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Abstract Marker-gene and metagenomic sequencing have profoundly expanded our ability to

measure biological communities. But the measurements they provide differ from the truth, often

dramatically, because these experiments are biased toward detecting some taxa over others. This

experimental bias makes the taxon or gene abundances measured by different protocols

quantitatively incomparable and can lead to spurious biological conclusions. We propose a

mathematical model for how bias distorts community measurements based on the properties of

real experiments. We validate this model with 16S rRNA gene and shotgun metagenomics data

from defined bacterial communities. Our model better fits the experimental data despite being

simpler than previous models. We illustrate how our model can be used to evaluate protocols, to

understand the effect of bias on downstream statistical analyses, and to measure and correct bias

given suitable calibration controls. These results illuminate new avenues toward truly quantitative

and reproducible metagenomics measurements.

DOI: https://doi.org/10.7554/eLife.46923.001

Introduction
Marker-gene and metagenomic sequencing (jointly, MGS) have transformed the study of biological

communities. Extracting and sequencing total DNA from a community can identify thousands of taxa

along with their genes and potential functions, while sequencing a phylogenetic marker gene (e.g.

16S rRNA) can quantify taxon abundances (Li, 2015; Quince et al., 2017). MGS measurements of

microbial communities are yielding fundamental new insights into the structure and dynamics of

microbial ecosystems and the roles of microbes as drivers of host and ecosystem health

(Zeevi et al., 2015; Graham et al., 2016; Knight et al., 2017; Callahan et al., 2017; Lehman et al.,

2015). Applications of MGS, often under the alternative terms eDNA sequencing or metabarcoding,

increasingly extend beyond microbes to the measurement and monitoring of plants, insects, and ver-

tebrates (Bell et al., 2019; Krehenwinkel et al., 2017; Thomas et al., 2016). MGS methods are

now being adopted in fields ranging from food safety (Cocolin et al., 2018) to wastewater remedia-

tion (Rosso et al., 2018) to forensics (Metcalf et al., 2017) along with biology and medicine. Unfor-

tunately, however, the community compositions measured by MGS are wrong.

MGS measurements are biased: The measured relative abundances of the taxa and genes in the

sample are systematically distorted from their true values (Brooks, 2016; Sinha et al., 2017). Bias

arises because each step in an experimental MGS workflow preferentially measures (i.e. preserves,

extracts, amplifies, sequences, or bioinformatically identifies) some taxa over others (Brooks, 2016;

Hugerth and Andersson, 2017; Pollock et al., 2018). For example, bacterial species differ in how

easily they are lysed and therefore how much DNA they yield during DNA extraction (Morgan et al.,

2010; Costea et al., 2017), and they differ in their number of 16S rRNA gene copies and thus how

much PCR product we expect to obtain per cell (Kembel et al., 2012). Most sources of bias are
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protocol-dependent: Different PCR primers preferentially amplify different sets of taxa (Sipos et al.,

2007), different extraction protocols can produce 10-fold or greater differences in the measured

proportion of a taxon from the same sample (Costea et al., 2017), and almost every choice in an

MGS experiment has been implicated as contributing to bias (D’Amore et al., 2016; Hugerth and

Andersson, 2017; Sinha et al., 2017; Pollock et al., 2018). Every MGS experiment is biased to

some degree, and measurements from different protocols are quantitatively incomparable

(Nayfach and Pollard, 2016; Hiergeist et al., 2016; Mallick et al., 2017; Sinha et al., 2017;

Gibbons et al., 2018).

The biases of MGS protocols and the error those biases introduce remain unknown. Thus we do

not know whether the measured taxonomic or gene compositions derived from MGS are accurate,

or to what extent the biological conclusions derived from them are valid. It is common to assume

that conclusions drawn from measurements using the same protocol are robust to MGS bias. But

simulated examples have shown that bias can lead to qualitatively incorrect conclusions about which

taxa dominate different samples (Kembel et al., 2012; Edgar, 2017), which ecosystems are more

similar (Kembel et al., 2012), and which taxa are associated with a given disease (Brooks, 2016).

