bias were generally nega-

tive (mean �: �0.2884, range �0.4130 to �0.0757), but reached statistical significance (p<0.05) in

only one dataset. The combined Bayes Factor (BF10) was 0.0473, indicating strong evidence for H0.

We thus remain agnostic about the relationship between the history shifts of both parameters.

The same qualitative pattern of results was obtained with an alternative fitting procedure (non-

hierarchical G2 optimization, Figure 4—figure supplement 2a), as well as a model that allowed for

additional across-trial variability in non-decision time (Figure 4—figure supplement 2b). Letting

non-decision time vary with each level of sensory evidence strength (in the two datasets including

multiple such levels) did not change the pattern of model comparison and correlation results (Fig-

ure 4—figure supplement 2c). These findings are thus robust to specifics of the model and fitting

method. The Visual motion 2IFC #2 also included pharmacological interventions in two sub-groups

of participants (see Materials and methods); we found the same effects for both drug groups as well

as the placebo group (Figure 4—figure supplement 3). A significant positive correlation between

history shift in drift bias and P(repeat) was present for two sub-groups of participants, defined as

‘repeaters’ and ‘alternators’ (based on P(repeat) being larger or smaller than 0.5,

respectively; Figure 4—figure supplement 4).

The lack of a correlation between history-dependent starting point shifts and individual choice

repetition is surprising in light of previous accounts (Yu and Cohen, 2008; Gao et al., 2009). History

shifts in starting point were mostly negative (a tendency toward choice alternation) across partici-

pants, regardless of their individual tendency toward choice repetition or alternation (Figure 4—fig-

ure supplement 5, significant in two out of six datasets). This small but consistent effect likely

explains why our formal model comparison favored a model with both history-dependent drift and

starting point over one with only drift bias (see also Discussion). Critically, only the history-depen-

dent shift in drift bias accounted for individual differences in choice repetition (Figure 4).

History-dependent accumulation bias explains individual choice
repetition behavior irrespective of previous choice outcome
In four out of six tasks, participants received explicit outcome feedback (correct, error) after each

choice. It is possible that participants experienced positive feedback as rewarding and (erroneously)

assumed that a rewarded choice is more likely to be rewarded on the next trial. Manipulations of

reward (probability or magnitude) have been found to change starting point (Voss et al., 2008;

Leite and Ratcliff, 2011; Mulder et al., 2012), but might also bias drift (Liston and Stone, 2008;

Afacan-Seref et al., 2018; Fan et al., 2018). Given that there were far more correct (i.e. rewarded)

choices than errors, the history-dependent drift bias could reflect the expectation of reward for the

choice that was correct on the previous trial.

Two findings refute this idea. First, the same result holds in the two datasets without single-trial

outcome feedback (Figure 4a, bottom row), implying that external feedback is not necessary for his-

tory shifts in drift bias. Second, we found similar results when separately estimating the model

parameters (history shift in starting point and drift bias) and model-free measures (choice repetition

probability) after both correct and error trials (Figure 5a). Across datasets, individual repetition

probability was best explained by history shifts in drift bias, not starting point, after both correct

(Figure 5b) and error (Figure 5c) trials. Thus, even erroneous choices bias evidence accumulation on

the next trial, in the same direction as correct choices. Indeed, most participants were predominantly

biased by their previous choice (95 ‘stay’, 30 ‘switch’), while a third was biased by a combination of

the previous choice and its correctness (26 ‘win-stay lose-switch’, 42 ‘win-switch lose-stay’;

Figure 2c).

Correlations tended to be smaller for previous erroneous choices. However, directly comparing

the correlation coefficients between post-correct and post-error trials (after subsampling the former

to ensure equal trial numbers per participant) did not allow us to refute nor confirm a difference

(Figure 5d). In sum, history-dependent drift biases did not require external feedback about choice

outcome and were predominantly induced by the previous choice. These choice history-dependent

Urai et al. eLife 2019;8:e46331. DOI: https://doi.org/10.7554/eLife.46331 8 of 34

Research article Neuroscience

https://doi.org/10.7554/eLife.46331


Visual motion 2AFC (RT)

-1 0 1 2

History shift in v
bias

-0.1 0

History shift in z

0.4

0.45

0.5

0.55

P
(r

e
p
e
a
t)

Visual motion 2IFC (FD) #1

-1 0 1

History shift in v
bias

-0.1 -0.05 0 0.05

History shift in z

0.45

0.5

0.55

P
(r

e
p
e
a
t)

Visual contrast yes/no (RT)

0 0.2 0.4 0.6 0.8

History shift in v
bias

-0.08 -0.04 0 0.04

History shift in z

0.5

0.55

0.6

P
(r

e
p
e
a
t)

Visual motion 2AFC (FD)

-1 -0.5 0 0.5

History shift in v
bias

-0.04 0

History shift in z

0.4

0.5

0.6

P
(r

e
p
e
a
t)

Visual motion 2IFC (FD) #2

-1 0 1

History shift in v
bias

-0.08 -0.04 0 0.04

History shift in z

0.45

0.5

0.55

P
(r

e
p
e
a
t)

a

c

Auditory yes/no (RT)

-0.5 0 0.5 1

History shift in v
bias

-0.1 0 0.1

History shift in z

0.45

0.5

0.55

0.6

P
(r

e
p
e
a
t)

correct
error

Previous

N
o

 s
in

g
le

-tria
l fe

e
d

b
a

c
k

S
in

g
le

-tria
l fe

e
d

b
a

c
k

b

d

-1 -0.5 0 0.5 1

History shift in z

Auditory yes/no (RT)

Visual contrast yes/no (RT)

Visual motion 2IFC (FD) #2

Visual motion 2IFC (FD) #1

Visual motion 2AFC (FD)

Visual motion 2AFC (RT)

BF
10

 < 1/100

-1 -0.5 0 0.5 1

History shift in v bias

BF
10

 > 100

 = -0.651, p = 0.0006

 = -1.053, p < 0.0001

 = -0.194, p = 0.2164

 = -0.715, p < 0.0001

 = -0.400, p = 0.1246

 = -0.857, p < 0.0001

-1 -0.5 0 0.5 1

History shift in z

Auditory yes/no (RT)

Visual contrast yes/no (RT)

Visual motion 2IFC (FD) #2

Visual motion 2IFC (FD) #1

Visual motion 2AFC (FD)

Visual motion 2AFC (RT)

BF
10

 < 1/100

-1 -0.5 0 0.5 1

History shift in v bias

BF
10

 > 100

 = -0.555, p = 0.0406

 = -0.749, p = 0.0003

 = -0.461, p = 0.1023

 = -0.291, p = 0.1583

 = -0.358, p = 0.0774

 = -1.041, p = 0.0007

-1 -0.5 0 0.5 1

 correct vs. error, vbias

BF
10

 = 2.19

p = 0.0062

p = 0.6455

p < 0.0001

p = 0.1351

p = 0.2136

p = 0.0196

-1 -0.5 0 0.5 1

 correct vs. error, z

Auditory yes/no (RT)

Visual contrast yes/no (RT)

Visual motion 2IFC (FD) #2

Visual motion 2IFC (FD) #1

Visual motion 2AFC (FD)

Visual motion 2AFC (RT)

BF10  = 0.75

p = 0.1516

p = 0.6654

p = 0.4240

p = 0.0410

p = 0.4510

p = 0.4327

C
o

rre
la

tio
n

 w
ith

 P
(re

p
e

a
t)

a
fte

r c
o

rre
c
t

C
o

rre
la

tio
n

 w
ith

 P
(re

p
e

a
t)

a
fte

r e
rro

r

D
iffe

re
n

c
e

 in
 c

o
rre

la
tio

n

a
fte

r c
o

rre
c
t - e

rro
r

Urai et al. eLife 2019;8:e46331. DOI: https://doi.org/10.7554/eLife.46331 9 of 34

Research article Neuroscience

https://doi.org/10.7554/eLife.46331


biases in evidence accumulation were accompanied by effects on drift rate and boundary separation

(Figure 4—figure supplement 1), in line with previous work on post-error slowing (Dutilh et al.,

2012; Goldfarb et al., 2012; Purcell and Kiani, 2016a).

Accumulation bias correlates with several past choices
Does the history shift in evidence accumulation depend on events from one past trial only? Recent

work has exposed long-lasting choice history biases that span several trials and tens of seconds

(Urai et al., 2017; Braun et al., 2018; Hermoso-Mendizabal et al., 2018). We thus estimated the

influence of past events on the evidence accumulation process in a more comprehensive fashion. We

fit a family of models in which correct and incorrect choices from up to six previous trials were used

as predictors, and estimated their contribution to current starting point and drift bias.

Inclusion of further lags improved the model’s ability to account for the data, up to a lag of 2–4

after which model fits (DAIC) began to deteriorate (Figure 6—figure supplement 1). In 4/6 datasets,

the best-fitting model contained only history-dependent changes in drift, not starting point, over a

scale of the previous 2–4 trials. In the other two datasets, the best-fitting model was a hybrid where

both drift and starting point varied as a function of choice history, up to two to trials into the past

(Figure 6—figure supplement 1). We computed ‘history kernels’ across the different lags, sepa-

rately for starting point and drift bias. These are analogous to the kernels obtained from a history-

dependent regression analysis of the psychometric function that ignores decision time (Fründ et al.,

2014), and which have been widely used in the recent literature on choice history biases

(Fründ et al., 2014; Urai et al., 2017; Braun et al., 2018). To interpret these group-level kernels in

light of substantial individual variability, we expressed each regression weight with respect to indi-

vidual repetition probability at lag 1 (i.e. switching the sign for alternators).

