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Abstract Members of the SAR11 order Pelagibacterales dominate the surface oceans. Their

extensive diversity challenges emerging operational boundaries defined for microbial ’species’ and

complicates efforts of population genetics to study their evolution. Here, we employed single-

amino acid variants (SAAVs) to investigate ecological and evolutionary forces that maintain the

genomic heterogeneity within ubiquitous SAR11 populations we accessed through metagenomic

read recruitment using a single isolate genome. Integrating amino acid and protein biochemistry

with metagenomics revealed that systematic purifying selection against deleterious variants

governs non-synonymous variation among very closely related populations of SAR11. SAAVs

partitioned metagenomes into two main groups matching large-scale oceanic current

temperatures, and six finer proteotypes that connect distant oceanic regions. These findings

suggest that environmentally-mediated selection plays a critical role in the journey of cosmopolitan

surface ocean microbial populations, and the idea ‘everything is everywhere but the environment

selects’ has credence even at the finest resolutions.

DOI: https://doi.org/10.7554/eLife.46497.001

Introduction
The SAR11 order Pelagibacterales (Thrash et al., 2011; Ferla et al., 2013) is one of the most ubiqui-

tous free-living lineages of heterotrophic bacteria in the world’s oceans (Giovannoni et al., 1990;

Morris et al., 2002; Carlson et al., 2009; Eiler et al., 2009; Schattenhofer et al., 2009;

Treusch et al., 2009). Successful cultivation efforts and single amplified genomes from the environ-

ment have led to studies revealing their critical role in marine carbon cycling (Rappé et al., 2002;

Giovannoni et al., 2005; Stingl et al., 2007; Oh et al., 2011; Tsementzi et al., 2016; White et al.,

2019), and environmental sequencing surveys have offered detailed insights into the ecology of this

ancient branch of life in aquatic environments across the globe (Zinger et al., 2011; Brown et al.,

2012).

The evolution of SAR11 is an active area of research (Giovannoni, 2017) that is critically impor-

tant to understanding the determinants of its remarkable ability to maintain abundant populations in

the global ocean. The evolutionary origins of SAR11 and thus its precise placement in the Tree of

Life is debated (Thrash et al., 2011; Rodrı́guez-Ezpeleta and Embley, 2012; Ferla et al., 2013;

Viklund et al., 2013), and our understanding of the evolutionary processes that define the biogeog-

raphy of SAR11 cells is not complete. At the level of major SAR11 clades, previous studies have
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attributed markedly distinct patterns of distribution in the global ocean to both niche-based

(Brown et al., 2012; Eren et al., 2013a) and neutral processes (Manrique and Jones, 2017). At the

level of individual populations, a key simulation by Hellweger et al. (2014) showed that the intra-

population sequence divergence that reflects the geographic patterns of distribution for SAR11 cells

could emerge solely as a function of ocean currents, without selection (Hellweger et al., 2014).

Between the extremes of inter-clade and intra-population diversity lies a wealth of variation that

potentially can yield insights into the ecological and genetic forces that determine genomic diversity

and fitness between closely-related, naturally occurring SAR11 populations.

High-throughput sequencing of metagenomes provides access to genome-wide heterogeneity

within environmental populations (Simmons et al., 2008), and current computational strategies can

reveal associations between ecological parameters and microdiversity patterns at various levels of

resolution (Eren et al., 2015; Scholz et al., 2016; Nayfach et al., 2016; Costea et al., 2017;

Truong et al., 2017). However, SAR11 poses multiple challenges for such investigations, including

their remarkable intra-population genomic diversity and the limited success of reconstructing SAR11

genomes from metagenomic data. Comprehensive investigations of the genetic contents of naturally

occurring microbial populations (see Denef, 2018) for a review) often rely on population genomes

directly reconstructed from metagenomes (Simmons et al., 2008; Bendall et al., 2016;

Anderson et al., 2017; Garcia et al., 2018). While advances in genome-resolved metagenomics

have made microbial clades more accessible without cultivation (Spang et al., 2015; Brown et al.,

2015; Anantharaman et al., 2016), reconstructing SAR11 genomes from the surface ocean remains

a difficult endeavor, as evident in recent comprehensive surveys of metagenome-assembled

genomes (MAGs) from seawater samples from around the globe (Tully et al., 2018; Delmont et al.,

2018). In the absence of population genomes recovered directly from the environment, genomes

from isolates can also offer insights into environmental populations through genome-wide recruit-

ment analyses in which short metagenomic reads are aligned to a reference (Denef, 2018).

Using metagenomic read recruitment to investigate the structure of environmental populations is

confounded by the challenge of defining the boundaries of microbial populations. Without an estab-

lished species concept in microbiology, defining units of microbial diversity and their boundaries is a

significant challenge (see Shapiro, 2018 and Cohan, 2019 for discussions). Nevertheless, from analy-

ses of isolated microbial strains with formal taxonomic descriptions, a genome-wide average nucleo-

tide identity (gANI) cutoff of 95% emerged as an operational delineation of species

(Konstantinidis and Tiedje, 2005; Varghese et al., 2015) and was confirmed in a recent analysis of

eight billion pairwise comparisons of whole genomes (Jain et al., 2018). Both gANI calculations

using complete genomes, as well as the average nucleotide identity of metagenomic short reads

(ANIr) recruited from environmental metagenomes using reference genomes, show an interesting

discontinuity among sequence-discrete populations at sequence identity levels between 80% and

90–95% (Konstantinidis and DeLong, 2008; Caro-Quintero and Konstantinidis, 2012; Jain et al.,

2018). Regardless of their theoretical significance, these cutoffs are essential for multiple practical

purposes, such as the identification and subsequent exclusion of metagenomic reads that originate

from non-target environmental populations, to avoid inflating variants arising from contaminating

non-specific reads in microbial population genetics studies.

Interestingly, the boundaries of environmental SAR11 populations appear to not comply with the

95% ANIr cutoff. For instance, Tsementzi et al. (2016) observed substantial sequence diversity

within sequence-discrete SAR11 subclades in the environment, and suggested that an ANIr as low as

92% would be required to adequately define the boundaries of the SAR11 populations recovered in

their study (Tsementzi et al., 2016). These findings are consistent with a comprehensive study of

isolate genomes and marine metagenomes by Nayfach et al. (2016), which suggested that SAR11

is one of the most genetically heterogeneous marine microbial clades (Nayfach et al., 2016). The

substantial sequence diversity within environmental SAR11 populations not only explains the

absence of SAR11 population genomes in genome-resolved metagenomics studies, but also chal-

lenges conventional approaches to the study of population genetics in microorganisms. For instance,

the multiple occurrence of single-nucleotide variants in individual codon positions would render

commonly used computational strategies that classify synonymous and non-synonymous variations

based on independent nucleotide sites (such as in Schloissnig et al., 2013; Bendall et al., 2016)

unfeasible. Despite these challenges, SAR11, with its ubiquity in surface seawater samples, extensive
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diversity in sequence space, and unique evolutionary history, remains one of the exciting puzzles of

contemporary microbiology.

Here we investigated the evolutionary processes that maintain genetic diversity within a natural

SAR11 lineage accessible through a single isolate genome that recruited more than 1% of surface

ocean metagenomic reads from a global dataset. Using single-amino acid variants, we were able to

(1) delineate multiple proteotypes whose distributions were more closely linked to large-scale oce-

anic current temperatures than they were to geographic proximity, and (2) resolve positive and neg-

ative selection mediated by temperature and its co-variables. Our findings suggest that

environmentally mediated selection, rather than neutral processes, dominate the biogeographic par-

titioning of SAR11 at fine scales of taxonomic resolution. Our study also offers new computational

approaches to characterize variation within complex microbial populations, including additional

means to integrate amino acid and protein biochemistry into microbial population genetics.

Results and discussion
To find the most appropriate SAR11 isolate genome to study the population genetics of naturally

occurring SAR11, we used the complete genomes of 21 SAR11 isolates in a competitive recruitment

of short reads from 103 metagenomes. Most of these metagenomes were from the TARA Oceans

Project (Sunagawa et al., 2015), and correspond to 93 stations across four oceans and two seas.

We also included an additional 10 metagenomes from the Ocean Sampling Day Project (Kopf et al.,

2015) to cover high-latitude areas of the Northern hemisphere. All metagenomes correspond to

small planktonic cells (0.2–3 mm in size) from the surface (0–15 meters depth; n = 71) and deep chlo-

rophyll maximum (17–95 meters depth; n = 32) layers of the water column (Supplementary file 1a).

The isolates we used belonged to SAR11 subclades Ia.1 (n = 6), Ia.3 (n = 11), II (n = 1), IIIa (n = 2)

and the related alphaproteobacterium Va (n = 1) (Supplementary file 1b), which collectively

recruited 1,029,716,339 reads from all metagenomes, or 3.3% of the dataset (Supplementary file

1c).

The metapangenome of SAR11
To investigate associations between ecology and gene content of SAR11 lineages, we first per-

formed a pangenomic analysis in conjunction with read recruitment from the metagenomic data.

The pangenome of SAR11 genomes consisted of all 29,719 genes grouped into 6175 gene clusters

(Supplementary file 1d). The clustering of genomes based on shared gene clusters

(Supplementary file 1e) matched that of the previously described phylogenetic clades (Grote et al.,

2012) (Figure 1A; an interactive version of which is available at http://anvi-server.org/p/4Q2TNo).

The SAR11 pangenome across metagenomes (i.e., the SAR11 metapangenome) revealed distinct

distribution patterns for each clade within SAR11 (Figure 1A). Clade Ia recruited the most reads

compared to other clades (Supplementary file 1b), consistent with previous studies that found this

clade to be highly abundant in surface seawater (Field et al., 1997; Brown et al., 2012; Eren et al.,

2013a; Manrique and Jones, 2017). Gene clusters divided clade Ia into two main clusters corre-

sponding to the high-latitude subclade Ia.1 and the low-latitude subclade Ia.3 (Figure 1A). While all

high-latitude genomes displayed a bi-polar geographic distribution in the metagenomic dataset,

gene clusters in low-latitude genomes revealed multiple sub-groups that also showed different pat-

terns of geographic distribution (Figure 1A). This emphasized the need to further refine subclade

1a.3, in which each genome pair had over 98.6% sequence identity at the 16S rRNA gene level

(Supplementary file 1f). Our consideration of geographical co-occurrence patterns, phylogenomic

characteristics, and pangenomic properties in this metapangenome revealed six subclades within

1a.3 with cultured representatives (Figure 1A, also see Supplementary file 1g for gANI estimates

between SAR11 genomes). We tentatively name them SAR11 subclade 1a.3.I (HTCC7211,

HTCC7214 and HTCC7217; gANI of >93% and 16S rRNA gene identity of >99.4%), 1a.3.II (HIMB5),

1a.3.III (HIMB4 and HIMB1321; gANI of 94.8% and 16S rRNA gene identity of 100%), 1a.3.IV

(HTCC8051 and HTCC9022; gANI of 86.9% and 16S rRNA gene identity of 100%), 1a.3.V (HIMB83)

and 1a.3.VI (HIMB122 and HIMB140; gANI of 94.6% and 16S rRNA gene identity of 99.7%). Overall,

the refinement of SAR11 subclades reveals a striking agreement between phylogeny, pangenome,

and the ecology of the members of the SAR11 clade Ia.
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Figure 1. The SAR11 metapangenome. Panel A describes the pangenome of 21 SAR11 isolate genomes based on the occurrence of 6175 gene

clusters, in conjunction with their phylogeny (clade level) and relative distribution of recruited reads in 103 metagenomes ordered by latitude from the

North Pole to the South Pole (top right heat map). The relative distributions were displayed for a minimum value of 0.1% and a maximum value of 1%.