Furthermore, variation in bias limits our ability to make the direct comparisons between results from

different experiments that are central to the scientific process. It has been suggested that these

issues would be circumvented if bias were the same in every experiment, leading to a number of

efforts to define and promulgate standardized MGS protocols (Gilbert et al., 2014; Costea et al.,

2017). However, methodological standardization has several limitations. For example, it can be

overly restrictive given the variety of ecosystems and biological questions where MGS methods are

applied as well as the continual advance in technology, and unmeasured technical variability can

introduce experiment-specific biases into nominally standardized methods (Yeh et al., 2018). More

important, standardized protocols remain biased and thus still do not provide accurate measure-

ments of the underlying communities.

Current attempts to counter bias are limited and of unknown efficacy because of our poor under-

standing of how bias across the full experimental workflow distorts MGS measurements. Hundreds

of published studies compare MGS measurements of defined samples to their expected composition

in an effort to characterize the bias of the given protocol (many cited in Hugerth and Andersson,

2017; Pollock et al., 2018). But this approach has limited value so long as we do not know how the

error observed in one sample translates to differently composed samples. If we understood how

bias acts across samples we might be able to estimate the effect of bias from measurements of sam-

ples of defined composition and use those estimates to calibrate measurements of samples of inter-

est to their true values (Thomas et al., 2016; Hardwick et al., 2017). Alternatively, natural

communities measured by multiple experiments could be used to calibrate measurements between

experiments using different protocols. A quantitative understanding of how bias distorts MGS meas-

urements would also elucidate how statistical analyses and diagnostics are affected by bias and sug-

gest more robust alternatives.

Here we propose and test a mathematical model of how bias distorts taxonomic compositions

measured by MGS from their true values. In our model, bias manifests as a multiplication of the true

relative abundances by taxon- and protocol-specific factors that are constant across samples of vary-

ing compositions. We validate key components of this model, including that bias acts independently

on each taxon in a sample, in 16S rRNA gene and shotgun metagenomic sequencing data from bac-

terial communities of defined composition. We use our proposed model to quantify bias, to partition

bias into steps such as DNA extraction and PCR amplification, and to reason about the effects of

bias on downstream statistical analyses. Finally, we demonstrate how this model can be used to cor-

rect biased MGS measurements when suitable controls are available.

Results

A mathematical model of MGS bias
Consider a marker-gene or metagenomic sequencing (MGS) experiment as a multi-step transforma-

tion that takes as input biological material and provides as output the taxonomic profile correspond-

ing to each sample—the set of measured taxa and their associated relative abundances (Figure 1A).

Each step introduces systematic and random errors that cumulatively lead to error in the measured
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taxonomic profiles. Bias is a particular, ubiquitous form of systematic error that arises from the differ-

ent efficiencies with which various taxa are measured (i.e. preserved, extracted, amplified,

sequenced, or bioinformatically identified and quantified) at each step.

Many bias mechanisms are thought to act multiplicatively on the taxon abundances, at least to

first approximation. For instance, the DNA concentration of a taxon after DNA extraction equals its

initial cell concentration multiplied by its DNA yield per cell. This per-cell yield indicates the effi-

ciency of extraction for the taxon, which is is expected to depend on factors such as genome size

and the structure of the taxon’s cell wall (Morgan et al., 2010). Therefore, we expect extraction effi-

ciencies to vary among taxa, but be approximately constant for any specific taxon across samples

treated with the same protocol. Other multiplicative sources of bias include variation in PCR binding

and amplification efficiencies (Wagner et al., 1994; Suzuki and Giovannoni, 1996; Polz and Cava-

naugh, 1998; Edgar, 2017) and in marker-gene copy number (Kembel et al., 2012).