Previous choices shifted drift bias in line with individual history bias across several trials, whereas

starting point did not consistently shift in the direction of history bias. The hybrid models showed

that the effect of choice history on drift bias decayed over approximately three past trials

(Figure 6a), with a slower decay than for starting point (Figure 6a). The regression weights for past

trials (from lag two through each dataset’s best-fitting lag) for drift bias – but not starting point - sig-

nificantly correlated with the probability of repeating past choices at these same lags (Figure 6b).

This was true after both correct and error trials (Figure 6b), similarly to the effects at lag 1

(Figure 5b–c).

In sum, the biasing effect of choice history on evidence accumulation is long-lasting (longer than

the effects on starting point), dependent on preceding choices several trials into the past, but inde-

pendent of their correctness. This analysis corroborates the previous findings from our simpler mod-

els focusing on only the preceding trial, and further dissociate the effects of choice history on

starting point and evidence accumulation.

History-dependent accumulation bias explains individual choice
repetition behavior irrespective of specifics of bounded-accumulation
models
We next set out to test the generality of our conclusions and gain deeper mechanistic insight into

the nature of the dynamic (i.e. time-increasing) bias. We used a variety of bounded-accumulation

models with more complex dynamics than the standard DDM. We focused on the preceding trial

only, which our previous analyses had identified as exerting the same effect on history bias as the

Figure 5. History shift in drift bias explains individual choice behavior after both error and correct decisions. As in Figure 4, but separately following

correct (black) and error (red) trials. Post-correct trials were randomly subsampled to match the trial numbers of post-error trials. (a) Relationship

between repetition probability and history shifts in starting point and drift bias, separately computed for trials following correct (black circles) and error

(red squares) responses. (b) Summary of correlations (as in Figure 4c) for trials following a correct response. Error bars indicate the 95% confidence

interval of the correlation coefficient. (c) Summary of correlations (as in Figure 4c) for trials following an error response. (d) Difference in correlation

coefficient between post-correct and post-error trials, per dataset and parameter. Dr quantifies the degree to which the two DDM parameters are

differentially able to predict individual choice repetition (p-values from Steiger’s test). The black diamond indicates the mean correlation coefficient

across datasets. The Bayes factor (BF10) quantifies the relative evidence for the alternative over the null hypothesis, with values < 1 indicating evidence

for the null hypothesis of no correlation, and >1 indicating evidence for a correlation.

DOI: https://doi.org/10.7554/eLife.46331.013
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longer lags (Figure 6). These models included variants of the DDM (i.e. a perfect accumulator) with

more complex dynamics of the bias or the decision bounds, as well as variants of a leaky accumula-

tor (Busemeyer and Townsend, 1993; Usher and McClelland, 2001; Brunton et al., 2013). We

focused on the Visual motion 2AFC (FD) dataset because it entailed small random dot stimuli (diam-

eter 5˚ of visual angle), leading to large within- and across-trial fluctuations in the sensory evidence

which we estimated through motion energy filtering (Adelson and Bergen, 1985; Urai and

Wimmer, 2016; Figure 7—figure supplement 1). These fluctuating motion energy estimates were

used as time-varying sensory input to the models, providing key additional constraints over and

above nominal sensory evidence levels, choices and RT distributions (Brunton et al., 2013).

We first re-fit the standard DDM where the two biasing parameters were allowed to vary with

previous choice (see Figure 1), now using single-trial motion energy estimates and a non-hierarchical

fitting procedure (see Materials and methods). This made these fits directly comparable to both the

hierarchical fits in Figures 3–4, and the more complex models described below. As expected

(Figure 3a), the data were better explained by a history-dependent bias in the drift, rather than the

starting point (Figure 7b1). In these non-hierarchical fits, the hybrid DDM (i.e. both bias terms free
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Figure 6. Choice history affects drift bias over multiple trials. (a) History kernels, indicating different parameters’ tendency to go in the direction of each

individual’s history bias (i.e. sign-flipping the parameter estimates for observers with P(repeat)<0.5). For each dataset, regression weights from the best-

fitting model (lowest AIC, Figure 6—figure supplement 1) are shown in thicker lines; thin lines show the weights from the largest model we fit. Black

errorbars show the mean ± s.e.m. across models, with white markers indicating timepoints at which the weights are significantly different from zero

across datasets (p<0.05, FDR corrected). Black lines show an exponential fit V tð Þ ¼ Ae�t=t to the average. (b) Correlations between individual P(repeat)

and regression weights, as in Figure 5b–c. Regression weights for the history shift in starting point and drift bias were averaged from lag two until each

dataset’s best-fitting lag. P(repeat) was corrected for expected repetition at longer lags given individual repetition, and averaged from lag two to each

dataset’s best-fitting lag. Dr quantifies the degree to which the two DDM parameters are differentially able to predict individual choice repetition (p-

values from Steiger’s test). The black diamond indicates the mean correlation coefficient across datasets. The Bayes factor (BF10) quantifies the relative

evidence for the alternative over the null hypothesis, with values < 1 indicating evidence for the null hypothesis of no correlation, and >1 indicating

evidence for a correlation.

DOI: https://doi.org/10.7554/eLife.46331.014

The following figure supplement is available for figure 6:

Figure supplement 1. Contribution of previous choices to current drift and starting point bias as function of lag.

DOI: https://doi.org/10.7554/eLife.46331.015
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Figure 7. Extended dynamic models of biased evidence accumulation. (a) Model schematics. In the third panel from the left, the stimulus-dependent

mean drift is shown in black, overlaid by the biased mean drift in color (as in Figure 1a,b). (b) AIC values for each history-dependent model, as

compared to a standard (left) or dynamic (right) DDM without history. The winning model (lowest AIC value) within each model class is shown with a

black outline. (c) Correlation (Spearman’s r) of parameter estimates with individual repetition behavior, as in Figure 4b. Error bars, 95% confidence

interval. ***p<0.0001, **p<0.01, n.s. p>0.05. (d) Within-trial time courses of effective bias (cumulative bias as a fraction of the decision bound) for the

winning leaky accumulator model. Effective bias time courses are indistinguishable between both dynamical regimes (l < 0 and l > 0) and are

averaged here.

DOI: https://doi.org/10.7554/eLife.46331.016

The following figure supplements are available for figure 7:

Figure supplement 1. Motion energy filtering, psychophysical kernels and the effective time-constant of evidence integration.

DOI: https://doi.org/10.7554/eLife.46331.017

Figure supplement 2. Leaky accumulator model simulators.

DOI: https://doi.org/10.7554/eLife.46331.019

Figure supplement 3. Drift diffusion model simulations.

DOI: https://doi.org/10.7554/eLife.46331.018
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to vary as a function of previous choice) lost against the drift bias-only model (indicated by its higher

AIC). Yet thi hybrid model allowed for a direct comparison of the correlations between these (jointly

fit) bias parameters and individual choice repetition probability. As in our previous analysis (Figure 4),

individual choice repetition probability was more strongly predicted by drift than starting point bias

(Figure 6c1).

A previous study of reward effects on speeded decisions reported that reward asymmetries

induced supra-linear bias dynamics (Afacan-Seref et al., 2018). Temporal integration of a constant

drift bias produces a linearly growing effective bias in the decision variable (Figure 1b), whereas

integration of a ramping drift bias produces a supra-linear growth of effective bias (Figure 7a, yel-

low). In our data, a standard DDM with constant drift bias provided a better fit than DDMs with

either a ramping drift bias, or a combination of constant and ramping drift bias (Figure 7b2). Fur-

thermore, in the latter (hybrid) model, the constant drift bias best predicted individual choice repeti-

tion behavior (Figure 7c2), in line with the constant accumulation bias inferred from the standard

DDM fits. For the fits shown in Figure 7b2/c2, we used the same fitting protocol as for the standard

DDM, in which the time-varying sensory evidence fluctuations during stimulus presentation were

replaced by their average over time to compute a single-trial drift rate (called ‘default protocol’,

Materials and methods section Extended bounded accumulation models: General assumptions and

procedures). The same qualitative pattern of results also held for another fitting protocol (‘dynamic

protocol’, see Materials and methods), in which the time-varying sensory evidence was fed into the

integrator (DAIC relative to no-history model: �1103, –985, �995, for constant drift bias, ramping

drift bias, and hybrid, respectively; correlation with P(repeat): r(30)= 0.5458, p=0.0012; r(30)=

0.3600, p=0.0429 for constant and ramping drift bias, respectively). We next used this dynamic pro-

tocol for a set of more complex dynamical models.