The layer named ‘Core 1a.3.V genes’ displays the occurrence of the 799 core 1a.3.V genes (in green) and those found in HIMB83 but not in the 1a.3.V

Figure 1 continued on next page
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A remarkably abundant and widespread SAR11 lineage at low latitudes
While Ia.3 was the most abundant SAR11 subclade in our dataset, the new subclades we defined in

this group differed remarkably in their competitive recruitment of short reads from metagenomes

(Figure 1A, Supplementary file 1b). For example, while the least abundant subclade (1a.3.II; repre-

sented by HIMB5) recruited 22.6 million reads, the most abundant one (1a.3.V; represented by

HIMB83), recruited 390.9 million reads, or 1.18% of the entire metagenomic dataset

(Supplementary file 1b). For perspective, this is roughly two times more reads than the most abun-

dant Prochlorococcus isolate genome recruited from the same dataset (Delmont and Eren, 2018)

(Supplementary file 1h). Strain HIMB83 contains a 1.4 Mbp genome with 1470 genes, and was iso-

lated from coastal seawaters off Hawai’i, USA. But it also recruited large numbers of reads from loca-

tions that were distant to the source of isolation (Supplementary file 1c). The gANI between

HIMB83 and the most similar genome in our dataset, HIMB122 (1a.3.VI) was 82.6%, and the remark-

able abundance of HIMB83 has also been recognized by others (Brucks, 2014; Nayfach et al.,

2016). To the best of our knowledge, 1a.3.V is the most abundant and widespread SAR11 subclade

in the euphotic zone of low-latitude oceans and seas.

Although it is a member of the subclade 1a.3.V, the genomic context HIMB83 provides does not

exhaustively describe the gene content of all members of 1a.3.V. Nevertheless, it gives access to the

core 1a.3.V genes through read recruitment. To identify core 1a.3.V genes, we used a conservative

two-step filtering approach. First, we defined a subset of the 103 metagenomes within the main eco-

logical niche of 1a.3.V using genomic mean coverage values (Supplementary file 1c). Our selection

of 74 metagenomes in which the mean coverage of HIMB83 was >50X encompassed three oceans

and two seas between �35.2˚ and +43.7˚ latitude, and water temperatures at the time of sampling

between 14.1˚C and 30.5˚C (Figure 1—figure supplement 1, Supplementary file 1i). We then

defined a subset of HIMB83 genes as the core 1a.3.V genes if they occurred in all 74 metagenomes

and their mean coverage in each metagenome remained within a factor of 5 of the mean coverage

of all HIMB83 genes in the same metagenome. This criterion accounted for biological characteristics

influencing coverage values in metagenomic surveys of the surface ocean such as cell division rates

and variations in coverage as a function of changes in GC-content throughout the genomic context.

Figure 1—figure supplement 1 displays the coverage of all HIMB83 genes across all metagenomes,

and Supplementary file 1j reports underlying coverage statistics. While the 799 genes that met

these criteria systematically occurred within the niche boundaries of 1a.3.V, 40% of the remaining

671 HIMB83 genes that were filtered out were present in five or fewer metagenomes and coincided

with hypervariable genomic loci (Figure 1—figure supplement 1). Hypervariable genome regions

are common features of surface ocean microbes (Coleman et al., 2006; Zaremba-

Niedzwiedzka et al., 2013; Kashtan et al., 2014; Delmont and Eren, 2018) that are not readily

addressed through metagenomic read recruitment but do influence pangenomic trends. Here, less

than 10% of gene clusters unique to HIMB83 were among core 1a.3.V genes (Figure 1A), indicating

HIMB83’s unique genes are mostly accessory to the members of 1a.3.V. In contrast, more than 80%

of gene clusters that were core to the 21 SAR11 genomes matched to the core 1a.3.V genes. The

overlap between environmental core genes of 1a.3.V revealed by the metagenomic read recruitment

and the genomic core of SAR11 revealed by the pangenomic analysis of isolate genomes suggests

that these genes represent a large fraction of the 1a.3.V genomic backbone (Figure 1A). Core 1a.3.

V genes recruited on average 1.25% of reads in the 74 metagenomes (Figure 1B,

Supplementary file 1j). The broad geographic prevalence of core 1a.3.V genes represents a unique

opportunity to study the population genetics of an abundant marine microbial subclade across dis-

tant geographies.

Figure 1 continued

lineage (in purple). Panel B describes the relative distribution of reads the 799 core 1a.3.V genes recruited across surface metagenomes from TARA

Oceans.

DOI: https://doi.org/10.7554/eLife.46497.002

The following figure supplement is available for figure 1:

Figure supplement 1. Distribution and diversity of the core 1a.3.

DOI: https://doi.org/10.7554/eLife.46497.003
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SAR11 subclade 1a.3.V maintains a substantial amount of genomic
heterogeneity
To investigate the amount of genomic heterogeneity within 1a.3.V, we first studied individual short

reads that the HIMB83 genome recruited from metagenomes. The percent identity of reads that

matched to the 799 core 1a.3.V genes ranged from 88% to 100% (Figure 2), which is considerably

more diverse than those observed in similar reference-based metagenomic studies

(Konstantinidis and DeLong, 2008; Tsementzi et al., 2016; Meziti et al., 2019). Notably, we also

observed similar trends for the other SAR11 genomes included in this study (Figure 2—figure sup-

plement 1), suggesting that the relatively high sequence diversity observed among core 1a.3.V

genes may be a characteristic shared with other SAR11 lineages in the surface ocean.

Figure 2. Statistics of recruited reads. Left panel shows percent identity distributions in each of the 74 metagenomes. Curves are colored based on

height. Metagenomes are ordered according to how the percent identity distributions hierarchically cluster based on Euclidean distance (dendrogram).

Right panels display a summary of distribution statistics for each percent identity distribution compared against in situ temperature in a linear

regression (correlations to all other available parameters are summarized in Figure 2—figure supplement 2). Each point is a metagenome and black

lines are lines of best fit. For visual clarity, the data in left panel considers only the median read length and interpolates between data points, whereas

the data in right panels consider all read lengths with no interpolation.

DOI: https://doi.org/10.7554/eLife.46497.004

The following figure supplements are available for figure 2:

Figure supplement 1. Percent identity distributions resulting from the competitive mapping experiment of the metagenomic short reads onto the 21

SAR11 reference genomes.

DOI: https://doi.org/10.7554/eLife.46497.005

Figure supplement 2. A matrix illustrating the degree of correlation (via linear regression) between oceanic metadata and the statistics (mean,

standard deviation, skewness) of the percent read identity distributions of reads recruited by HIMB83 for the 74 metagenomes in which HIMB83 was

covered at least 50X.

DOI: https://doi.org/10.7554/eLife.46497.006
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Overall, our data confirm that ANIr values of >95% used previously to delineate sequence-dis-

crete populations does not apply to SAR11. One immediate implication of this substantial amount of

sequence diversity that defies previous empirical observations is our inability to explicitly define

what we are accessing in the environment. This challenge is partially because a precise and exhaus-

tive description of what constitutes a ‘population’ remains elusive (Cohan and Perry, 2007;

Shapiro and Polz, 2015; Cohan, 2019), which creates significant practical challenges (Rocha, 2018),

such as the accurate determination of the boundaries of naturally occurring microbial populations

especially in metagenomic read recruitment results. Nevertheless, the term ‘population’ is frequently

used in literature (Simmons et al., 2008; Kashtan et al., 2014; Bendall et al., 2016), which implies

that Charles Darwin’s observation in his historical work ‘On the Origin of Species’ continues to sum-

marize our struggle in life sciences to describe theoretical boundaries of fundamental units of life

even though contemporary enviornmental microbiology has gone beyond the term species in this

pursuit: ’no one definition of species has yet satisfied all naturalists; yet every naturalist knows

vaguely what [they mean] when [they speak] of a species’ (Darwin, 1859). Our study is not well-posi-

tioned to offer a precise theoretical definition for the term ’population’, either. Instead, similar to

previous studies, we resort to an operational definition that suggests a population is ’an agglomer-

ate of naturally occurring microbial cells, genomes of which are similar enough to align to the same

genomic reference with high sequence identity’ (Delmont and Eren, 2018; also see Denef, 2018

and references therein for a comprehensive discussion of what constitutes a population from a meta-

genomic perspective). By outsourcing the hypothetical radius of a population in sequence space to

the minimum sequence identity of short reads recruited from metagenomes, this approach offers a

practical means to study very closely related environmental sequences without invoking theoretical

considerations. The broad heterogeneity continuum that possesses no discernible sequence-discrete

components we observed within the narrow sequence set defined this way, i.e., the metagenomic

reads that match competitively to conserved HIMB83 genes (Figure 2), supports the assumption

that this set originates within a population boundary (Figure 1—figure supplement 1). However,

due to the incomplete theoretical foundation and limitations associated with the use of short meta-

genomic reads, in discussions here we more conservatively assume that our reads originate from

multiple closely related yet intertwined SAR11 populations within subclade 1a.3.V.