Inspired by these observations, we propose that at every step in an MGS experiment, the output

abundances of individual taxa differ from the input abundances by taxon-specific multiplicative fac-

tors (Figure 1), which we refer to as the measurement efficiencies in that step. The measurement

efficiencies are determined by the interaction between the experimental protocol and the biologi-

cal/chemical/physical/informatic state of each taxon in that step, and are therefore independent of

the composition of the sample. Typical MGS experiments only measure relative rather than absolute

abundances (Gloor et al., 2017), and the change in the relative abundances during a step depend

only on the relative efficiencies. This yields the following mathematical model of bias (Figure 1): The

relative abundances measured in an MGS experiment are equal to the input relative abundances

multiplied by taxon-specific but composition-independent factors (the relative efficiencies) at every

step.

The mathematical accounting of bias is simplified by the use of compositional vectors: vectors for

which only the ratios among elements carry meaning. The relative abundances and relative efficien-

cies can be described as compositional vectors with K non-negative elements, where K is the num-

ber of possible taxa. Two vectors X and Y are compositionally equivalent, denoted X ~Y, if

X ¼ aY for some positive constant a because the ratios among the elements of X and Y are the

same: Xi=Xj ¼ aYi=aYj (Barceló-Vidal et al., 2001). A compositional vector X of relative abundances

can be converted to proportions, which we denote PrðXÞ, by dividing the taxon abundances by their

sum, PrðXÞ ¼ X=
P

i Xi, without changing its meaning in terms of the ratios among taxa. For exam-

ple, the vector of observed proportions in Figure 1 of (4%, 72%, 24%) is compositionally equivalent

to the vector (1, 18, 6) obtained by dividing all abundances by that of the first taxon.

For a given sample, let A be the vector of actual relative abundances and O be the vector of

observed (measured) relative abundances. Subscripts denote specific taxa; for example Ai is the
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Figure 1. Bias arises throughout an MGS workflow, creating systematic error between the observed and actual

compositions. Panel A illustrates a hypothetical marker-gene measurement of an even mixture of three taxa. The

observed composition differs from the actual composition due to the bias at each step in the workflow. Panel B

illustrates our mathematical model of bias, in which bias multiplies across steps to create the bias for the MGS

protocol as a whole.
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relative abundance of taxon i. Similarly, let B
ðPlÞ be the vector of the relative efficiencies of each

taxon at step l in Protocol P. (Interactions between steps are allowed; see Appendix 1.) Our model

of bias can be stated mathematically as

O~A �BðP1Þ �BðP2Þ � � � � �BðPLÞ; (1)

where � denotes element-wise multiplication of two vectors (Figure 1). We define the bias of Proto-

col P by the product over all steps, BðPÞ
~B

ðP1Þ �BðP2Þ � � � � �BðPLÞ. The observed composition is then

simply the actual composition multiplied by the protocol’s bias,

O~A �BðPÞ: (2)

When considering samples measured by the same protocol, we will drop the superscript P and sim-

ply refer to the total protocol bias as B.

From Equation 2 we see that the ratio between the observed relative abundances of any two

taxa i and j is

Oi

Oj

¼
AiBi

AjBj

; (3)

and the observed proportion of taxon i is

PrðOÞi ¼
Oi

PK
j¼1

Oj

¼
PrðAÞiBi

PK
j¼1

PrðAÞjBj

: (4)

The denominator,
PK

j¼1
PrðAÞjBj, is the sample mean efficiency—the average efficiency of the sam-

pled individuals.

The systematic error in the measured composition under our model is O=A ~B, where = denotes

element-wise division and is referred to as the compositional difference (Aitchison, 1992). The com-

positional difference unites the experimental notion of bias—variation in the efficiencies with which

different taxa are measured—with the statistical notion of bias—the difference between the

expected value of an estimate and the true value—with the understanding we are considering the

compositional difference rather than the conventional Euclidean difference between compositions.