It has been proposed that decision bounds might collapse over time, implementing an ‘urgency

signal’ (Figure 6a, middle; Churchland et al., 2008; Cisek et al., 2009). Indeed, adding collapsing

bounds substantially improved our model fits (Figure 7b3). This indicates the presence of a strong

urgency signal in this task, which had a relatively short stimulus presentation (750 ms) and a tight

response deadline (1.25 s after stimulus offset). Critically, a history-dependent drift bias best fit the

data (Figure 7b3) and captured individual choice repetition behavior (Figure 7c3) also in the DDM

with collapsing bounds. In other words, while there is evidence for collapsing bounds in this dataset,

our conclusion about the impact of history bias on decision formation does not depend on its inclu-

sion in the model.

In the brain, a neural representation of the momentary sensory evidence feeds into a set of accu-

mulators. These consist of circuits of excitatory and inhibitory populations of cortical neurons, which

give rise to persistent activity and competitive winner-take-all dynamics (Usher and McClelland,

2001; Wang, 2002). Under certain parameter regimes, these circuit dynamics can be reduced to

lower-dimensional models (Bogacz et al., 2006; Wong, 2006). In such models, the effective accu-

mulation time constant 1/l (with l being the effective leak) results from the balance of leak within

each accumulator (due to self-excitation and passive decay) and mutual inhibition between two accu-

mulators encoding different choices (Usher and McClelland, 2001). Evidence accumulation can then

be biased through an internal representation of the sensory input, or through the way this sensory

representation is accumulated (Figure 7a, right). We here used a reduced competing accumulator

model, where the decision variable was computed as the difference of two leaky accumulators

(Busemeyer and Townsend, 1993; Zhang and Bogacz, 2010; see also Brunton et al., 2013) to

compare these two accumulation biases and a biased accumulator starting point.

We fit a family of bounded, leaky accumulator models, in which the starting point of the accumu-

lators, their input, or their effective leak l could be biased as a function of previous choice

(Figure 7a, right). Note that a bias of the accumulator starting point would also translate into an

accumulation bias, due to the model dynamics (see Materials and methods section Extended

bounded accumulation models: General assumptions and procedures). Even so, comparing this

regime with other two biasing mechanism was informative. Also note that we here use the term

‘leaky accumulator model’ to denote that the model dynamics consisted of a free effective leak

parameter l, without implying that l < 0 (corresponding to activation decay). Our fits allowed l to

take either negative (‘forgetful’ regime) or positive (‘unstable’ regime) values (Figure 7—figure sup-

plement 1d; see also Brunton et al., 2013). Critically, in order to test for choice history-dependent

accumulation bias, we allowed l of each accumulator to vary as a function of the previous choice,
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before computing the difference between the two accumulator activations. Choice-history depen-

dent biases in accumulator starting point or accumulator input were directly applied to the accumu-

lator difference (akin to starting point and drift bias within the DDM). Due to the simplicity of its

dynamics, the DDM cannot distinguish between input and leak bias. Indeed, when simulating behav-

ior of leaky accumulator models with either of these two accumulation biases and fitting it with the

DDM, both input and l bias loaded onto DDM drift bias (Figure 7—figure supplement 2). Critically,

the leaky accumulator with biased accumulator input best explained the data, among all the models

considered (Figure 7b4). Furthermore, the individually estimated input bias predicted individual

choice repetition (Figure 7c4). This suggests that choice history might specifically bias the internal

representation of sensory evidence feeding into the evidence accumulation process.

Dynamics of effective bias signal approximates rational combination of
prior information with current evidence
Taken together, fits and simulations of more complex models provided additional insight into the

mechanism underlying choice history bias. They also corroborated the conclusion that choice history

biases are mediated by a biased accumulation of evidence, rather than a biased starting point. As a

final step, we estimated the time course of the effective bias, computed as the fraction of cumulative

bias signal and bound height (Hanks et al., 2011). We simulated this signal based on the group

average parameters for the best-fitting leaky accumulator model (Figure 7d). In this leaky accumula-

tor (with collapsing bound), the effective bias accelerated (Figure 7d).

The reader may notice that these (supra-linear) effective bias dynamics are similar to those pre-

dicted by the DDM with a ramping drift bias (Figure 7a, left). Thus, the observation that the latter

model lost by a wide margin against the two models with more complex dynamics (Figure 7b, see

also Materials and methods) is likely due to features of the data other than the (relatively small)

selective history bias. Specifically, the RT distributions were strongly shaped by the urgency signal

incorporated by the bound collapse. In the overall best-fitting model (leaky accumulator with col-

lapsing bounds and input bias, Figure 7b5), this effective bias depends on the combined effect of

two non-linear signals: (i) the cumulative bias resulting from the accumulation of biased input and (ii)

the hyperbolically collapsing bound. In the current fits, the effective bias was dominated by the

strong bound collapse, but in different circumstances (with weaker urgency signal and for l < 0), a

biased input leaky accumulator can produce a decelerating effective bias. Combination of a biased

input with some starting point and or leak bias can further change the dynamics. The key observa-

tion is that, regardless of the modeling framework used, we identified an effective bias signal that

grew steadily throughout decision formation, in line with the main conclusion drawn from the basic

fits of the standard DDM.

Our results are in line with the idea the impact of choice history bias on decision formation grows

as a function of elapsed time. This observation might be surprising, as prior information (here: about

the previous choice) does not change over time. Yet, previous work has identified a principled ratio-

nale for such a time-dependent combination of prior and evidence. When evidence reliability

changes from trial to trial, prior information (bias) should be weighted more strongly when sensory

evidence is unreliable (Hanks et al., 2011; Moran, 2015). This can be achieved by increasing the

weight of the prior throughout the trial, using elapsed time as a proxy for evidence reliability. This

prediction was confirmed experimentally for explicit manipulations of prior probability of the choice

options (Hanks et al., 2011). Indeed, within the framework of the DDM, this way of combining prior

information with current evidence maximizes reward rate (Moran, 2015; see also Drugowitsch and

Pouget, 2018). Only when evidence reliability is constant across trials should prior information be

incorporated as a static bias (i.e. starting point). Evidence reliability likely varied from trial to trial

across all our experiments (Moran, 2015), due to variations in the external input (i.e. mean drift rate

in the DDM), originating from stochastically generated stimuli, or internal factors (i.e. drift rate vari-

ability in the DDM), such as the inherent variability of sensory cortical responses (Arieli et al., 1996;

Faisal et al., 2008). In particular, the dataset from Figure 7 entailed strong trial-to-trial variations in

the external input (Figure 7—figure supplement 1). Thus, the dynamics of the effective bias signal

uncovered in Figure 7d suggest that participants combined prior information with current evidence

in a rational fashion.
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Discussion
Quantitative treatments of perceptual decision-making commonly attribute trial-to-trial variability of

overt choices to noisy decision computations (Shadlen et al., 1996; Renart and Machens, 2014;

Wyart and Koechlin, 2016). Those accounts typically assume that systematic decision biases remain

constant over time. Instead, the choice history biases studied here vary continuously over the course

of the experiment, as a function of the previous choices (and choice outcome information). Our cur-

rent results indicate that choice history explains trial-to-trial variability specifically in evidence accu-

mulation, in a number of widely used perceptual choice tasks. Ignoring such trial-to-trial variations

will lead to an overestimation of the noise in the evidence accumulation process and resulting

behavior.

History biases in perceptual choice have long been known in perceptual psychophysics (Fern-

berger, 1920) and neuroscience (Gold et al., 2008). However, the underlying dynamic mechanisms

have remained elusive. We here show that individual differences in overt choice repetition behavior

are explained by the degree to which choices bias the evidence accumulation, not the starting point,

of subsequent decisions. This accumulation bias is associated with choices made several trials into

the past, and it grows steadily as the current decision unfolds. This insight calls for a revision of cur-

rent models of choice history biases (Yu and Cohen, 2008; Zhang et al., 2014).

It is instructive to relate our results to previous studies manipulating the probability of the

occurrence of a particular category (i.e. independently of the sequence of categories) or the asym-

metry between rewards for both choices. Most of these studies explained the resulting behavioral

biases in terms of starting point shifts (Leite and Ratcliff, 2011; Mulder et al., 2012; White and Pol-

drack, 2014; Rorie et al., 2010; Gao et al., 2011; but only for decisions without time pressure, see

Afacan-Seref et al., 2018). Yet, one study with variations of evidence strength found an effect of

asymmetric target probability on accumulation bias (Hanks et al., 2011) similar to the one we here

identified for choice history. In all this previous work, biases were under experimental control: proba-

bility or reward manipulations were signaled via explicit task instructions or single-trial cues (in

humans) or block structure (in animals). By contrast, the choice history biases we studied here

emerge spontaneously and in an idiosyncratic fashion (Figure 2e), necessitating our focus on individ-

ual differences.

Our modeling addressed the question of how prior information is combined with new evidence

during decision formation (see in particular the section Dynamics of effective bias signal approxi-

mates rational combination of prior information with current evidence). But why did participants use

choice history as a prior for their decisions? In all our experiments, the sensory evidence was uncor-

related across trials – as is the case in the majority of perceptual choice tasks used in the literature.