Both high recombination rates between cells displaying low gANI values and frequent transfer of

adaptive genes between ecologically distinct clades could explain the high-level of cohesion

between SAR11 populations in the surface ocean (Cohan, 2019; Vergin et al., 2007). The high den-

sity of closely related 1a.3.V cells in the surface ocean suggests the strength of these two forces

could be high within populations as well. At least two hypotheses reconcile extensive SAR11

sequence diversity and aide in understanding its implications. One hypothesis is that the members

of 1a.3.V we access are in the process of evolving into multiple sequence-discrete populations and

we are simply observing an emerging fork in the evolutionary journey of SAR11. Alternatively, the

observed diversity may represent a cloud of random sequence variants akin to a quasispecies

(Domingo et al., 2012). To examine these hypotheses, we tested the correlation between basic sta-

tistical properties of these curves (i.e., mean, standard deviation, and skewness) and environmental

parameters via linear regression (Figure 2—figure supplement 2, Supplementary file 1k). This anal-

ysis revealed a significant correlation between in situ temperature and distribution shape (mean

p-value: 2:0� 10
�3; standard deviation p-value: 3:4� 10

�8; skewness p-value: 1:0� 10
�8), which sug-

gests a strong influence of temperature and its co-variables on the sequence heterogeneity within

1a.3.V (Figure 2) and is incompatible with the hypothesis of random sequence variants.

SAAVs: Accurate characterization of non-synonymous variation
Percent identity distributions are useful to assess overall alignment statistics of short reads to a refer-

ence; however, they do not convey information regarding allele frequencies, their functional signifi-

cance, or association with biogeography. To bridge this gap, we implemented a framework to

characterize amino acid substitutions in metagenomic data and to study genomic variation that

impacts amino acid sequences (see Materials and methods). Briefly, our approach employs only

metagenomic short reads that cover all three nucleotides in a given codon to determine the fre-

quency of single-amino acid variants (SAAVs) in translated protein sequences. While synonymity is a

codon characteristic, in practice it is often determined from a single-nucleotide variant (SNV) with

the assumption that the two remaining nucleotides are invariant. However, populations with
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extensive nucleotide variation can violate this assumption. Indeed, in the case of the core 1a.3.V

genes, on average 22.5% of SNVs per metagenome co-occurred with other SNVs in the same codon.

Thus, quantifying frequencies of full codon sequences as implemented in the SAAV workflow is a

requirement to correctly assess synonymity.

Among the 799 core 1a.3.V genes and 74 metagenomes, we identified 1,074,096 SAAVs in which

>10% of amino acids diverged from the consensus (i.e., the most frequent amino acid for a given

codon position and metagenome). The SAAV density (the percentage of codon positions that harbor

a SAAV) of core 1a.3.V genes averaged 5.76% and correlated with SNV density (19.3% on average)

across the 74 metagenomes (linear regression, p-value <2:2� 10
16; R2: 0.90; Figure 1—figure sup-

plement 1 and Supplementary file 1L). SNV and SAAV density metrics did not decrease in metage-

nomes sampled closest to the source of isolation (Supplementary file 2a, 2b, and 2c), suggesting

that the location of isolation for strain HIMB83 does not predict the biogeography and population

genetics of 1a.3.V. To improve downstream beta-diversity analyses, we discarded codon positions if

their coverage in any of the 74 metagenomes was <20X, which resulted in a final collection of

738,324 SAAVs occurred in 37,416 codon positions that harbored a SAAV in at least one metage-

nome among the total of 252,333 codon positions (14.8%) within the core 1a.3.V genes

(Supplementary file 2d). We considered a protein to be ‘invariant’ (i.e., absence of variation due to

intensive purifying or positive selection) in a given metagenome if it lacked SAAVs. They were rare in

our data: in total, we detected 2,548 invariant proteins (only 4.3% of all possibilities across the 74

metagenomes) that encompassed only 113 genes (Supplementary file 2e). In addition, all genes,

except one 679 nucleotide long ABC transporter (gene id 1469), contained at least one SAAV in at

least one metagenome (Supplementary file 2d), revealing a wide range of amino acid sequence

diversification among core 1a.3.V proteins.

Hydrophobicity influences the strength of purifying selection acting on
amino acids
To understand how commonly each amino acid was found in variant sites, we compared the amino

acid composition of SAAVs to the amino acid composition of the core 1a.3.V genes (see Materials

and methods). In a scenario in which amino acids are as common in SAAVs as they are across all 799

core genes, the frequency that an amino acid occurred in SAAVs (variant sites) would share one-to-

one correspondence with its frequency within the core genes (all sites). While these variables were

correlated (linear regression, p-value: 9:8� 10
�6; R2: 0.65), we observed large deviations from this

null expectation, implying strong differential occurrence of amino acids in SAAVs relative to their

occurrence in core genes (Figure 3A, Figure 3—figure supplement 1, Supplementary file 2f). All

negatively charged (Asp, Glu) and uncharged polar (Thr, Asn, Ser, Gln) amino acids were significantly

enriched in SAAVs compared to the core 1a.3.V genes (Figure 3A). For instance, while asparagine

made up only 6.34% of all amino acids in the core genes, on average 10.7% (±0.16%) of SAAVs

involved asparagine substitutions across the 74 metagenomes (Supplementary file 2f). Interestingly,

unlike negatively charged amino acids, positively charged amino acids did not exhibit substantial dif-

ferences (<4% deviation between core 1a.3.V genes and SAAVs). Thus, hydrophilic amino acids were

either overrepresented or exhibited little change in SAAVs with respect to their frequency within

core genes. In stark contrast, all hydrophobic amino acids, with the very notable exceptions of iso-

leucine and valine, were underrepresented in SAAVs (Figure 3A, Figure 3—figure supplement 1,

Supplementary file 2f).

Hydrophobic interactions within the solvent inaccessible core of proteins are known to be critical

for maintaining the stability required for folding and activity, which enforces a strong purifying selec-

tion placed on mutations occurring in buried (solvent inaccessible) positions (Bustamante et al.,

2000; Chen and Zhou, 2005; Worth et al., 2009). Since hydrophobic amino acids form the majority

of buried positions, they are on average under stronger purifying selection, which is the likely expla-

nation for the underrepresentation of hydrophobic amino acids within SAAVs. On the other hand,

mutations in exposed (solvent accessible) positions on the surface of proteins are tolerated more, as

they are less likely to disrupt protein architecture. Overall, our compositional analysis revealed that

the occurrence of amino acids in SAAVs is roughly correlate with the occurrence of amino acids

within the core 1a.3.V genes, and that deviations from this expectation are driven in part by levels of
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Figure 3. Physico-chemical properties of amino acid variants. The top panel describes the structure of 20 amino acids grouped by their main chemical

properties. Panel A describes the solvent accessibility of amino acids, their relative distribution in both the core 1a.3.V genes and SAAVs, and their

percentage increase in SAAVs as compared to the core 1a.3.V genes. The solvent accessibility of amino acids derives from the analysis of 55 proteins

(Bordo and Argos, 1991). Panel B describes the relative abundance of the top 25 most prevalent amino acid substitution types (AASTs) across 74

metagenomes (boxplots), along with the classes their amino acids belong to and the correlation coefficient between AAST prevalence and in situ

Figure 3 continued on next page
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purifying selection that depend upon the suitability of an amino acid’s hydrophobicity for a given

physicochemical environment (Figure 3—figure supplement 1).

Amino acid exchange rates reveal hallmarks of neutral, purifying, and
adaptive evolution
Next, we sought to investigate amino acids that co-occur in variable sites. SAAVs were often domi-

nated by a few amino acids; hence, the frequency vector for a given SAAV contained many zero val-

ues. To reduce sparsity, we first simplified our data by associating each SAAV with an amino acid

substitution type (AAST), defined as the two most frequent amino acids in a given SAAV. In 738,324

SAAVs, we observed 182 of 210 theoretically possible unique AASTs and a highly skewed AAST fre-

quency distribution (Supplementary file 2g, Figure 3B boxplots). For example, the two most fre-

quent AASTs, ‘isoleucine/valine’ and ‘aspartic/glutamic acid’, together comprised 20% of all SAAVs

(Figure 3B). This is not surprising, since the amino acids in both of these AASTs (1) are common in

the genome, (2) share very similar chemical structure (both differing by only a single methylene

bridge), and (3) can be substituted through a single nucleotide substitution. On the other hand, the

‘glycine/tryptophan’ pair represents an opposite example: these amino acids (1) are uncommon in

the genome, (2) share no chemical or structural similarity to one another, and (3) can only be substi-

tuted through a triple nucleotide substitution. Expectedly, ‘glycine/tryptophan’ was exceedingly rare

in our data and occurred only once in 738,324 SAAVs (Supplementary file 2h).

While such a skewed AAST frequency distribution cannot be explained by strictly random muta-

tional process (Figure 3B light-gray shaded area), it is compatible with standard theories of neutral

or nearly-neutral evolution, since such theories consider the role of purifying selection (Ohta and Gil-

lespie, 1996). Within subclade 1a.3.V the distribution of AAST frequencies was notably constrained

across geographies (Figure 3B). For example, the relative standard deviation of ‘aspartic/glutamic

acid’ frequencies across the 74 metagenomes was just 3.0%, and the statistical spread of other

AASTs was comparable (Figure 3B). The overall consistency of AAST frequency distributions across

geographies supports the hypothesis that purifying selection controls the permissibility of amino

acid exchangeability within 1a.3.V and enables an interpretation of these data through a neutral

model: SAAVs composing the AAST frequency distribution represent primarily neutral mutations

that have drifted to measurable levels, and the lack of SAAVs in AASTs of dissimilar amino acids that

likely represent deleterious mutations reflect the influence of purifying selection. However, a closer

inspection reveals a subtle divergence of amino acid exchangeabilities that correlates with water

temperature and/or its co-variables (Figure 3B insets, Figure 3—figure supplement 2). Note that

this divergence is AAST specific; for example, positions with mixed proportions of glutamic and

aspartic acid are less commonly found in warm waters (linear regression, uncorrected

Figure 3 continued

temperature calculated via linear regression (see Figure 3—figure supplement 2 for p-values). The area shaded in light gray shows bounds for the

expected frequency distribution given strictly neutral processes. The upper bound is Model one and the lower bound is Model 2 (see Materials and

methods). The four insets example the relationship between AAST prevalence and in situ temperature for the AASTs ’aspartic/glutamic acid’,

’isoleucine/threonine’, ’alanine/serine’, and ’leucine/phenylalanine’ (Figure 3—figure supplement 2 illustrate similar plots for all 25 of the most

prevalent AASTs). The 25 AASTs included in the analysis cover 87.1% of all SAAVs. Panel C displays SAAVs on the predicted protein structures of four

core 1a.3.V genes across six metagenomes from distant locations.

DOI: https://doi.org/10.7554/eLife.46497.007

The following figure supplements are available for figure 3:

Figure supplement 1. Panel A shows a direct comparison between the amino acid composition in all positions compared to the amino acid

composition within SAAVs.

DOI: https://doi.org/10.7554/eLife.46497.008

Figure supplement 2. The top 25 most abundant amino acid substitution types (AASTs) and their relationship with in situ temperature.