Properties and implications of the model
Bias is fully described by the relative efficiencies of the total workflow
The bias of individual steps only influences the measurement error through their product, BðPÞ. Con-

sequently, knowledge of the total protocol bias is sufficient to determine how bias affects the mea-

sured taxonomic profiles even if the biases of the individual protocol steps (the B
ðPlÞ) remain

unknown. The bias BðPÞ has just K�1 parameters, denoting the relative efficiencies with which the K

taxa of interest are measured by the protocol as a whole, and fully describes the effect of bias on

measurements of those K taxa in all samples.

Systematic error in taxon ratios, but not in taxon proportions, is
independent of sample composition
The fold-error in the observed ratios of the abundances of taxon i and taxon j relative to the actual

ratio in their abundances is ðOi=OjÞ=ðAi=AjÞ ¼ Bi=Bj (Equation 3). This error depends only on the ratio

between the total protocol efficiencies of taxon i and taxon j and is independent of the rest of the

sample. Critically, this means that the systematic error in taxon ratios caused by bias will remain the

same in samples of varying composition.

In contrast, the error in the proportion of a taxon depends on the sample composition. The fold-

error in the observed proportion of taxon i relative to its actual proportion is

PrðOÞi
PrðAÞi

¼
Bi

PK
j¼1

PrðAÞjBj

: (5)

This error depends on the sample mean efficiency
P

jPrðAÞjBj and thus depends on the proportions
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of all the other taxa in the sample. Intuitively, bias leads to over-estimation of taxa that are more eas-

ily measured than the community average in the given sample. As a result, the same taxon can be

over-estimated in samples dominated by low-efficiency taxa and under-estimated in samples domi-

nated by high-efficiency taxa.

To illustrate, we consider the hypothetical measurement of a second community sample (Sample

S2 in Figure 2) alongside that of the even sample from Figure 1 (Sample S1 in Figure 2). The domi-

nance of the low-efficiency Taxon 1 in Sample S2 substantially lowers its sample mean efficiency com-

pared to the even-mixture Sample S1, changing the fold-error in all taxon proportions. In particular,

Taxon 3 changes from having a lower-than-average efficiency in Sample S1 to a higher-than-average

efficiency in Sample S2. As a result, its observed proportion is lower than its actual proportion in

Sample S1, but higher than its actual proportion in Sample S2! Yet the fold-error in the ratios among

taxa is identical in both samples and equal to the bias (Figure 2, bottom row).

Analyses based on fold-changes in taxon ratios are insensitive to bias, while
analyses based on taxon proportions can give spurious results
Although it is widely understood that bias distorts individual community profiles, it is often thought

to effectively ‘cancel out’ when analyzing the differences between samples that have been measured

by the same protocol. Unfortunately, simulating measurement under our model easily provides

examples where common analyses give qualitatively incorrect results. In Figure 2, for example, bias

causes the uneven Sample S2 to appear to have a more even distribution of taxa than the perfectly

even Sample S1. As a result, any analysis of alpha diversity that incorporates evenness (e.g. the Shan-

non or Inverse Simpson indices) will incorrectly conclude that Sample S2 is more diverse. The previ-

ous section provides a general explanation as to why, for many analyses, bias does not simply

cancel: The underlying statistics are functions of the individual taxon proportions, the error of which

varies inconsistently across samples. Consequently, proportion-based analyses can lead to qualita-

tively incorrect conclusions. As a further example, the actual proportion of Taxon 3 decreases from

Sample S1 to Sample S2 in Figure 2, but the measured proportion increases!