Thus, any history bias can only reduce performance below the level that could be achieved, given

the observer’s sensitivity. It may seem irrational that people use history biases in such settings. How-

ever, real-world sensory evidence is typically stable (i.e. auto-correlated) across various timescales

(Yu and Cohen, 2008). Thus, people might (erroneously) apply an internal model of this environmen-

tal stability to randomized laboratory experiments (Yu and Cohen, 2008), which will push them

toward choice repetition or alternation (Glaze et al., 2015). Indeed, people flexibly adjust their

choice history biases to environments with different levels of stability (Glaze et al., 2015; Kim et al.,

2017; Braun et al., 2018), revealing the importance of such internal models on perceptual decision-

making. In sum, with our conclusions from the time course of the effective bias signal, these consid-

erations suggest that participants may have applied a rational strategy, but based on erroneous

assumptions about the structure of the environment.

While we found that choice history-dependent variations of accumulation bias were generally

more predictive of individual choice repetition behavior, the DDM starting point was consistently

shifted away from the previous response for a majority of participants (i.e. negative values along

x-axis of Figure 4a). This shift was statistically significant in three out or six datasets (Figure 4—fig-

ure supplement 5a), and might explain the advantage of the dual parameter model over the pure

drift-bias model in our model comparisons (Figure 3a). The starting point shift may be due to at

least two scenarios, which are not mutually exclusive. First, it might reflect a stereotypical response

alternation tendency originating from neural dynamics in motor cortex – for example, a post-move-

ment ‘rebound’ of beta-band oscillations (Pfurtscheller et al., 1996). Indeed, previous work found

that beta rebound is related to response alternation in a perceptual choice task, which precluded (in
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contrast to our tasks) motor planning during evidence accumulation (Pape and Siegel, 2016). This

stereotypical response alternation tendency (via starting point) may have conspired with the more

flexible history bias of evidence accumulation (via drift bias) to shape choice behavior. Because start-

ing point shifts will predominantly contribute to fast decisions, this scenario is consistent with the

average choice alternation tendency we observed for RTs < 600 ms (Figure 4—figure supplement

5c). Because the response alternation tendency in motor cortex is likely to be induced only by the

immediately preceding response, this scenario is also consistent with the shorter timescales we esti-

mated for the starting point effects (1.39 trials) than the drift rate effects (2.38 trials; Figure 6a,

exponential fits). Second, the starting point shift may also reflect decision dynamics more complex

than described by the standard DDM: non-linear drift biases (Figure 7—figure supplement 2, third

column) or biases in the leak of decision accumulators (Figure 7—figure supplement 3, third col-

umn). Both give rise to opposite effects on drift bias and starting point bias when fit with the stan-

dard DDM, thus yielding negative correlations between DDM starting point and drift bias estimates.

Such negative correlations were present in our data, but weak and not statistically significant (Spear-

man’s rho �0.4130 to �0.0757, combined BF10= 0.0473). It is possible that both of the scenarios dis-

cussed here conspired to yield the starting point effects observed in model comparisons and

individual parameter estimates. Future work is needed to illuminate this issue, for example through

manipulating decision speed and/or the delays between subsequent motor responses, and modeling

choice-related neural dynamics in motor cortex.

We propose that choice history biases evidence accumulation, but there are alternative scenarios.

First, it is possible that participants’ choices were due to computations altogether different from

those incorporated in the bounded accumulation models assessed here. All our models imply simple

neural accumulators with persistent activity. At least on a subset of trials, participants may make fast

guesses (Noorbaloochi et al., 2015), or engage in automatic decision processing (Servant et al.,

2014; Ulrich et al., 2015) or post-accumulation biases (Erlich et al., 2015). The decision computa-

tion may also entail noise-driven attractor dynamics (Wang, 2002; Braun and Mattia, 2010) possibly

with sudden ‘jumps’ between neural activity states (Latimer et al., 2015), instead of linear accumula-

tion to a threshold level. Even if the accumulation dynamics postulated in our models cannot be

reduced to the dynamics of single neurons, the history-dependent accumulation bias we inferred

here would constitute a valid description of the collective computational properties of the neural sys-

tem producing choice behavior. Second, within bounded accumulation models, any directed change

in the decision variable can be mimicked by some selective (i.e. asymmetric) change in one of the

decision bounds. For example, combining the DDM with a linearly collapsing bound for the favored

choice and a linearly expanding bound for the other choice has the same effect on choice fractions

and RT distributions as a drift bias. We are not aware of any empirical evidence for such asymmetric

changes in decision bounds. Decision-related cortical ramping activity seems to always reach a fixed

level just before motor response, irrespective of prior probabilities (Hanks et al., 2011) or speed-

accuracy trade-offs (Hanks et al., 2014; Murphy et al., 2016). Instead, the build-up of this activity is

biased by prior information (Hanks et al., 2011).

A plausible mechanism underlying the choice history-dependent shift in accumulation bias is a

bias of the neural representations of the sensory evidence towards (or away from) a previously

selected category (Nienborg and Cumming, 2009; St John-Saaltink et al., 2016; Urai and

Wimmer, 2016). This is precisely the ‘input bias’ scenario entailed in our best fitting model (Fig-

ure 7). The primate brain is equipped with powerful machinery to bias sensory representations in a

top-down fashion (Desimone and Duncan, 1995; Reynolds and Heeger, 2009). In the laboratory,

these top-down mechanisms have been probed by explicitly instructing subjects to shift their atten-

tion to a particular sensory feature or location. Such instructions induce biased activity states in

regions of prefrontal and parietal association cortex, which are propagated down the cortical hierar-

chy to sensory cortex via selective feedback projections, where they boost the corresponding feature

representations and suppress others (Desimone and Duncan, 1995). The same prefrontal and parie-

tal regions accumulate sensory evidence and seem to carry choice history signals. It is tempting to

speculate that choice history signals in these regions cause the same top-down modulation of sen-

sory cortex as during explicit manipulations of attention. In other words, agents’ choices might be

one factor directing their top-down attention under natural conditions, in a way analogous to explicit

attention cues in laboratory tasks. An alternative, but related possibility is that the direction of selec-

tive attention fluctuates spontaneously during the course of a perceptual choice experiment,
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preferentially sampling features supporting one choice for a streak of trials, and then switching to

sampling support for the other category. The corresponding top-down modulations would bias evi-

dence accumulation and choice in a serially correlated fashion. These ideas are not mutually exclu-

sive and can be tested by means of multi-area neurophysiological recordings combined with local

perturbations.

A growing body of evidence points to the interplay of multiple timescales for neural computation

in the cortex. One line of behavioral work has revealed effective (within-trial) evidence accumulation

over timescales ranging from a few hundred milliseconds (Kiani et al., 2008; Tsetsos et al., 2015)

to several seconds (Tsetsos et al., 2012; Wyart et al., 2012; Cheadle et al., 2014). Another

line of work, including the current study, revealed the slow accumulation of internal decision varia-

bles or external outcome information across trials (tens of seconds) to build up time-varying biases,

or priors (Sugrue et al., 2004; Abrahamyan et al., 2016; Purcell and Kiani, 2016b; Braun et al.,

2018). Relatedly, neurophysiological work on ongoing activity has inferred multiple hierarchically

organized timescales in different cortical regions (Honey et al., 2012; Murray et al., 2014;

Chaudhuri et al., 2015; Runyan et al., 2017; Scott et al., 2017). The history-dependent evidence

accumulation biases that we have uncovered here might index the interplay between these different

effective timescales, with long-timescale accumulators at higher stages biasing short-timescale accu-

mulators at intermediate stages of the cortical hierarchy.

Materials and methods

Datasets: behavioral tasks and participants
We analyzed six different datasets, four of which were previously published. These spanned different

modalities (visual or auditory), decision-relevant sensory features (motion direction, contrast, tone

presence, motion coherence), and tasks (detection or discrimination). In each dataset, the number of

participants was determined to allow for robust estimation of the original effects of interest. No par-

ticipants were excluded from the analyses.

Those tasks where the decision-relevant sensory evidence was presented until the observer gen-

erated a response were called response time (RT) tasks; those tasks where the sensory evidence was

presented for a fixed duration, and its offset cues the observer’s response, were called fixed dura-

tion (FD) tasks in line with the terminology from Mazurek et al. (2003). These two protocols have

also been termed ‘free response protocol’ and ‘interrogation protocol’ (Bogacz et al., 2006). In all

datasets, stimulus strength (i.e., decision difficulty) was kept constant, or varied systematically across

levels, within all main experimental sessions that were used for fitting the DDM.

2AFC visual motion direction discrimination task (RT)
These data were previously published (Murphy et al., 2014), and are available at https://doi.org/10.

5061/dryad.tb542. The study was approved by the ethics committee of the Leiden University Cogni-

tive Psychology department, and all subjects provided written informed consent before taking part.

Twenty-six observers (22 women and 4 men, aged 18–29) performed a motion direction (left vs.

right) discrimination task. Stationary white dots were presented on a black screen for an interval of

4.3–5.8 s. After this fixation interval, the decision-relevant sensory evidence was presented: some

percentage of dots (the ‘motion coherence’ level) moved to the left or the right. The coherence was

individually titrated to yield an accuracy level of 85% correct (estimated from a psychometric func-

tion fit) before the start of the main experiment, and kept constant afterwards. The moving dots

were presented until observers indicated their choice with a button press. After the response, the

fixation cross changed color for 700 ms to indicate single-trial feedback. Each observer performed

500 trials of the task in one session. We refer to this task as ‘Visual motion 2AFC (RT)’.