DOI: https://doi.org/10.7554/eLife.46497.009

Figure supplement 3. Allele frequency trajectories and in situ temperature.

DOI: https://doi.org/10.7554/eLife.46497.010

Figure supplement 4. Analysis of how temperature-correlated variant positions distribute within Gene 1727, a glycine betaine ATP-binding cassette

permease subunit identified for its rare proportion of temperature-correlated variant positions.

DOI: https://doi.org/10.7554/eLife.46497.011
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p-value: 2:7� 10
�6), yet for isoleucine and valine such a correlation is nonexistent (linear regression,

uncorrected p-value: 0.418). These findings suggest that amidst a signal that is predominantly indica-

tive of purifying selection, there appears to be a fingerprint of adaptive/divergent processes caused

by temperature and/or its co-variables that subtly shift the mutational profile within 1a.3.V. We were

unable to attribute the magnitude or direction of these correlations to differences between amino

acids (i.e., changes in hydrophobicity, size, or charge). This was likely due to the insufficiency of char-

acterizing SAAVs with only the chemical properties of the involved amino acids, and disregarding

position-specific information, such as the surrounding physicochemical environment that can only be

studied with knowledge of the protein’s structure.

To address this shortcoming, we next sought to link SAAVs to predicted protein structures of the

core 1a.3.V genes, 436 of which had significant matches in Protein Data Bank for template-based

structure modeling (see Materials and methods). Placing SAAVs on predicted protein structures

revealed that their occurrence was not randomly distributed but was instead strongly dependent on

the local physicochemical environment of the structure (Figure 3C, Supplementary file 3a and

http://data.merenlab.org/sar11-saavs). Within the subset of the 1a.3.V proteome accessible to us,

we found that buried amino acids (0-10% relative solvent accessibility) were approximately 4.4 times

less likely to be variant than those that were exposed (41-100% relative solvent accessibility)

(ANOVA, p-value: <2� 10
�16). This observation was strikingly apparent in TIM barrels, where SAAVs

mostly occurred in the outer alpha helix and loop regions (e.g., Figure 3C gene 2,128). This trend

directly confirmed our previous inference (based on the underrepresentation of hydrophobic amino

acids) that solvent inaccessible positions are subject to higher levels of purifying selection and thus

contain fewer SAAVs. The local physicochemical environment therefore shapes variation, and visual

inspection of Figure 3C indicates that this is conserved across distant geographies; that is positions

that vary in one metagenome are likely to vary in others, as well. Overall, 91.7% of variant positions

in the core 1a.3.V genes varied in 10 or more metagenomes, and 21.7% varied in all 74 metage-

nomes (Supplementary file 2i).

Temperature correlates with amino acid allele frequency trajectories
In addition to considering patterns of variability that emerged when we pooled data across 37,416

codon positions exhibiting variation within the core 1a.3.V genes, we also investigated the allele fre-

quency trajectories of individual positions (i.e., the relative frequency between the two most preva-

lent amino acids across the 74 metagenomes) and sought to identify those that correlate with in situ

temperature and/or its co-variables. Amino acid allele frequencies in 4592 of the 37,416 positions

were correlated with temperature (Supplementary file 3b; Benjamini–Hochberg multiple testing

correction on linear regression p-values, false discovery rate 5%). Figure 3—figure supplement 3

illustrates example cases and correlation statistics per AAST. It is statistically implausible that such

correlations with temperature could have arisen from neutral evolution, given that distant oceans

share similar temperatures (Supplementary file 1a). It is therefore most plausible to conclude that

these allele frequency trajectories are the result of environmentally mediated selection. Although we

note that, considering the pervasive effect of genetic hitchhiking in microbial evolution (Good et al.,

2017), variation in a considerable fraction of positions may be neutral despite their association with

temperature.

We then sought to investigate which positions are under selection, and whether the variation at

these positions can be explained by differing levels of purifying selection, or diversifying selection

that could be evidence of adaptive evolution. Scrutinizing all 4592 positions to address these critical

questions is an intractable problem, so we narrowed our focus to genes possessing disproportion-

ately high ratios of temperature-correlated to temperature-uncorrelated SAAV positions, since we

expected this to be a reasonable criterion for identifying likely candidates of adaptive evolution

(Supplementary file 3c). Of the 10 genes fitting this criterion (see Materials and methods), the per-

mease subunit of a glycine betaine ATP-binding cassette (ABC) transporter stood out due to its

appreciated relevance to SAR11 biology: glycine betaine transporters of SAR11 are highly translated

proteins in the environment and transport osmolyte compounds into cells for energy production

(Noell and Giovannoni, 2019). To investigate the positioning of amino acids in the tertiary structure

of the permease relative to the cellular membrane, we first categorized the location of each residue

as transmembrane, cytosolic (inside the inner membrane), or periplasmic (outside the inner
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membrane) (Figure 3—figure supplement 4). Positions that were not correlated with temperature

were commonly transmembrane, and infrequently periplasmic. In contrast, most positions that corre-

lated with temperature were periplasmic (Figure 3—figure supplement 4). The probability of

observing a similar distribution between temperature-correlated and temperature-uncorrelated posi-

tions across transmembrane, periplasmic, and cytosolic regions was only 0.034 (analytic trinomial

test, temperature-uncorrelated distribution as prior), which indicates temperature-correlated posi-

tions are subjected to unique evolutionary forces. A previous study suggested that periplasmic resi-

dues of transmembrane proteins undergo higher rates of adaptive evolution due to their increased

exposure to changing environmental conditions (Sojo et al., 2016). This observation lends additional

support to the hypothesis that periplasmic SAAV positions within this gene that correlate with tem-

perature are more likely shaped by adaptive processes.

Allele frequency trajectories also provide an opportunity to study the directionality of exchange

rates of AASTs. For example, of the 1066 positions dominated by ’alanine/serine’ SAAVs, 158 posi-

tions correlated with temperature (Figure 3—figure supplement 3). If there was no temperature-

driven preference for either amino acid in this subset of positions, the frequency of alanine should

positively correlate with temperature as often as the frequency of serine does. Yet this expectation

is grossly violated: in 103 of 158 positions alanine frequencies positively correlated with temperature

(binomial test, Bonferroni-corrected p-value: 0.004). Overall, this result indicates temperature-

dependent amino acid substitution preferences that are independent of site (Figure 3—figure sup-

plement 3).

SAAV partitioning between warm and cold currents
We finally sought to extend the concept of allele frequency tracking at individual SAAV positions to

investigate large-scale geographic partitioning of metagenomes. For this, we simplified the 738,324

SAAVs into a presence-absence matrix for codon position-specific AASTs across 74 metagenomes

(Supplementary file 2i, also see ‘Recovering codon position-specific AASTs from SAAVs’ in Materi-

als and methods). Of 57,277 codon position-specific AASTs affiliated with 37,415 unique codon posi-

tions, we detected 1.94% in all 74 metagenomes, while 33.3% were found in single metagenomes

(Supplementary file 2i). To estimate distances between metagenomes based on these data, we

used a Deep Learning approach. Briefly, this approach relies on a graph-based activity regularization

technique for competitive learning from hyper-dimensional data, modified to reveal latent groups of

variants in a fully unsupervised manner through frequent random sampling of variants (Kilinc and

Uysal, 2017). Hierarchical clustering of samples based on Deep Learning-estimated distances

(Supplementary file 4a) resulted in two main groups: the Western (warm) and Eastern (cold) bound-

ary currents (Figure 4A). High latitude, relatively cold, and relatively nutrient rich waters are the

source of Eastern boundary currents, which warm up and typically decline in nutrients as they transit

in an equatorial direction. The opposite is true of Western boundary currents, which move poleward.

The first group of 41 metagenomes, which matched cold currents (Benguela, Canary, California and

Peru), encompassed most metagenomes from the Eastern Pacific Ocean, as well as the East side of

the Atlantic Ocean (except near the southern tip of Africa) and the Mediterranean Sea (Figure 4B).

The second group of 33 metagenomes, which matched warm currents (Agulhas, Somali, Mozambi-

que, Brazil and Gulf stream), encompassed all metagenomes from the Red Sea and Indian Ocean, as

well as metagenomes from the West side of the Atlantic Ocean (Figure 4B). Samples collected from

the deep chlorophyll maximum layer of the water column mirrored trends observed in the surface

samples (Figure 4—figure supplement 1). The association between SAAVs and ocean current type

revealed a strong, global signal at the amino acid-level for 1a.3.V and suggested the presence of

two main ecological niches for this lineage. Warm and cold currents are dynamic environments that

differ in a host of factors in addition to the latitude and temperature of source waters. Factors that

could drive adaptive changes in amino acid sequences between warm and cold currents include

major differences in phytoplankton communities, altered composition of dissolved organic carbon

pools, and the water temperature itself. Interestingly, the niche defined by cold currents exhibited

significantly more SAAVs (ANOVA, p-value:1:66� 10
�12). This observation could be explained either

by (1) extinction/re-emergence events that operate continually on specific codon positions (adaptive

evolution), or (2) changes in abundances within a large seed bank of variants due to positive and

negative selection as the lineage transits. A recent study using Lagrangian particle tracking and net-

work theory suggested that all regions of the surface ocean are connected to each other with less
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than a decade of transit (Jönsson and Watson, 2016), which might favor the latter scenario due to

lack of time for the extinction and reemergence of variants in abundant marine microbial lineages.

To explore more detailed trends of the relationships between metagenomes, we further divided

our dendrogram into six sub-clusters based on the elbow of the intra-cluster sum-of-squares curve of

k-means clusters (Figure 4—figure supplement 2). These 1a.3.V ‘proteotypes’ grouped samples

with similar amino acid variations (Figure 4A) and could not have been predicted from the clustering

of samples based on percent identity distributions of short reads alone Figure 4—figure supple-

ment 3). Among the environmental measurements for each metagenome (Supplementary file 4b,

Figure 4. Biogeography of SAR11 subclade 1a.3.V based on single amino acid variants. Panel A describes the organization of 74 metagenomes based

on 57,277 codon position-specific AASTs affiliated with 37,415 unique codon positions and summarizes the number of detected SAAVs and percent

identity of reads HIMB83 recruited for each metagenome. The world map in panel B displays the geographic partitioning of the two main

metagenomic groups and six proteotypes. Panel B also describes the relative abundance of 1a.3.V and the number of invariant proteins across the six

proteotypes.

DOI: https://doi.org/10.7554/eLife.46497.012

The following figure supplements are available for figure 4:

Figure supplement 1. A comparison of the geographic partitioning of the 1a.3.

DOI: https://doi.org/10.7554/eLife.46497.013

Figure supplement 2. K-means clustering results (250 iterations) of the Deep Learning distance metric of 74 metagenomes based on the coordinates

and identity of 738,324 SAAVs.