Observed

4%

72%

24%

Actual

33%

33%

33%

Proportions

Ratios to
Taxon 1

Actual

75%

5%

20%

Observed

26%

32%

42%

ActualActual Bias Observed ObservedBias

Taxon 1

Taxon 2

Taxon 3

Taxon 1

Taxon 2

Taxon 3

Figure 2. Consistent multiplicative bias causes systematic error in taxon ratios, but not taxon proportions, that is

independent of sample composition. The even community from Figure 1 and a second community containing the

same three taxa in different proportions are measured by a common MGS protocol. Measurements of both

samples are subject to the same bias, but the magnitude and direction of error in the taxon proportions depends

on the underlying composition (top row). In contrast, when the relative abundances and bias are both viewed as

ratios to a fixed taxon (here, Taxon 1), the consistent action of bias across samples is apparent (bottom row).
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In contrast, the fold-error in taxon ratios is independent of sample composition, and fold-changes

in taxon ratios across samples are insensitive to bias. Consider the fold-change in the ratio of a pair

of taxa i and j between two samples s and t. Following Equation 3, the observed change is

OiðsÞ

OjðsÞ

,

OiðtÞ

OjðtÞ
¼
AiðsÞBi

AjðsÞBj

,

AiðtÞBi

AjðtÞBj

¼
AiðsÞ

AjðsÞ

,

AiðtÞ

AjðtÞ
; (6)

and thus equals the true change. That is, the fold-change in taxon ratios between samples is invari-

ant to bias. More generally, the compositional difference between samples is invariant to multiplica-

tion by a fixed vector (Aitchison, 1992) and thus to bias,

OðsÞ =OðtÞ~ ðAðsÞ �BÞ = ðAðtÞ �BÞ~AðsÞ =AðtÞ: (7)

Returning to the samples in Figure 2, the actual and observed ratios of Taxon 2 to Taxon 1 both

change by the same factor of 1/15 from Sample S1 to Sample S2, and the actual and observed com-

positional difference between samples is (1, 1/15, 4/15). Equation 7 shows that any analysis that

depends only on the compositional differences between samples will be invariant to bias under our

model.

The systematic difference between measurements from different protocols
is given by the difference in their biases
Consider Protocol P with bias B

ðPÞ and reference Protocol R with bias B
ðRÞ. If both protocols mea-

sure the same sample with actual composition A, the compositional difference between their meas-

urements is

O
ðPÞ=OðRÞ

~A �BðPÞ = ðA �BðRÞÞ ¼B
ðPÞ =BðRÞ: (8)

The actual composition drops from the equations and the difference in their measurements is simply

the compositional difference in the biases of each protocol, which we refer to as the differential bias

B
ðP=RÞ �B

ðPÞ=BðRÞ of Protocol P relative to the reference Protocol R. Measurements on common sam-

ples are related to one another by O
ðPÞ

~O
ðRÞ �BðP=RÞ, independent of the actual composition of the

sample. Usefully, differential bias is mathematically equivalent to bias if we consider the ‘reference’

compositions measured by Protocol R as the truth.

Estimates of bias from control samples can be used to correct
measurements of other samples
The consistency of bias across samples makes it possible to estimate bias from samples of known

composition, referred to as calibration controls, and to use that estimate B̂ to calibrate, or remove

the bias from, measurements of other samples with unknown compositions. A point estimate of the

bias of K taxa present with known relative abundances in control sample c is given by the composi-

tional difference between the observed and actual compositions, B̂ ~OðcÞ=AðcÞ. In Materials and

methods, we describe a general method for estimating bias from multiple controls by maximizing

the explained compositional error in the control measurements. Measurements from controls con-

taining different taxa can be combined into a single estimate of bias provided that the controls have

sufficient taxonomic overlap (Appendix 2).

Once bias has been estimated for a set of taxa, it can be used to calibrate the relative abundan-

ces of those taxa in an unknown sample. Letting O denote the measured relative abundances for

these taxa, the estimate Â of the actual relative abundances is

Â~O = B̂: (9)

That is, the calibrated abundances are found by compositionally subtracting the estimated bias from

the original measurement. Through its use of compositional vectors, Equation 9 automatically

accounts for differences in composition between the controls and the target sample. Calibrated esti-

mates of the true taxon proportions are obtained by normalizing the elements of Â to sum to 1.