2AFC visual motion direction discrimination task (FD)
Participants and informed consent
Thirty-two participants (aged 19–35 years, 43 women and 21 men) participated in the study after giv-

ing their informed consent. The experiment was approved by the ethical review board of the Univer-

sity Medical Center Hamburg-Eppendorf (PV4714).
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Task and procedure
Observers performed a fixed duration version of the random dot motion discrimination (up vs.

down) task in the MEG scanner. White dots were displayed on a gray background screen, with a

density of 6 dots/degree2, resulting in 118 dots on the screen at each frame. The stimuli were con-

fined to a circle of 2.5˚ radius, which was placed in the lower half of the visual field at 3.5˚ from fixa-

tion. After a fixation interval of 0.75–1.5 s, random dot motion stimuli (0, 3, 9, 27 or 81% motion

coherence) were displayed for 750 ms. Signal dots moved with a speeds of 11.5 degree/s, and noise

dots were randomly displaced within the circle on each frame. We used the single-trial dot coordi-

nates to construct time courses of fluctuating external evidence (see Materials and methods section

Motion energy filtering and psychophysical kernels; Figure 7—figure supplement 1a–c). Observers

received auditory feedback 1.5–2.5 s after their response, and the ISI started 2–2.5 s after feedback.

Observed performed 1782 trials over three sessions, in which the stimulus transition probability var-

ied (0.2, 0.5 or 0.8) between blocks of 99 trials. To maximize trial counts for the non-hierarchical

leaky accumulator fits, we here collapsed across blocks. We refer to this task as ‘Visual motion 2AFC

(FD)’.

Visual motion coherence discrimination 2IFC task (FD): dataset 1
These data were previously published in Urai et al. (2017), and are available at http://dx.doi.org/10.

6084/m9.figshare.4300043. The ethics committee at the University of Amsterdam approved the

study, and all observers gave their informed consent before participation. Twenty-seven observers

(17 women and 10 men, aged 18–43) performed a two-interval motion coherence discrimination

task. They viewed two consecutive intervals of random dot motion, containing coherent motion sig-

nals in a constant direction towards one of the four diagonals (counterbalanced across participants)

and judged whether the second test interval (variable coherence) contained stronger or weaker

motion than the first reference (constant coherence) interval. After a fixation interval of 0.5–1 s, they

viewed two consecutive intervals of 500 ms each, separated by a delay of 300–700 ms. The decision-

relevant sensory evidence (i.e. the difference in motion coherence between intervals), was chosen

pseudo-randomly for each trial from the set (0.625, 1.25, 2.5, 5, 10, 20, 30%). Observers received

auditory feedback on their choice after a delay of 1.5–2.5 s. After continuing to view noise dots for

2–2.5 s, stationary dots indicated an inter-trial interval. Observers self-initiated the start of the next

trial (range of median inter-trial intervals across observers: 0.68–2.05 s). Each observer performed

2500 trials of the task, divided over five sessions. We refer to this task as ‘Visual motion 2IFC (FD)

#1’.

2IFC visual motion coherence discrimination task (FD): dataset 2
Participants and informed consent
Sixty-two participants (aged 19–35 years, 43 women and 19 men) participated in the study after

screening for psychiatric, neurological or medical conditions. All subjects had normal or corrected to

normal vision, were non-smokers, and gave their informed consent before the start of the study. The

experiment was approved by the ethical review board of the University Medical Center Hamburg-

Eppendorf (PV4648).

Task protocol
Observers performed five sessions, of which the first and the last took place in the MEG scanner

(600 trials divided over 10 blocks per session) and the three sessions in between took place in a

behavioral lab (1500 trials divided over 15 blocks per session). The task was as described above for

‘Visual motion 2IFC (FD) #1’, with the following exceptions. The strength of the decision-relevant

sensory evidence was individually titrated to an accuracy level of 70% correct, estimated from a psy-

chometric function fit, before the start of the main experiment and kept constant for each individual

throughout the main experiment. Each stimulus was presented for 750 ms. In the MEG sessions,

auditory feedback was presented 1.5–3 s after response, and an inter-trial interval with stationary

dots started 2–3 s after feedback. Participants initiated the next trial with a button press (across-sub-

ject range of median inter-trial interval duration: 0.64 to 2.52 s, group average: 1.18 s). In the train-

ing sessions, auditory feedback was presented immediately after the response. This was followed by

an inter-trial interval of 1 s, after which the next trial started. In this experiment, three sub-groups of
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observers received different pharmacological treatments prior to each session, receiving placebo,

atomoxetine (a noradrenaline reuptake inhibitor), or donepezil (an acetylcholinesterase inhibitor).

These groups did not differ in their choice history bias and were pooled for the purpose of the pres-

ent study (Figure 4—figure supplement 3). We refer to this task as ‘Visual motion 2IFC (FD) #2’.

Visual contrast yes/no detection task (RT)
These data were previously published (de Gee et al., 2014), and are available at https://doi.org/10.

6084/m9.figshare.4806559. The ethics committee of the Psychology Department of the University of

Amsterdam approved the study. All participants took part after giving their written informed con-

sent. Twenty-nine observers (14 women and 15 men, aged 18–38) performed a yes/no contrast

detection task. During a fixation interval of 4–6 s, observers viewed dynamic noise (a binary noise

pattern that was refreshed each frame, at 100 Hz). A beep indicated the start of the decision-rele-

vant sensory evidence. On half the trials, a vertical grating was superimposed onto the dynamic

noise; on the other half of trials, only the dynamic noise was shown. The sensory evidence

(signal +noise or noise-only) was presented until the observers reported their choice (’yes’, grating

was present; or ’no’, grating was absent), or after a maximum of 2.5 s. The signal contrast was indi-

vidually titrated to yield an accuracy level of 75% correct using a method of constant stimuli before

the main experiment, and kept constant throughout the main experiment. Observers performed

between 480–800 trials over 6–10 sessions. Six observers in the original paper (de Gee et al., 2014)

performed a longer version of the task in which they also reported their confidence levels and

received feedback; these were left out of the current analysis, leaving 23 subjects to be included.

We refer to this task as ‘Visual contrast yes/no (RT)’.

Auditory tone yes/no detection task (RT)
These data were previously published (de Gee et al., 2017) and are available at https://doi.org/10.

6084/m9.figshare.4806562. All subjects gave written informed consent. The ethics committee of the

Psychology Department of the University of Amsterdam approved the experiment. Twenty-four

observers (20 women and four men, aged 19–23) performed an auditory tone detection task. After

an inter-trial interval of 3–4 s, decision-relevant sensory evidence was presented: on half the trials, a

sine wave (2 KHz) superimposed onto dynamic noise (so-called TORCS; McGinley et al., 2015) was

presented; on the other half of trials only the dynamic noise was presented. The sensory evidence

was presented until the participant reported their choice button press or after a maximum of 2.5 s.

No feedback was provided. Each individual’s signal volume was titrated to an accuracy level of 75%

correct using an adaptive staircase procedure before the start of the main experiment, and kept con-

stant throughout the main experiment. Participants performed between 1320 and 1560 trials each,

divided over two sessions. We refer to this task as ‘Auditory yes/no (RT)’.

Model-free analysis of sensitivity and choice history bias
We quantified perceptual sensitivity in terms of signal detection-theoretic d’ (Green and Swets,

1966):

d0 ¼F�1ðHÞ�F�1ðFAÞ (1)

where F was the normal cumulative distribution function, H was the fraction of hits and FA the frac-

tion of false alarms. In the 2AFC and 2IFC datasets, one of the two stimulus categories was arbitrarily

treated as signal absent. Both H and FA were bounded between 0.001 and 0.999 to allow for com-

putation of d’ in case of near-perfect performance (Stanislaw and Todorov, 1999). We estimated d’

separately for each individual and, for the two datasets with varying difficulty levels, for each level of

sensory evidence.

We quantified individual choice history bias in terms of the probability of repeating a choice,

termed P(repeat), regardless of the category of the (previous or current) stimulus. This yielded a

measure of bias that ranged between 0 (maximum alternation bias) and 1 (maximum repetition bias),

whereby 0.5 indicated no bias.
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Drift diffusion model (DDM) fits
General
This section describes the general DDM, with a focus on the biasing mechanisms described in

Results and illustrated in Figure 1 (Ratcliff and McKoon, 2008). Ignoring non-decision time, drift

rate variability, and starting point variability (see below), the DDM describes the accumulation of

noisy sensory evidence:

dy¼ s � v �dtþ cdW (2)

where y is the decision variable (gray example traces in Figure 1), s is the stimulus category (coded

as -1,1), v is the drift rate, and cdW is Gaussian distributed white noise with mean 0 and

variance c2dt (Bogacz et al., 2006). In an unbiased case, the starting point of the decision

variably y 0ð Þ ¼ z, is situated midway between the two decision bounds 0 and a:

y 0ð Þ ¼ z¼ a

2
(3)

where a is the separation between the two decision bounds. A bias in the starting point is imple-

mented by an additive offset zbias from the midpoint between the two bounds (Figure 1a):

y 0ð Þ ¼ z¼ a

2
þ zbias (4)

A drift bias can be implemented by adding a stimulus-independent constant vbias, also referred to

as drift bias (Ratcliff and McKoon, 2008), to the (stimulus-dependent) mean drift (Figure 1b). This

adds a bias to the drift that linearly grows with time:

dy¼ s �vþvbiasð Þdtþ cdW (5)

We allowed both bias parameters to vary as a function of observers’ previous choice. These two

biasing mechanisms result in the same (asymmetric) fraction of choices, but they differ in terms of

the resulting shapes of RT distributions (Figure 1). In previous work, zbias and vbias have also been

referred to as ‘prior’ and ‘dynamic’ bias (Moran, 2015) or ‘judgmental’ and ‘perceptual’ bias

(Liston and Stone, 2008).