DOI: https://doi.org/10.7554/eLife.46497.014

Figure supplement 3. A comparison of dendrograms that organize metagenomes based on the genomic variability observed in the core 1a.3.

DOI: https://doi.org/10.7554/eLife.46497.015

Figure supplement 4. Biogeography of SAR11 subclade 1a.3.

DOI: https://doi.org/10.7554/eLife.46497.016

Figure supplement 5. Geographic partitioning of SAR11 by matching surface metagenomes analyzed in our study to simulated results determined

using a neutral-agent based model (Hellweger et al., 2014).

DOI: https://doi.org/10.7554/eLife.46497.017
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and 4c), latitude and temperature at the time of sampling were the most significant predictors of

the proteotypes (ANOVA, p-values: 8.56 � 1013 and 3.57 � 10-7, respectively).These two variables

were followed by the concentrations of nitrate, phosphate, oxygen, and to a lesser extent, silicate

and latitude (Supplementary file 4d). The number of SAAVs and the number of invariant

proteins, however, were more significant predictors of these groups compared to all environmental

parameters (ANOVA, p-values: <2� 10
�16, Supplementary file 4c, and 4d). Strikingly, most 1a.3.V

proteotypes linked samples from distant geographical regions (Figure 4B). An exception to this was

the proteotype A, which only contained Pacific Ocean metagenomes (Figure 4B). For instance, pro-

teotypes E and F occurred both in the Indian Ocean and the West side of the Atlantic Ocean and

associated with distinct warm currents: E was characteristic of the Mozambique and Brazil currents

while F dominated the Agulhas current (Figure 4B). One of the most interesting proteotypes, D,

whose reads most closely resembled the HIMB83 genome itself (Figure 4B), contained a distinctively

low number of SAAVs, and grouped metagenomes sampled from both sides of the Panama Canal

with metagenomes from the Red Sea and North of the Indian Ocean (Figure 4B). We also clustered

the same data set using fixation index, a widely-used metric to measure population structure

(Weir, 2012), which we modified in accordance with (Schloissnig et al., 2013) to permit multi-allelic

variant positions. Both approaches preserved assocaitions between distant geographies (i.e., Proteo-

type D; Figure 4 and Figure 4—figure supplement 4), however, they were not identical in their

organization of metagenomes (i.e., Proteotype E was associated with colder currents according to

fixation index rather than warmer ones; Figure 4—figure supplement 4), highlighting the non-trivial

nature of establishing individual proteotypes from SAAVs.That said, the significance of in situ tem-

perature to explain clustering of metagenomes into two main groups and six proteotypes was higher

with Deep Learning (Figure 4—figure supplement 4), suggesting that Deep Learning was able to

better capture the strong association between temperature and the genomic heterogeneity within

1a.3.V through SAAVs.

The striking connection between geographically distant regions of the oceans through SAAVs

suggests a likely role for adaptive processes to maintain the genomic heterogeneity of closely

related SAR11 populations within 1a.3.V (Figure 4—figure supplement 5). In fact, both the main

ecological niches and more refined proteotypes indicate that SAAVs are not primarily structured by

the global dispersal of water masses but instead tend to link distant geographic regions with similar

environmental conditions (Figure 4B). Overall, these results indicate that environmentally-mediated

selection is a strong determinant of SAR11 evolution and biogeography.

One question remains: what is the proportion of distinct evolutionary processes acting upon

closely related SAR11 populations within 1a.3.V? Offering a precise answer to this critical question is

compounded by multiple theoretical and technical factors. These factors include, but are not limited

to, (1) the phenomenon of genetic hitchhiking that prevents accurate determination of amino acid

positions that likely confer fitness, (2) the metagenomic short-read recruitment strategy that pre-

vents absolute confidence regarding the origin of each fragment, (3) heavy reliance on temperature

as the sole environmental stressor to predict associations between environmental parameters and

variation due to limited insights into in situ physiochemistry, (4) the lack of a complete understanding

of syntrophic relationships between taxa in the environment, and (5) computational bottlenecks to

gain rapid and accurate insights into the role of variable amino acid residues even when protein

structures are available. With these significant limitations in mind, we could nevertheless speculate

that among the 252,333 total codon positions, 37,416 were variable, suggesting purifying selection

maintains the conservancy of 85% of the positions within 799 core 1a.3.V genes. Of those 37,416

positions that were within the scope of permissible mutations, 4592 had amino acid frequency trajec-

tories that significantly correlated with temperature, suggesting an upper-bound of 12% for

the variable positions that are likely under the influence of temperature-driven adaptive processes,

while neutral processes explain at least 88% of the variation. In summary, this global view of the

data suggests that among the remarkable amount of variation within some of the most abundant

and prevalent microbial populations in the ocean, adaptive evolutionary processes operating on

core genes are responsible for variation in about 2% of all codon positions.

Conclusions
We took advantage of billions of metagenomic reads to investigate single-amino acid variants

(SAAVs) within the environmental core genes of the remarkably abundant and closely related SAR11
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populations within subclade Ia.3.V, which we defined from a SAR11 metapangenome. The results

elicit a highly-resolved quantitative description of purifying selection constraining the scope of per-

missible mutations to those that are not detrimental to protein stability requirements. Of permissible

variation, thousands of codon positions harbored allele frequencies that systematically correlated

with in situ temperatures and, overall, patterns of amino acid diversity reflected the temperature

trends of large-scale ocean currents. This was especially apparent regarding the clear SAAV parti-

tioning between Western and Eastern boundary currents. Previous studies have subdivided SAR11

clade Ia into cold-water (Ia.1) and warm-water (Ia.3) subclades with distinct latitudinal distributions

(Brown et al., 2012), and reported sinusoidal oscillations between their abundances as a function of

seawater temperature at a single temperate ocean site (Eren et al., 2015). At a much finer evolu-

tionary scale (i.e., closely related populations within Ia.3.V), we observed significantly more protein

variants in cold currents and more invariant proteins in warm currents, revealing a global pattern of

alternating diversity for SAR11 in surface ocean currents in temperate and tropical latitudes. We

were able to track this variation to changes in amino acid sequence preserved by selection.

Trends that emerged from our culture-independent survey of SAR11 were consistent with a

recent study that also suggested an important role for environmental and ecological selective pro-

cesses defining the spatial and temporal distribution of a widespread diatom species

(Whittaker and Rynearson, 2017). Overall, these findings suggest that environmentally-mediated

selection plays a critical role in the journey of cosmopolitan microbial populations in the surface

ocean, lending credence to the idea for marine systems that ‘everything is everywhere but the envi-

ronment selects’ (Baas-Becking, 1934). However, identifying environmental variables and their con-

tributions to genomic heterogeneity within microbial populations is shrouded by both the dynamism

and complexity of natural habitats, as well as the rich evolutionary dynamics that arise even in the

simplest of conceivable environments (Good et al., 2017). These formidable challenges stress the

importance of designing appropriate experiments to uncover variables that underpin the evolution-

ary divergence of closely related lineages, and drive transitions between them through space and

time.

Materials and methods
The URL http://merenlab.org/data/sar11-saavs contains a reproducible bioinformatics workflow that

extends the descriptions and parameters of programs used here for (1) the metapangenome of

SAR11 using cultivar genomes, (2) the profiling of metagenomic reads that the cultivar genomes

recruited, (3) the analysis of single nucleotide variants using Deep Learning, and (4) the visualization

of single nucleotide variants in the context of protein structures.

SAR11 cultivar genomes
We acquired the genomic content of 21 SAR11 isolates from NCBI and simplified the deflines using

anvi’o (Eren et al., 2015). We then concatenated all contigs into a single FASTA file, and generated

an anvi’o contigs database, during which Prodigal (Hyatt et al., 2010) v2.6.3 identified open reading

frames in contigs, and we annotated them with InterProScan (Zdobnov and Apweiler, 2001) v1.17.

Supplementary file 1b reports the main genomic features.

Metagenomic datasets
We acquired 103 metagenomes from the European Bioinformatics Institute (EBI) repository under

the project IDs ERP001736 (n = 93; TARA Oceans project) and ERP009703 (n = 10; Ocean Sampling

Day project), and removed noisy reads with the illumina-utils library (Eren et al., 2013b) v1.4.1 (avail-

able from https://github.com/meren/illumina-utils using the program ‘iu-filter-quality-minoche’ with

default parameters, which implements the method previously described by Minoche et al. (2011).

Supplementary file 1a reports accession numbers and additional information (including the number

of reads and environmental metadata) for each metagenome.

Pangenomic analysis
We used the anvi’o pangenomic workflow (Delmont and Eren, 2018) to organize translated gene

sequences from SAR11 genomes into gene clusters. Briefly, anvi’o uses BLAST (Altschul et al.,

1990) to assess the similarity between each pair of amino acid sequences among all genomes, and

Delmont et al. eLife 2019;8:e46497. DOI: https://doi.org/10.7554/eLife.46497 15 of 26

Research article Genetics and Genomics

http://merenlab.org/data/sar11-saavs
https://github.com/meren/illumina-utils
https://doi.org/10.7554/eLife.46497


then resolves this graph into gene clusters using the Markov Cluster algorithm (Enright et al.,

2002). We built the gene clustering metric using a minimum percent identity of 30%, an inflation

value of 2, and a maxbit score of 0.5 for high sensitivity. Anvi’o used the occurrence of gene clusters

across genomes data, which are also reported in Supplementary file 1e, to compute clustering den-

drograms both for SAR11 genomes and gene clusters using Euclidian distance and Ward linkage

algorithm.

Estimating distances between isolate genomes based on full-length 16S
ribosomal RNA gene sequences
We used the program ’anvi-get-sequences-for-hmm-hits’ (with parameters ‘–hmm-source Riboso-

mal_RNAs’ and ‘–gene-name Bacterial_16S_rRNA’) to recover full-length 16S ribosomal RNA gene

sequences from the anvi’o contigs database for the 21 isolate genomes. We then used PyANI

(Pritchard et al., 2016) through the program ’anvi-compute-ani’ to estimate pairwise distances

between each sequence.

Competitive recruitment and profiling of metagenomic reads
We mapped reads competitively from each metagenome against a single FASTA file containing all

SAR11 genomes using Bowtie2 (Langmead and Salzberg, 2012) v.2.0.5 with default parameters,

and converted the resulting SAM files into BAM files using samtools (Li et al., 2009a) v1.3.1. Com-

petitive read recruitment ensures that short reads that match to more than one genome are

assigned uniquely and randomly to one of the matching genomes. This minimizes computational

biases at the mapping level and avoid inflated coverage statistics. To confirm our observations, we

also used BWA (Li and Durbin, 2009b) to recruit reads (with the option n = 0.05). We used anvi’o to

generate profile databases from the BAM files and combine these mapping profiles into a merged

profile database, which stored coverage and variability statistics as outlined in Eren et al. (2015).

