TY - JOUR TI - Combinations of Spok genes create multiple meiotic drivers in Podospora AU - Vogan, Aaron A AU - Ament-Velásquez, S Lorena AU - Granger-Farbos, Alexandra AU - Svedberg, Jesper AU - Bastiaans, Eric AU - Debets, Alfons JM AU - Coustou, Virginie AU - Yvanne, Hélène AU - Clavé, Corinne AU - Saupe, Sven J AU - Johannesson, Hanna A2 - Rokas, Antonis A2 - Tautz, Diethard A2 - Zanders, Sarah E VL - 8 PY - 2019 DA - 2019/07/26 SP - e46454 C1 - eLife 2019;8:e46454 DO - 10.7554/eLife.46454 UR - https://doi.org/10.7554/eLife.46454 AB - Meiotic drive is the preferential transmission of a particular allele during sexual reproduction. The phenomenon is observed as spore killing in multiple fungi. In natural populations of Podospora anserina, seven spore killer types (Psks) have been identified through classical genetic analyses. Here we show that the Spok gene family underlies the Psks. The combination of Spok genes at different chromosomal locations defines the spore killer types and creates a killing hierarchy within a population. We identify two novel Spok homologs located within a large (74–167 kbp) region (the Spok block) that resides in different chromosomal locations in different strains. We confirm that the SPOK protein performs both killing and resistance functions and show that these activities are dependent on distinct domains, a predicted nuclease and kinase domain. Genomic and phylogenetic analyses across ascomycetes suggest that the Spok genes disperse through cross-species transfer, and evolve by duplication and diversification within lineages. KW - Podospora KW - selfish genetic element KW - spore killer KW - genomic conflict KW - fungi KW - gene drive JF - eLife SN - 2050-084X PB - eLife Sciences Publications, Ltd ER -