Estimating HDDM Bias parameters
We used hierarchical drift diffusion modeling as implemented in the HDDM toolbox (Wiecki et al.,

2013) to fit the model and estimate its parameters. As recommended by the HDDM toolbox, we

specified 5% of responses to be contaminants, meaning they arise from a process other than the

accumulation of evidence - for example, a lapse in attention (Ratcliff and Tuerlinckx, 2002). We fit

the DDM to RT distributions for the two choice categories, conditioned on the stimulus category for

each trial (s in Equation 2) - a procedure referred to as ‘stimulus coding’. This fitting method devi-

ates from a widely used expression of the model, where RT distributions for correct and incorrect

choices are fit (also called ‘accuracy coding’). Only the former can fit decision biases towards one

choice over the other.

First, we estimated a model without history-dependence. Overall drift rate, boundary separation,

non-decision time, starting point, and drift bias were estimated for each individual (Figure 3—figure

supplement 1). Across-trial variability in drift rate and starting point were estimated at the group-

level only (Ratcliff and Childers, 2015). For the datasets including variations of sensory evidence

strength (Visual motion 2AFC (FD) and Visual motion 2IFC (FD) #1), we separately estimated drift

rate for each level of evidence strength. This model was used to confirm that the DDM was able to

fit all datasets well, and to serve as a baseline for model comparison.

Second, we estimated three different models of history bias, allowing (i) starting point, (ii) drift or

(iii) both to vary as a function of the observer’s immediately preceding choice (thus capturing only

so-called first-order sequential effects; cf Gao et al., 2009; Wilder et al., 2009). The effect of the

preceding choice on each bias parameter was then termed its ‘history shift’. For example, for the

visual motion direction discrimination task we separately estimated the starting point parameter for

trials following ‘left’ and ‘right’ choices. The difference between these two parameters then reflected
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individual observers’ history shift in starting point, computed such that a positive value reflected a

tendency towards repetition and a negative value a tendency towards alternation. The history shift

in drift bias was computed in the same way.

HDDM regression models
We estimated the effect of up to six previous stimuli and choices on history bias using a HDDM

regression model. We first created a design matrix X with dimensions trials x 2 * lags, which

included pairs of regressors coding for previous stimuli and choices (coded as �1; 1), until (and

including) each model’s lag. Two distinct replicas of X were then used as design matrices to predict

drift bias (Xv) and starting point (Xz). Drift bias was defined as v ~ 1þ sþXv, where 1 captured an

overall bias for one choice over the other and s indicated the signed stimulus strength. Starting point

was defined as z ~ 1þ Xz, with a logistic link function 1

1þe�X.

After fitting, parameter estimates were recombined to reflect the effect of previous correct

(choice + stimuli) or error (choice – stimuli) trials. We sign-flipped the weight values for alternators

(i.e. those participants with a repetition tendency at lag one < 0.5); this makes all the panels in Fig-

ure 6 a interpretable as a change in each parameter in the direction of individual history bias.

HDDM model fitting procedures
The HDDM (Wiecki et al., 2013) uses Markov-chain Monte Carlo sampling for generating posterior

distributions over model parameters. Two features of this method deviate from more standard

model optimization. First, the Bayesian MCMC generates full posterior distributions over parameter

estimates, quantifying not only the most likely parameter value but also the uncertainty associated

with that estimate. Second, the hierarchical nature of the model assumes that all observers in a data-

set are drawn from a group, with specific group-level prior distributions that are informed by the lit-

erature (Figure 3—figure supplement 1; Wiecki et al., 2013). In practice, this results in more stable

parameter estimates for individual subjects, who are constrained by the group-level inference. Note

that we also repeated our model fits with more traditional G2 optimization (Ratcliff and Tuerlinckx,

2002) and obtained similar results (Figure 4—figure supplement 2a).

For each variant of the model, we ran 30 separate Markov chains with 5000 samples each. Of

those, half were discarded as burn-in and every second sample was discarded for thinning, reducing

autocorrelation in the chains. This left 1250 samples per chain, which were concatenated across

chains. Individual parameter estimates were then estimated from the posterior distributions across

the resulting 37500 samples. All group-level chains were visually inspected to ensure convergence.

Additionally, we computed the Gelman-Rubin R̂ statistic (which compares within-chain and between-

chain variance) and checked that all group-level parameters had an R̂ between 0.9997 and 1.0406.

Formal comparison between the different model variants was performed using the Akaike Infor-

mation Criterion (Akaike, 1974): AIC ¼ �2Lþ 2k, where L is the total loglikelihood of the model and

k denotes the number of free parameters. The AIC was computed for each observer, and summed

across them. Lower AIC values indicate a better fit, while taking into account the complexity of each

model. A difference in AIC values of more than 10 is considered evidence for the winning model to

capture the data significantly better. The conclusions drawn from AIC also hold when using the Devi-

ance Information Criterion for the hierarchical models.

Conditional bias functions
For each variant of the model and each dataset, we simulated data using the best-fitting parameters.

Specifically, we simulated 100 responses (choices and RTs) for each trial performed by the observers.

These predicted patterns for the ‘baseline model’ (without history-dependence) were first used to

compare the observed and predicted patterns of choices and RTs (Figure 3—figure supplement 2).

We used these simulated data, as well as the participants’ choices and RTs, to visualize specific

features in our data that distinguish the different biased models (Palminteri et al., 2017). Specifi-

cally, we computed conditional bias functions (White and Poldrack, 2014) that visualize choice his-

tory bias as a function of RTs. Each choice was recoded into a repetition (1) or alternation (0) of the

previous choice. We then expressed each choice as being either in line with, or against the observ-

er’s individual bias (classified into ‘repeaters’ and ‘alternators’ depending on choice repetition prob-

ability). Note that given the transformation of the data (sign-flipping the bias data for alternators in
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order to merge the two groups), the fact the average P(bias)>0.5 is trivial, and would occur for any

generative model of history bias. Conditional bias functions instead focus on the effect of choice his-

tory bias as a function of time within each trial, the shape of which distinguishes between different

bias sources (Figure 1c).

To generate these conditional bias functions, we divided each (simulated or real) observer’s RT

distribution into five quantiles (0.1, 0.3, 0.5, 0.7 and 0.9) and computed the fraction of biased

choices within each quantile. The shape of the conditional bias functions for models with z and

vbias confirm that z predominantly produces biased choices with short RTs, whereas vbias leads to

biased choices across the entire range of RTs (Figure 3b).

Motion energy filtering and psychophysical kernels
For the Visual motion 2AFC (FD) dataset, we used motion energy filtering (using the filters described

in Urai and Wimmer, 2016) to reconstruct the time-course of fluctuating sensory evidence over the

course of each individual trial, averaging over the spatial dimensions of the display (Figure 7—figure

supplement 1a, b). These single-trial traces then served as the time-resolved input to a set of

extended DDM and leaky accumulator models (Figure 7). Specifically, filtering the stimuli at 60 Hz

(the refresh rate of the LCD projector) resulted in 45 discrete samples for the 750 ms viewing period

of each trial. The first 13 samples of the motion energy filter output (first 200 ms of the viewing inter-

val) corresponded to the ‘rise time’ of the filter (Kiani et al., 2008), yielding outputs that were a

poor representation of the actual motion energy levels (see also Figure 7—figure supplement 1a).

In order to prevent those uninterpretable filter outputs from contributing, we discarded the first 15

samples (250 ms) before model fitting (see below). Using constant interpolation, we expanded the

remaining 30 samples onto 150 samples, which, given that the simulation Euler step was 5 ms (dt=

0.005), corresponded to a 750 ms long input time series. In the model descriptions below we denote

the input time series with M ¼ Mt:t 2 Tf g and T ¼ 1; 2; . . . ; 150f g.
We also used these motion energy traces to construct so-called psychophysical kernels. Within

each stimulus identity (motion direction and coherence, excluding the easiest 81% coherence trials),

we subtracted the average motion energy traces corresponding to ‘up’ vs. ‘down’ choices. The

resulting trace represents the excess motion energy that drives choices, over and above the genera-

tive stimulus coherence (Figure 7—figure supplement 1c).

Extended bounded accumulation models
General assumptions and procedures
In the 2AFC (FD) visual motion experiment participants viewed the stimulus for 0.75 s (hereafter called

‘viewing period’) and could respond only after the stimulus offset. This required specifying the input to

the evidence accumulation process. In the models described below, we used separate simulation pro-

tocols, based on different assumptions about this input. In the ‘dynamic’ protocol, where the input

was the time-varying sensory evidence from each trial, the accumulation process was assumed to start

at stimulus onset, and responses could happen during the motion viewing interval. The average activ-

ity of the accumulator(s) at stimulus offset served as input for accumulation during the post-offset

period. For fitting models using this protocol, empirical RTs were calculated relative to the stimulus

onset. Motion energy estimates were used as time-resolved input to the model.