Supplementary file 1c reports the mapping results (number of recruited reads, as well as mean cov-

erage and detection statistics) per genome across the 103 metagenomes.

Determining the coverage of HIMB83 genes across metagenomes
The anvi’o merged profile database contains the coverage of individual genes across metagenomes.

We normalized the coverage of HIMB83 genes in each metagenome (summarized in

Supplementary file 1j) and calculated their coefficient of gene variation. We used the coefficient of

gene variation estimates to identify metagenomes in which HIMB83 was well detected, yet the cov-

erage values of its genes were highly unstable, which is an indicator of non-specific read recruitment

from other lineages.

Determining the main ecological niche and core genes of 1a.3.V
We considered metagenomes in which HIMB83 was sufficiently abundant (mean genomic

coverage >50X) with a stable detection of its genes (coefficient of gene variation <1.25) to represent

the main ecological niche of 1a.3.V. To determine the core 1a.3.V genes, we first disregarded meta-

genomes that displayed an unusually high coefficient of gene coverage variation (Figure 1—figure

supplement 1), which can indicate non-specific read recruitments from other abundant populations.

The 74 metagenomes fitting these criteria are summarized in Supplementary file 1i. We defined the

subset of HIMB83 genes as the core 1a.3.V genes if in each of the 74 metagenomes, the mean cov-

erage of a gene remained within a factor of 5 of the mean coverage across all genes. The 799 genes

fitting this criterion are summarized in Supplementary file 1j.

Calculation of percent identity distributions of recruited metagenomic
short reads
We used percent identity distributions to broadly characterize how well short reads within a metage-

nome matched to the reference sequences by which they were recruited. We determined the per-

cent identity for each read as 100� N � nð Þ=N where n is the number of mismatches to the reference

and N is the read length. For simplicity, visualization of these distributions only included reads

lengths of which matched to the median read length, and we defined bins to contain only one

unique value. For example, if the median length of reads was 100, the bin domains for visualization
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purposes were 99; 100ð �; 98; 99ð �; 97; 98ð �; . . . ; 0; 1½ �. In contrast, all statistical calculations were car-

ried out using all read lengths.

Generating single-nucleotide variants (SNV) data
We used the program ’anvi-gen-variability-profile’ to report variability tables describing the nucleo-

tide frequency (i.e., ratio of the four nucleotides) in recruited metagenomic reads per SNV position.

To study the extent of variation of the core 1a.3.V genes across all metagenomes, we instructed

anvi’o to report positions with more than 1% variation at the nucleotide level (i.e., at least 1% of

recruited reads differ from the consensus nucleotide). To compare the densities of SAAVs to SNVs,

we instructed anvi’o to report only positions with more than 10% variation at the nucleotide level.

Supplementary file 1c reports the density of SNVs for all SAR11 genomes across all metagenomes.

We also used anvi’o to report SNVs for a subset of genes and metagenomes, and by considering

only nucleotide positions with a minimum coverage cut-off across metagenomes under consider-

ation. Controlling the minimum coverage of single nucleotide positions across metagenomes

improves confidence in variability analyses. Supplementary file 1L reports the SNV density values

for all core 1a.3.V genes.

Definitions of ‘SAAV’, ‘allele frequency’ and ‘AAST’
A single amino acid variant (SAAV) is a codon position that exhibits variation in a metagenome, and

the unique identifier of a SAAV is a single codon position and a metagenome. The position of a

SAAV in the reference sequence, and a vector of 21 elements that contain the allele frequencies of

each amino acid as well as the stop codon fully characterize a SAAV. The allele frequency of an

amino acid is equal to the number of short reads that fully cover the codon that resolves to the

amino acid, divided by the total number of reads that fully cover the same position (the sum of all 21

allele frequencies is therefore 1). We also attributed to each SAAV an amino acid substitution type

(AAST), which corresponds to the two amino acids with the largest and second largest allele

frequencies.

Generating single-amino acid variants (SAAVs) data
The program ‘anvi-gen-variability-profile‘ (with an additional ‘–engine AA’ flag) reported variability

tables describing the allele frequencies for each SAAV. Anvi’o only considers short reads that cover

the entire codon to determine amino acid frequencies at a given codon position in a metagenome.

We instructed anvi’o to report only positions with more than 10% variation at the amino acid-level (i.

e., at least 10% of recruited reads differ from the consensus amino acid). Supplementary file 1L

reports the density of SAAVs for all SAR11 genome across all metagenomes. We also used anvi’o to

report SAAVs for a subset of genes and metagenomes, and by considering only gene codons with a

minimum coverage cut-off of 20X across all metagenomes of interest. Controlling the minimum cov-

erage of gene codons across metagenomes improves confidence in variability analyses.

Differential occurrence of amino acids in SAAVs and in the core 1a.3.V
genes
We determined the amino acid composition in the 799 core 1a.3.V genes as well as in SAAVs main-

tained in each metagenome using anvi’o programs ‘anvi-get-aa-counts‘ and ‘anvi-get-codon-fre-

quencies‘ (with the flag ‘–return-AA-frequencies-instead‘). We quantified the amino acid

composition of all core 1a.3.V genes of in HIMB83 using the program ‘anvi-get-aa-counts‘. In con-

trast, we quantified the amino acid composition of SAAVs by calculating the frequency of a given

amino acid being one of the two dominant alleles. We then calculated p-values via a binomial test

that represents the probability of observing the difference between amino acid frequencies com-

puted over all core 1a.3.V genes versus only 1a.3.V SAAVs, given the null hypothesis that amino

acids in 1a.3.V SAAVs are distributed according to the same distribution as the amino acids in the

core 1a.3.V genes.

Estimating a neutral AAST frequency distribution
This calculation provides an estimate for the AAST frequency distribution given strictly neutral muta-

tions. Unlike the neutral theory of evolution, it excludes the influential effects of purifying selection
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(negative selection coefficients). Since all mutations are equally likely to drift to detectable frequen-

cies under a neutral model, the expected number of variant positions that have Ci and Cj as their

two dominant alleles, is proportional to the rate that Ci mutates to Cj plus the rate that Cj mutates

to Ci. Expressed mathematically,

E N
Ci; Cjf g

� �

/ P Cijmð ÞP Ci !CjjCi;m
� �

þ P Cjjm
� �

P Cj !CijCj;m
� �

Where E N
Ci ; Cjf g

� �

is the expected number of variant positions that have Ci and Cj as their two

dominant alleles, P Cijmð Þ is the probability that a Ci position mutates given that a mutation has

occurred, and P Ci !CjjCi;m
� �

is the probability that such a mutation will mutate to Cj. Assuming all

sites are equally likely to mutate, P Cijmð Þ is equivalent to the fraction of codons in the reference

sequence that are Ci, and we denote this quantity as fCi
. To extend the equation to the expected

number of variant positions that have amino acids A1 and A2 as their two dominant alleles, that is a

quantity proportional to the AAST frequency, one must enumerate over all codons in A1 and A2:

E NAAST¼ A1; A2f g

� �

/
Ci2A1

X

Cj2A2

X

P Ci; Cj

� 	� �

In general, P Ci !CjjCi;m
� �

will depend primarily upon the nucleotide edit distance between Ci

and Cj, which we denote as d, as well as the transition/transversion rate ratio, which we will

denote k. How the model handles these aspects will critically influence the expected frequency dis-

tribution. To encapsulate the broadest possible interpretation of the neutral model, we evaluate

expressions for two extreme cases: In the first case (Model 1), we assume that the probability of an

edit distance d > 1 is 0 (in reality, estimates at least for eukaryotes range from 0.003 [Smith et al.,

2003] to 0.03 [Schrider et al., 2011]). We also impose a k value of 2 so that transitions are twice as

likely as transversions. Intuitively, these impositions have the effect of skewing the AAST frequency

distribution towards AASTs that possess highly similar codons. In the second case (Model 2), we

assume all codon transitions are equally likely regardless of edit distance or the number of transi-

tions/transversions (k¼ 1). Intuitively, this has the effect of homogenizing the AAST frequency distri-

bution towards a more uniform-like distribution.

In Model 1, P Ci ! CjjCi;m
� �

¼ 1

3
dd;1P mð Þ, where dd;1 is a Kronecker delta function describing the

probability the mutation has an edit distance d, 1/3 is the probability that the correct nucleotide

position is mutated, and P mð Þ is the probability that the mutation occurs based on whether or not it

is a transition. Formally,

P mð Þ ¼
k=kþ 2; m¼ transition

1=kþ 2; m¼ transversion

�

In Model 2, P Ci !CjjCi;m
� �

¼ 1=63, since all 63 possible mutations are permissible and equally

probable. The expressions for E NAAST¼ A1; A2f g

� �

for Model 1 and Model 2 thus simplify to:

M1
E NAAST¼ A1 ; A2f g

� �

/
Ci2A1

X

Cj2A2

X

fCi
; fCj


 �

dd;1P mð Þ

M2
E NAAST¼ A1; A2f g

� �

/
Ci2A1

X

Cj2A2

X

fCi
; fCj


 �

where M1 and M2 refer to Model 1 and Model 2, respectively. To compare directly with observa-

tion, we extracted fCi
for the 64 codons from the HIMB83 reference sequence using ’anvi-get-codon-

frequencies’ and the distributions under both models were calculated from the above equations.

Predicting 3D structure of proteins using template-based modeling
We used a template-based structure modeling tool, RaptorX Structure Prediction (Källberg et al.,

2012), to predict structures of 1a.3.V amino acid sequences based on available data from the Pro-

tein Data Bank (PDB) (Bernstein et al., 1977). We used the program blastp in NCBI’s BLAST distri-

bution to identify core 1a.3.V genes that matched to an entry with at least 30% similarity over the
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length of the given core gene. We then programmatically mapped SAAVs from metagenomes onto

the predicted tertiary structures, and used PyMOL (DeLano, 2002; Schrödinger LLC, 2015) to visu-

alize these data. We colored SAAVs based on RaptorX-predicted structural properties, including sol-

vent accessibility and secondary structure.

Identifying genes with disproportionately high number of temperature-
correlated positions
First, we calculated the number of temperature-correlated and temperature-uncorrelated positions

for each of the 1a.3.V core genes. Then, we performed a one-sided binomial test that these numbers

are biased towards higher proportion of temperature-correlated positions compared to a model dis-

tribution defined from the total number of temperature-correlated positions in 1a.3.V. Since there

were 4,592 such positions out of 37,416, the model probability of success was defined

as p0 ¼
4592

37416
¼ 0:123. In other words, the expected proportion of variant positions in a gene that are

temperature-correlated is 0.123 under the model. We corrected the resulting p-values for each gene

for multiple testing using Benjamini & Hochberg’s method (Benjamini and Hochberg, 1995).

Predicting transmembrane, periplasmic, and cytosolic regions in the
glycine betaine permease
To categorize amino acid positions as transmembrane, periplasmic, and cytosolic, we used Phobius

(Käll et al., 2004; Käll et al., 2007), a membrane topology and prediction software through the

webserver at http://phobius.sbc.su.se. The output is a probability of the four classes for each resi-

due, and to simplify the data we categorized each residue into the class found to be most probable.

We removed residues with signaling peptide association from downstream analyses.

Recovering codon position-specific AASTs from SAAVs
We simplified the hyper-dimensional SAAV data into a simpler presence-absence matrix for down-

stream analyses. For this, we defined codon position-specific AASTs (cAASTs) and summarized their

occurrence across metagenomes. In such a table the value of ‘1’ indicates that a given metagenome

had a SAAV at a given codon position that resolved to a given AAST. In contrast, the value ‘0’ indi-

cates that the metagenome did not have a SAAV that resolved to this AAST. In the latter case a

given metagenome may have another AAST in this particular codon position (in which case this infor-

mation would appear in another row in the same table that is affiliated with the same AAST with the

same codon position). Hence, each AAST listed in the first column of the table will be unique to a

single codon position, yet a given codon position may have different AASTs in different metage-

nomes, resulting in multiple AASTs in the resulting table that belong to the same codon position.

Combining AAST with the codon position would then result in a unique cAAST.

Application of deep learning to codon-position-specific AASTs data
To estimate an unbiased distance between our metagenomes based on SAAVs, we used a novel

deep neural network modification called the auto-clustering output layer (ACOL). Briefly, ACOL

relies on a recently introduced graph-based activity regularization (GAR) technique for competitive

learning from hyper-dimensional data to demarcate fine clusters within user-defined ‘parent’ classes

(Kilinc and Uysal, 2017). In this application of ACOL, however, we modified the algorithm so it can

reveal latent groups in our SAAVs in a fully unsupervised manner through frequent random sampling

of SAAVs to create pseudo-parent class labels instead of user-defined classes (Kilinc and Uysal,

2018). See the URL http://merenlab.org/data/sar11-saavs for the details of the pseudo parent-class

generation algorithm, and the reproducible distance estimation workflow in Python.

Other statistical tests and visualization
We used the aov function in R to perform one way ANOVA tests, used the ggplot2 (Ginestet, 2011)

package for R to visualize the relative distribution of 1a.3.V genes and geographic distribution of

proteotypes, and finalized all figures using an open-source vector graphics editor, Inkscape (avail-

able from http://inkscape.org/).
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Code and data availability
The vast majority of analyses relied on the open-source software platform anvi’o v2.4.0 (available

from http://merenlab.org/software/anvio). The URL http://merenlab.org/data/sar11-saavs serves the

remaining custom code used in our analyses. We made available (1) SAR11 isolate genomes (doi:10.

6084/m9.figshare.5248945), (2) the anvi’o contigs database and merged profile for SAR11 genomes

across metagenomes (doi:10.5281/zenodo.835218) and the static HTML summary for the mapping

results (doi:10.6084/m9.figshare.5248453), (3) the SAR11 metapangenome (doi:10.6084/m9.fig-

share.5248459), single-nucleotide and single-amino acid variant reports for 1a.3.V across 74 TARA

Oceans metagenomes (doi:10.6084/m9.figshare.5248447), and (4) SAAVs overlaid on predicted ter-

tiary structures of 58 core 1a.3.V genes (doi:10.6084/m9.figshare.5248432). The URL http://anvi-

server.org/p/4Q2TNo serves an interactive version of the SAR11 metapangenome, and the URL

http://data.merenlab.org/sar11-saavs serves an interactive web page to investigate the link between

SAAVs and predicted protein structures.
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Writing—review and editing; Steven Giovannoni, Supervision, Validation, Project administration,

Writing—review and editing; A Murat Eren, Conceptualization, Resources, Data curation, Software,

Formal analysis, Supervision, Funding acquisition, Validation, Investigation, Visualization,

Methodology, Writing—original draft, Project administration, Writing—review and editing

Author ORCIDs

Tom O Delmont http://orcid.org/0000-0001-7053-7848

Evan Kiefl https://orcid.org/0000-0002-6473-0921

A Murat Eren https://orcid.org/0000-0001-9013-4827

Decision letter and Author response

Decision letter https://doi.org/10.7554/eLife.46497.040

Author response https://doi.org/10.7554/eLife.46497.041

Delmont et al. eLife 2019;8:e46497. DOI: https://doi.org/10.7554/eLife.46497 20 of 26

Research article Genetics and Genomics

http://merenlab.org/software/anvio
http://merenlab.org/data/sar11-saavs
https://doi.org/10.6084/m9.figshare.5248945
https://doi.org/10.6084/m9.figshare.5248945
https://doi.org/10.5281/zenodo.835218
https://doi.org/10.6084/m9.figshare.5248453
https://doi.org/10.6084/m9.figshare.5248459
https://doi.org/10.6084/m9.figshare.5248459
https://doi.org/10.6084/m9.figshare.5248447
https://doi.org/10.6084/m9.figshare.5248432
http://anvi-server.org/p/4Q2TNo
http://anvi-server.org/p/4Q2TNo
http://data.merenlab.org/sar11-saavs
http://orcid.org/0000-0001-7053-7848
https://orcid.org/0000-0002-6473-0921
https://orcid.org/0000-0001-9013-4827
https://doi.org/10.7554/eLife.46497.040
https://doi.org/10.7554/eLife.46497.041
https://doi.org/10.7554/eLife.46497


Additional files

Supplementary files
. Supplementary file 1. Details of SAR11 genomes, marine metagenomes, and metagenomic read

recruitment results. (a) Summary of 103 Tara Oceans and Ocean Sampling Day metagenomes. (b)

Features of 21 SAR11 isolate genomes, clades to which they belong, and their genome-level meta-

genomic read recruitment summaries. (c) Comprehensive summary of metagenomic read recruit-

ment results per SAR11 genome, including the number of recruited reads, mean coverage, relative

distribution, as well as the detection of 21 SAR11 genomes across 103 metagenomes, along with

the total number of single nucleotide variants (SNVs) and single amino acid variants (SAAVs) identi-

fied in each metagenome. (d) Summary of the SAR11 metapangenome and gene cluster member-

ship statistics. (e) Presence/absence summary of gene clusters across SAR11 genomes. Distances

between SAR11 genomes based on (f) their full-length 16S ribosomal RNA genes and (g) whole

genome average nucleotide identity. (h) Relative distribution and abundance of 21 SAR11 genomes,

31 Prochlorococcus genomes, and 957 additional marine population genomes across from three

studies across 103 metagenomes. (i) SAR11 genomes with more than 50X coverage across Tara

Oceans Project and Ocean Sampling Day metagenomes. (j) Detection of individual HIMB83 genes

across metagenomes and whether they belong to 1a.3.V core or not. (k) Summary of the degree of

correlation between percent identity histograms of metagenomics reads recruited by HIMB83 and

environmental data reported per metagenome. (l) SNV and SAAV density of HIMB83 across metage-

nomes. This table also reports the predicted functions of individual HIMB83 genes and their DNA

sequences, and functional summary of HIMB83 genes that represent core 1a.3.V genes and those

that belong to environmental accessory genes of HIMB83.

DOI: https://doi.org/10.7554/eLife.46497.018

. Supplementary file 2. Details and raw data for single-nucleotide variants, single-amino acid variants,

and amino acid substitution types. (a) SNV density of core 1a.3.V genes, (departure from consensus

of >1%). (b) SNV density of core 1a.3.V genes (departure from consensus of >10%) (c) SAAV density

of core 1a.3.V genes (departure from consensus of >10%). (d) Number of SAAVs among core 1a.3.V

genes. (e) Distribution of invariant core 1a.3.V proteins across metagenomes. (f) Frequency and pro-

portion of amino acids in SAAVs. (g) Comprehensive summary statistics and ratios for amino acid

substitution types (AASTs) across metagenomes. (h) Unique coordinates per AAST in 738,324 core

1a.3.V genes (cAASTs) (1) that were covered more than 20X across 74 metagenomes, (2) and in

which a divergence >10% from consensus was observed in the frequency of amino acids. (i) cAASTs

across metagenomes. This table also reports BLOSUM estimates per AAST, and BLOSUM AAST

summary statistics across core 1a.3.V genes.

DOI: https://doi.org/10.7554/eLife.46497.019

. Supplementary file 3. Relationships between SAAVs and protein structures and temperature. (a)

SAAV characteristics, including solvent accessibility for each SAAV belonging to a core 1a.3.V gene

with a successfully predicted protein structure. (b) The correlation of allele frequencies to tempera-

ture for each position containing at least one SAAV. (c) The summary of the proportion of tempera-

ture-correlated and temperature-uncorrelated SAAV positions per core 1a.3.V gene.

DOI: https://doi.org/10.7554/eLife.46497.020

. Supplementary file 4. Details of proteotypes within 1a.3.V. (a) Deep Learning-estimated distances

between 74 metagenomes based on cAASTs reconstructed from 738,324 SAAVs. (b) Six 1a.3.V pro-

teotypes. (c) Summary of all data per metagenome to estimate significant determinants of proteo-

type organization. (d) ANOVA test statistic per sample data category given the six proteotypes.

DOI: https://doi.org/10.7554/eLife.46497.021

. Transparent reporting form

DOI: https://doi.org/10.7554/eLife.46497.022

Data availability

The vast majority of analyses relied on the open-source software platform anvi’o v2.4.0 (available

from http://merenlab.org/software/anvio). The URL http://merenlab.org/data/sar11-saavs serves the

remaining custom code used in our analyses. We made available (1) SAR11 isolate genomes (doi:10.

6084/m9.figshare.5248945), (2) the anvi’o contigs database and merged profile for SAR11 genomes
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across metagenomes (doi:10.5281/zenodo.835218) and the static HTML summary for the mapping

results (doi:10.6084/m9.figshare.5248453), (3) the SAR11 metapangenome (doi:10.6084/m9.fig-

share.5248459), single-nucleotide and single-amino acid variant reports for 1a.3.V across 74 TARA

Oceans metagenomes (doi:10.6084/m9.figshare.5248447), and (4) SAAVs overlaid on predicted ter-

tiary structures of 58 core 1a.3.V genes (doi:10.6084/m9.figshare.5248432). The URL http://anvi-

server.org/p/4Q2TNo serves an interactive version of the SAR11 metapangenome, and the URL

http://data.merenlab.org/sar11-saavs serves an interactive web page to investigate the link between

SAAVs and predicted protein structures.