By contrast, in the ‘default’ protocol, the motion energy fluctuations were averaged across the

viewing interval excluding the filter rise time (i.e. from 250 to 750 s after stimulus offset), and the aver-

age motion energy was then used as a single-trial drift rate for the accumulation process. In other

words, the accumulation-to-bound dynamics only took place during the post-offset period. Accord-

ingly, when fitting models with this protocol, the empirical RTs were calculated relative to stimulus off-

set. Using this protocol was necessary for replicating our basic result from the standard DDM fits: For

the ‘dynamic’ protocol, any starting point bias would turn into a drift bias because it would feed into

accumulation process after stimulus offset, precluding the comparison between the two forms of bias.

Thus, we used only the default protocol for the standard DDM fits, which aimed at differentiating

between starting point and accumulation biases. For comparison, we also used the same simulation

protocol when fitting an extended DDM with a both a constant and a ramping component in the drift

bias (see below). We then switched to the more realistic dynamic protocol for the subsequent models

with more complex dynamics.
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The AIC scores of models using the default protocol were generally lower (i.e. better) compared to

the respective models that used the dynamic protocol. This difference is likely due to the fact that the

dynamic protocol is more constrained by using as input to the models the exact motion energy traces

rather than just their mean for each trial. AIC is blind to such latent flexibility differences that do not

map onto differences in number of parameters. Thus, AIC may have ‘under-penalized’ models in the

default protocol relative to those in the dynamic protocol.

In all models and in both simulation protocols, model predictions were derived via Monte Carlo

simulation. The variance of the processing noise was set to c2 ¼ 1. One simulation time-step corre-

sponded to 5 ms (Euler step, dt ¼ 0:005). Finally, in the standard protocol the accumulation process

could last for a maximum of 300 time-steps (or 1500 ms) and in the dynamic protocol for a maxi-

mum of 450 time-steps (or 2250 ms). After these time points, the process timed-out and a

response was assigned to the alternative according to the state of the diffusion variable (e.g. in the

standard DDM right if y> a
2
and left if y< a

2
).

DDM variants with default simulation protocol
For all basic DDM variants described in this section, we used the default simulation protocol: the

time-averaged motion energy for each trial provided the drift-rate (v) driving the subsequent diffu-

sion process. DDM models had five generic parameters: threshold (a), noise scaling (g), non-deci-

sion time (Ter), drift-rate variability (sv) and starting-point variability (sz).

Naı̈ve DDM. We denote with ythe state of the diffusion variable. At time 0:

y 0ð Þ ¼ z¼ a

2
þU �sz; szð Þ (6)

where U was a uniform random variable (rectangular distribution) in the �sz; szð ) range. The evolution

of y was described by:

dy ¼ g � €v � dt þ cdW (7)

Above, g was the scaling parameter that controls the signal-to-noise-ration (given that c is fixed

at 1). The variable €v was the effective drift-rate, that is a Gaussian variable with N m; sz2ð Þ where

sz was the drift-rate variability and m was the average of the motion energy on each trial. A response

was generated when the decision variable y exceeded a (right choice) or surpassed 0 (left choice).

The moment that either of these boundaries was crossed plus a non-decision time Ter, determined

the per-trial RT.

Starting point DDM. This model was the same as the naı̈ve model but with an extra parameter

zbias such that at time 0:

y 0ð Þ ¼ a

2
þU �sz; szð Þþ zbias � prev (8)

The variable prev here encoded the previous choice (1: right, -1: left). If zbias was positive the

model implemented repetition and if negative it implemented alternation.

Drift bias DDM. Same as the naı̈ve model but with an extra biasing parameter vbias such that:

dy¼ g � €vþ vbias � prevð Þdtþ cdW (9)

Hybrid DDM. This version combined the starting point DDM and drift bias DDM using two bias-

ing parameters.

Simple Ramping DDM. This model was the same as the naı̈ve model but with an extra parameter

sramp such that:

dy¼ g � €vþ sramp � t � prev
tmax

� �

dtþ cdW (10)

where t denoted time elapsed in terms of Monte-Carlo time-steps and tmax = 300 time-steps, which

was the maximum duration that a given trial could run for.

Hybrid Ramping DDM. Same as the naı̈ve model but with 2 extra parameters sramp and sconstant

such that:
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dy¼ g � €vþ sconstant þ
sramp � t
tmax

� �

prev

� �

�dtþ cdW (11)

This model thus implemented a drift bias that is nonzero at the start of the trial (sconstant), and also

linearly increases until the end of the trial (with slope sramp).

Extended models with dynamic simulation protocol
For all subsequently described models, we used the dynamic simulation protocol (see section Gen-

eral Assumptions and Procedures), with the motion energy time courses serving as input to the accu-

mulation process. To illustrate the details of the dynamic protocol, we next describe how the

decision variable was updated in the case of the naı̈ve DDM. The decision variable during the view-

ing period evolved according to the following differential equation:

dy tð Þ ¼ g �Mt �dtþ cdW (12)

where Mt was the value of the input signal at time t. Following stimulus offset (at t = T), after 150

time-steps, the diffusion variable carried on being updated as follows:

dy tð Þ ¼ y Tð Þ
T

þ cdW (13)

In other words, after the stimulus disappeared, accumulation was driven by the average evidence

accumulated up to the point of stimulus offset. This post-stimulus accumulation could continue for a

maximum of 300 extra time-steps, at which point the process timed-out.

Simple and Hybrid Ramping DDM. This model was the same as the above Simple and Hybrid

Ramping DDMs, only now fit by using the dynamic simulation protocol (i.e. the ramping drift-crite-

rion bias is applied for the viewing period only and, following stimulus offset, the decision variable is

updated according to Equation 13).

Dynamic DDM with collapsing bounds
In the ‘collapsing bounds’ DDM models, a response was generated when the diffusion variable (y)

exceeds bup (right choice) or surpasses bdown (left choice). The two thresholds, bup and bdown, vary over

time as follows:

bup tð Þ ¼ a� a
t

tþ c

�

�

�

�

�

�

�

�

a

a=2

(14.1)

bdown tð Þ ¼ a
t

tþ c

�

�

�

�

�

�

�

�

a=2

0

(14.2)

In the above, the notation xj jmaxmin indicates that x was clamped such that x2 min;max½ �.
The moment that either of these boundaries was reached, plus a non-decision time Ter, deter-

mined the per-trial RT. The dynamic DDM model had five basic parameters: threshold initial value

(a), threshold collapse rate (c), noise scaling (g), non-decision time (Ter), and starting-point variability

(sz).

Starting point dynamic DDM
Here, the state of the diffusion variable was initialized according to Equation 8. Thus, the starting

point model had 6 free parameters (the five basic ones plus the starting point bias, zbias).

Drift-bias dynamic DDM
The diffusion variable at time 0 was initialized according to Equation 8. Also, the diffusion variable

in the viewing period was not updated according to Equation 9 but according to:

dy tð Þ ¼ g �Mt þ vbias � prevð Þ �dtþ cdW (15)

The drift-bias model had the five basic parameters plus the drift-bias parameter (vbiasÞ: Finally, the
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hybrid dynamic DDM had two biasing parameters (zbias and vbias) and overall seven free parameters.

The diffusion variable was initialized according to Equation 8 and evolved in the viewing period

according to Equation 12 and in the post-stimulus period according to Equation 13.

Leaky Accumulator Models – General
The leaky accumulator model was based on models described before (Busemeyer and Townsend,

1993; Zhang and Bogacz, 2010), constituting an extension of the DDM:

dy¼ ðs �vþl �yÞdtþ cdW (16)

where the rate of change of y now also depends on its current value, with a magnitude controlled by

the additional parameter l, the effective leak which reflects the time constant of the accumulation

process.

We defined three dynamic variants (c.f. dynamic DDM above) of the leaky accumulator model in

order to account for history biases. These different biasing mechanisms were further crossed with

two different bound regimes: static or collapsing bounds, as described for the DDM above.

Leaky Accumulator with Starting Point Bias
Here, the diffusion variable was initiated according to Equation 8. During the viewing period, it was

updated according to:

dyðtÞ ¼ ðl � yðtÞþ g �MtÞ �dtþ cdW (17.1)

After stimulus offset, accumulation continued according to:

dyðtÞ ¼ l � yðtÞ þ yðTÞ
T

þ cdW (17.2)

Leaky Accumulator with Input Bias
Here, the diffusion variable was initiated according to Equation 6. The evolution of the decision vari-

able during the viewing period was described by:

dyðtÞ ¼ ðl �yðtÞþ g �Mtþ vbias �prevÞ �dtþ cdW (18)

After stimulus offset accumulation continued according to Equation 17.2. Responses were deter-

mined by a static threshold crossing mechanism, as in the standard DDM models described above.