The following datasets were generated:

Author(s) Year Dataset title Dataset URL
Database and
Identifier

A Murat Eren 2017 Anvi’o split profile for HIMB83
across metagenomes

https://doi.org/10.6084/
m9.figshare.5248435

figshare, 10.6084/m9.
figshare.5248435

A Murat Eren 2017 The SAR11 Metapangenome https://doi.org/10.6084/
m9.figshare.5248459

figshare, 10.6084/m9.
figshare.5248459

A Murat Eren 2017 Anvi’o summary of SAR11 genomes
across metagenomes

https://doi.org/10.6084/
m9.figshare.5248453

figshare, 10.6084/m9.
figshare.5248453

A Murat Eren 2017 Raw SNV and SAAV data for SAR11
1a.3.V

https://doi.org/10.6084/
m9.figshare.5248447

figshare, 10.6084/m9.
figshare.5248447

A Murat Eren 2017 S-LLPA SAAVs https://doi.org/10.6084/
m9.figshare.5248432

figshare, 10.6084/m9.
figshare.5248432

A Murat Eren 2017 Anvi’o merged profile database for
21 SAR11 isolates across
metagenomes

https://doi.org/10.5281/
zenodo.835218

Zenodo, 10.5281/
zenodo.835218

The following previously published datasets were used:

Author(s) Year Dataset title Dataset URL
Database and
Identifier

Shinichi Sunagawa
et al.

2015 Ocean plankton. Structure and
function of the global ocean
microbiome.

https://www.ncbi.nlm.
nih.gov/sra/?term=
PRJEB1787

NCBI SRA,
PRJEB1787

Anna Kopf et al. 2015 The ocean sampling day
consortium

https://www.ebi.ac.uk/
ena/data/view/
PRJEB5129

EMBL-EBI, PRJEB5129
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genome conservation among highly divergent members of the SAR11 clade. mBio 3 e00252-12. DOI: https://
doi.org/10.1128/mBio.00252-12, PMID: 22991429

Hellweger FL, van Sebille E, Fredrick ND. 2014. Biogeographic patterns in ocean microbes emerge in a neutral
agent-based model. Science 345:1346–1349. DOI: https://doi.org/10.1126/science.1254421, PMID: 25214628

Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. 2010. Prodigal: prokaryotic gene recognition
and translation initiation site identification. BMC Bioinformatics 11:119. DOI: https://doi.org/10.1186/1471-
2105-11-119, PMID: 20211023

Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. 2018. High throughput ANI analysis of 90K
prokaryotic genomes reveals clear species boundaries. Nature Communications 9:5114. DOI: https://doi.org/
10.1038/s41467-018-07641-9, PMID: 30504855

Jönsson BF, Watson JR. 2016. The timescales of global surface-ocean connectivity. Nature Communications 7:
11239. DOI: https://doi.org/10.1038/ncomms11239, PMID: 27093522

Käll L, Krogh A, Sonnhammer EL. 2004. A combined transmembrane topology and signal peptide prediction
method. Journal of Molecular Biology 338:1027–1036. DOI: https://doi.org/10.1016/j.jmb.2004.03.016,
PMID: 15111065

Käll L, Krogh A, Sonnhammer EL. 2007. Advantages of combined transmembrane topology and signal peptide
prediction–the phobius web server. Nucleic Acids Research 35:W429–W432. DOI: https://doi.org/10.1093/nar/
gkm256, PMID: 17483518

Källberg M, Wang H, Wang S, Peng J, Wang Z, Lu H, Xu J. 2012. Template-based protein structure modeling
using the RaptorX web server. Nature Protocols 7:1511–1522. DOI: https://doi.org/10.1038/nprot.2012.085,
PMID: 22814390

Kashtan N, Roggensack SE, Rodrigue S, Thompson JW, Biller SJ, Coe A, Ding H, Marttinen P, Malmstrom RR,
Stocker R, Follows MJ, Stepanauskas R, Chisholm SW. 2014. Single-cell genomics reveals hundreds of
coexisting subpopulations in wild Prochlorococcus. Science 344:416–420. DOI: https://doi.org/10.1126/science.
1248575, PMID: 24763590

Kilinc O, Uysal I. 2017. Auto-clustering output layer: automatic learning of latent annotations in neural networks.
arXiv. https://arxiv.org/abs/1702.08648.

Kilinc O, Uysal I. 2018. Learning latent representations in neural networks for clusteringthrough pseudo
supervision and Graph-Based activity regularization. International Conference on Learning Representations.
https://openreview.net/forum?id=HkMvEOlAb.

Konstantinidis KT, DeLong EF. 2008. Genomic patterns of recombination, clonal divergence and environment in
marine microbial populations. The ISME Journal 2:1052–1065. DOI: https://doi.org/10.1038/ismej.2008.62,
PMID: 18580971

Konstantinidis KT, Tiedje JM. 2005. Genomic insights that advance the species definition for prokaryotes. PNAS
102:2567–2572. DOI: https://doi.org/10.1073/pnas.0409727102

Kopf A, Bicak M, Kottmann R, Schnetzer J, Kostadinov I, Lehmann K, Fernandez-Guerra A, Jeanthon C, Rahav E,
Ullrich M, Wichels A, Gerdts G, Polymenakou P, Kotoulas G, Siam R, Abdallah RZ, Sonnenschein EC, Cariou T,
O’Gara F, Jackson S, et al. 2015. The ocean sampling day consortium. GigaScience 4:27. DOI: https://doi.org/
10.1186/s13742-015-0066-5, PMID: 26097697

Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with bowtie 2. Nature Methods 9:357–359.
DOI: https://doi.org/10.1038/nmeth.1923, PMID: 22388286

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome
Project Data Processing Subgroup. 2009a. The Sequence Alignment/Map format and SAMtools. Bioinformatics
25:2078–2079. DOI: https://doi.org/10.1093/bioinformatics/btp352, PMID: 19505943

Li H, Durbin R. 2009b. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics
25:1754–1760. DOI: https://doi.org/10.1093/bioinformatics/btp324, PMID: 19451168

Manrique JM, Jones LR. 2017. Are ocean currents too slow to counteract SAR11 evolution? A next-generation
sequencing, phylogeographic analysis. Molecular Phylogenetics and Evolution 107:324–337. DOI: https://doi.
org/10.1016/j.ympev.2016.11.015, PMID: 27894996

Meziti A, Tsementzi D, Rodriguez-R LM, Hatt JK, Karayanni H, Kormas KA, Konstantinidis KT. 2019. Quantifying
the changes in genetic diversity within sequence-discrete bacterial populations across a spatial and temporal
riverine gradient. The ISME Journal 13 767 779. DOI: https://doi.org/10.1038/s41396-018-0307-6, PMID: 303
97261

Minoche AE, Dohm JC, Himmelbauer H. 2011. Evaluation of genomic high-throughput sequencing data
generated on illumina HiSeq and genome analyzer systems. Genome Biology 12:R112. DOI: https://doi.org/10.
1186/gb-2011-12-11-r112, PMID: 22067484

Delmont et al. eLife 2019;8:e46497. DOI: https://doi.org/10.7554/eLife.46497 24 of 26

Research article Genetics and Genomics

https://doi.org/10.1038/345060a0
http://www.ncbi.nlm.nih.gov/pubmed/2330053
https://doi.org/10.1038/nature04032
http://www.ncbi.nlm.nih.gov/pubmed/16267553
https://doi.org/10.1146/annurev-marine-010814-015934
http://www.ncbi.nlm.nih.gov/pubmed/27687974
https://doi.org/10.1038/nature24287
http://www.ncbi.nlm.nih.gov/pubmed/29045390
https://doi.org/10.1128/mBio.00252-12
https://doi.org/10.1128/mBio.00252-12
http://www.ncbi.nlm.nih.gov/pubmed/22991429
https://doi.org/10.1126/science.1254421
http://www.ncbi.nlm.nih.gov/pubmed/25214628
https://doi.org/10.1186/1471-2105-11-119
https://doi.org/10.1186/1471-2105-11-119
http://www.ncbi.nlm.nih.gov/pubmed/20211023
https://doi.org/10.1038/s41467-018-07641-9
https://doi.org/10.1038/s41467-018-07641-9
http://www.ncbi.nlm.nih.gov/pubmed/30504855
https://doi.org/10.1038/ncomms11239
http://www.ncbi.nlm.nih.gov/pubmed/27093522
https://doi.org/10.1016/j.jmb.2004.03.016
http://www.ncbi.nlm.nih.gov/pubmed/15111065
https://doi.org/10.1093/nar/gkm256
https://doi.org/10.1093/nar/gkm256
http://www.ncbi.nlm.nih.gov/pubmed/17483518
https://doi.org/10.1038/nprot.2012.085
http://www.ncbi.nlm.nih.gov/pubmed/22814390
https://doi.org/10.1126/science.1248575
https://doi.org/10.1126/science.1248575
http://www.ncbi.nlm.nih.gov/pubmed/24763590
https://arxiv.org/abs/1702.08648
https://openreview.net/forum?id=HkMvEOlAb
https://doi.org/10.1038/ismej.2008.62
http://www.ncbi.nlm.nih.gov/pubmed/18580971
https://doi.org/10.1073/pnas.0409727102
https://doi.org/10.1186/s13742-015-0066-5
https://doi.org/10.1186/s13742-015-0066-5
http://www.ncbi.nlm.nih.gov/pubmed/26097697
https://doi.org/10.1038/nmeth.1923
http://www.ncbi.nlm.nih.gov/pubmed/22388286
https://doi.org/10.1093/bioinformatics/btp352
http://www.ncbi.nlm.nih.gov/pubmed/19505943
https://doi.org/10.1093/bioinformatics/btp324
http://www.ncbi.nlm.nih.gov/pubmed/19451168
https://doi.org/10.1016/j.ympev.2016.11.015
https://doi.org/10.1016/j.ympev.2016.11.015
http://www.ncbi.nlm.nih.gov/pubmed/27894996
https://doi.org/10.1038/s41396-018-0307-6
http://www.ncbi.nlm.nih.gov/pubmed/30397261
http://www.ncbi.nlm.nih.gov/pubmed/30397261
https://doi.org/10.1186/gb-2011-12-11-r112
https://doi.org/10.1186/gb-2011-12-11-r112
http://www.ncbi.nlm.nih.gov/pubmed/22067484
https://doi.org/10.7554/eLife.46497
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