The third leaky accumulator model we defined, the l-bias model, accounted for history biases by

introducing an asymmetry in the dynamics of evidence accumulation. In this model, we followed a

different implementation in order to enable biasing the effective leak (l) parameter: we reformulated

the model to describe two separate accumulators that integrate the sensory evidence. We define

the diffusion variable as y ¼ yA � yB, with yA and yB being two independent accumulators coding

for the right and left choice. The two accumulators were initialized as follows:

yA 0ð Þ ¼U �sz; szð Þ (19.1)

yB 0ð Þ ¼ 0 (19.2)

Starting point variability was thus applied only to one accumulator, which was equivalent to

applying this variability on their difference (diffusion variable y).

During the viewing period the two accumulators were updated according to:

dyAðtÞ ¼ ½lA �yAðtÞ þ g�fAðMtÞ� �dt þ
cdW

ffiffiffi

2
p (20.1)

dyBðtÞ ¼ ½lB � yBðtÞ þ g�fBðMtÞ� �dt þ
cdW

ffiffiffi

2
p (20.2)
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The variance of the processing noise applied to each accumulator was divided by two such as the

processing variance of the accumulators’ difference (variable y) is c2, as in the DDM.

The functions fA and fB were threshold linear functions, with fA setting negative values to 0 and

fB setting positive values to 0. Specifically:

fA xð Þ ¼
x; if x>0

0; if x� 0

�

(20.3)

fB xð Þ ¼
0; if x>0

�x; if x� 0

�

(20.4)

Thus, the yA accumulator ’listened’ only to the negative values of the input stream while the yB

only to positive values. The effective leak parameters for each accumulator were defined as follows:

lA ¼ lþ fAðprevÞ �lbias (20.5)

lB ¼ lþ fBðprevÞ �lbias (20.6)

Leaky Accumulator with Static Bounds
A response was initiated when the difference between the two accumulators (y) exceeded a positive

threshold +a (right choice) or surpassed a negative threshold –a (left choice). These leaky accumula-

tor models had one biasing parameter each as well as the following five basic parameters: threshold

value (a), effective leak (l), noise scaling (g), non-decision time (Ter), and starting-point variability (sz).

Leaky Accumulator with Collapsing Bounds
We implemented versions of the leaky accumulator models described above using collapsing

bounds. For the input and starting point bias models, the time-varying bounds are described in

Equations 14.1 and 14.2. For the l bias model, collapsing bounds had the same functional form

but their asymptote was set to 0 (mirroring the fact that in this model the neutral point of the

y ¼ yA � yB decision variable was at 0, rather than at a/2 as in all other models involving a single

accumulator):

bup tð Þ ¼ a� a
t

tþ c

�

�

�

�

�

�

�

�

a

0

(21.1)

bdown tð Þ ¼ a
t

tþ c
� a

�

�

�

�

�

�

�

�

0

�a

(21.2)

Model fitting procedures
We fit the extended models using a Quantile Maximal Likelihood (QMPE) approach. Under this

approach, empirical RT values are classified into bins defined by the 0.1, 0.3, 0.5, 0.7 and 0.9 quan-

tiles of the RT distribution (six bins overall). RT quantiles were derived separately for the various

coherence levels. We excluded the 81% coherence trials and pooled together the 0% and 3% coher-

ence trials as RT quantiles in these trials were not distinguishable. This resulted in quantiles for each

of three difficulty levels (0% and 3%, 9% and 27%), for each of the two responses (correct/error), and

for two history conditions (motion direction in current trial consistent or inconsistent with the previ-

ous response), leading to 6 bins x 3 coherence x 2 response x two history = 72 bins per participant.

Denoting the number of empirical observations in a particular bin k by nk and the probability pre-

dicted by the model to derive a response in a particular bin k by Pk, the likelihood L of the data

given the model is defined as:

L¼
k

Y

P
nk
k (22)

We applied a commonly used multi-stage approach to fit our simulation-based models (e.g.

Teodorescu et al., 2016). First, each fitting session started by generating 20 random parameter

sets, drawn from a uniform distribution bounded by the range of each parameter. To improve the
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precision of likelihood estimates, we generated 10 synthetic trials for each experimental trial, repli-

cating the trials for a given participant. We then computed the likelihood of the model parameters

given the data. The parameter set with the best fit out of the initial 20 was used as the starting point

for a standard optimization routine (fminsearchbnd function in Matlab, which implements a con-

strained version of the Nelder-Mead simplex algorithm). In total, we ran 50 of such fitting sessions,

each with a different random seed. Second, we chose the best-fitting parameter set from each of

the 50 sessions and recomputed the likelihood while replicating 20 synthetic trials for each experi-

mental trial. Third, the five best-fitting of these 50 sets were used as starting points fminsearchbnd,

which further refined the local minima of the fit. Fourth, we recalculated the likelihood of the single

best parameter set in simulations with 30 synthetic trials for each experimental trial (see Equa-

tions 6). For each model f , AIC values were calculated at the group level:

AICf ¼ �2

X

N

S

InðLsÞ þ 2mf (23)

where N is the total number of participants and s is the participants index. Ls denotes the maximum

likelihood estimate for each participant. Finally, mf is the number of free parameters for a given

model f .

Effective bias signal
We calculated the effective bias signal (as in Hanks et al., 2011) for the winning leaky accumulator

model with collapsing bounds (Figure 7d). We assumed that the current choice is biased in the

direction of the previous choice (repetition bias). We arbitrarily set the previous choice

to ‘right’ (prev = 1), which means that the biasing mechanisms pushes the decision variable closer to

the upper boundary. In both models, the effective bias signal at time t was obtained by dividing the

value of the cumulative bias signal by the value of the upper bound on that moment.

We took the average of the absolute input bias parameter, so as to emulate a repetition bias.

Participants were divided in two groups based on the sign of the fitted parameter l. We calculated

the effective bias signal in two instances: a) by averaging parameters across participants with l > 0,

and b) by averaging parameters across participants with l < 0. Because the time courses were very

similar in these two cases, in Figure 6d we show the average of the two effective bias signals.

Model simulations
We simulated various biasing mechanisms within the frameworks of the DDM and the leaky accumu-

lator models. Per biasing mechanism, we simulated 100K traces in timesteps of 10 ms using Equa-

tions 2 (DDM) and Equation 18 (leaky accumulator).

For the DDM simulations (Figure 7—figure supplement 3), the main parameters were: boundary

separation = 1; drift rate = 1; non-decision time = 0.1; starting point = 0.5 (expressed as a fraction

of the boundary separation); drift bias = 0; drift rate variability = 0.5. We simulated three levels of

starting point bias (0.56, 0.62 and 0.68), three levels of constant drift bias (0.2, 0.5 and 0.8), three

levels of a time-dependent linear increase in drift bias (1.5/s, 2.5/s and 3.5/s), three levels of constant

drift bias (0.2, 0.5 and 0.8) in combination with hyperbolically collapsing bounds (given by Equa-

tion 16 and using c = 3), and three levels of one time-dependent collapsing and one expanding

bound: 0.2/s, 0.5/s and 0.8/s.

For the leaky accumulator simulations (Figure 7—figure supplement 2), the main parameters for

each accumulator were: input = 1; boundary = 0.42; l = -2.5; starting point = 0; input bias = 0. The

negative l’s determined that the accumulators were self-excitatory in nature (as opposed to leaky).

We choose this to match the primacy effects observed in the data (Figure 7—figure supplement

1d). We simulated three levels of starting point bias (0.05, 0.10 and 0.15), three levels of input bias

(0.2, 0.5 and 0.8), and three levels of l-bias between the two accumulators: (-3 vs -2, -4 vs -1, and -5

vs 0).

We then fit DDM models separately to each of the simulated datasets and fit the parameters

boundary separation, drift rate, non-decision time, starting point, drift bias and drift rate variability.
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Statistical tests
We quantified across-subject correlations between P(repeat) and the individual history components

in DDM bias parameter estimates using Spearman’s rank correlation coefficient �. The qualitative

pattern of results does not depend on the choice of a specific correlation metric. Even though indi-

vidual subject parameter estimates are not independent due to the hierarchical nature of the HDDM

fit, between-subject variance in parameter point estimates can reliably be correlated to an external

variable - in our case, P(repeat) - without inflation of the false positive rate (Katahira, 2016). The dif-

ference between two correlation coefficients that shared a common variable, and its associated

p-value, was computed using Steiger’s test (Steiger, 1980).

We used Bayes factors to quantify the strength of evidence across our different datasets. We first

computed the Bayes factor for each correlation (between P(repeat) and the history shift in starting

point, and between P(repeat) and the history shift in drift bias) (Wetzels and Wagenmakers, 2012).

We then multiplied these Bayes factors across datasets to quantify the total evidence in favor or

against the null hypothesis of no correlation (Scheibehenne et al., 2016). BF10 quantifies the evi-

dence in favor of the alternative versus the null hypothesis, where BF10 = 1 indicates inconclusive evi-

dence to draw conclusions from the data. BF10 <1/10 or >10 is taken to indicate substantial

evidence for H0 or H1 (Kass and Raftery, 1995).

Data and code availability
All behavioral data, model fits and analysis code are available under a CC-BY 4.0 license at https://

doi.org/10.6084/m9.figshare.7268558. Analysis code is also available on GitHub (https://github.

com/anne-urai/2018_Urai_choice-history-ddm; copy archived at https://github.com/elifesciences-

publications/2018_Urai_choice-history-ddm; Urai and de Gee, 2019).
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