An alternative form of calibration we call reference calibration can be performed using control

samples whose true composition is unknown but that have been measured by a reference Protocol
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R. Estimation and calibration proceed as before but with the control composition AðcÞ replaced by

the reference measurement O
ðRÞðcÞ. In this case, the calibrated composition is an estimate of the

measurement we would expect if the target sample had been measured by the reference protocol.

Testing the model with mock communities
We tested our model of bias in data from two studies, Brooks et al. (2015) and Costea et al.

(2017), that evaluated the bias of marker-gene and shotgun metagenomic sequencing, respectively,

using mock microbial communities in samples of varying composition.

Marker-gene sequencing of even mixtures of various bacterial taxa
Brooks et al. (2015) generated taxonomic profiles from 71 samples of 58 unique mock communities

by amplicon sequencing of the V1-V3 region of the 16S rRNA gene. Each unique mock community

consisted of an even mixture of between two and seven bacterial taxa. Each sample was measured

in three experiments employing a common experimental workflow, but beginning from different

starting points: even mixtures of cells, of extracted DNA, and of PCR product. The authors reported

large systematic errors in the taxon proportions measured from the cell and DNA mixtures, which

they explained in part by a highly parameterized linear model with many interaction terms. Here we

re-analyze the data from this study in order to evaluate our model of bias and its performance rela-

tive to alternatives.

The proportions measured from the cell-mixture mock communities differed greatly from the

expected even proportions of each taxon (Figure 3A). The ratios between pairs of taxa also

diverged sharply from the ratio of 1 expected in these even mixtures (Figure 3D). However, and as

predicted by our model (see Properties and implications), the error in the ratios was consistent

across samples (Figure 3D) while the error in the proportions varied dramatically in both magnitude

and direction (Figure 3C).

Our model explained almost all of the error in the measured compositions of the cell mixtures.

We estimated bias from all samples by a simple point-estimation procedure (Materials and methods;

Table 1). We then used the estimated bias to predict the observed compositions from the expected

even mixtures using Equation 2. The measured pairwise ratios closely matched the ratios predicted

by our model—the ratios of the efficiencies of the two taxa (black crosses in Figure 3D). The propor-

tions predicted from the fitted model reduced the mean squared error by 98.8% and closely

matched the observed proportions (Figure 3B).

The DNA and PCR-product mixture experiments confirmed that our model can also effectively

describe partial MGS workflows. The compositions measured from DNA mixtures were affected by

large systematic errors that were well explained by our model, while the systematic error in composi-

tions measured from the PCR mixtures was small compared to the random errors (Figure 3—figure

supplement 1 and Figure 3—figure supplement 2). Notably, the bias in DNA mixtures substantially

differed from the bias in the cell mixtures (Table 1 and Figure 3—figure supplement 1). This obser-

vation suggests that PCR (performed in both experiments) and DNA extraction (performed only in

the cell-mixture experiment) are both large, independent sources of bias that each act in accordance

with our model.

Our model better explains the data from the cell and DNA mixtures than proposed alternatives

while employing a small number of parameters (6, equal to the number of taxa minus 1). Two recent

studies (Krehenwinkel et al., 2017; Bell et al., 2019) used simple linear regression of the observed

proportion of a taxon against its actual proportion, which uses 7 or 14 parameters for all taxa

depending on whether intercept terms are included. Such models do not constrain the observed

proportions to the [0, 1] interval. More critically, they cannot explain that the observed proportion of

a given taxon can be higher than or lower than its actual proportion in samples of different composi-

tion (e.g. L. crispatus in Figure 3C), while such behavior is a straightforward consequence of our

model. Brooks et al. (2015) attempted to overcome this limitation by adding second and third-

order interaction terms between taxa to the linear model. This model obtains a close fit at the cost

of vastly increased model complexity—441 parameters for all taxa instead of just 6. As a result, the

interactions model is likely to overfit and poorly predict the measured compositions with different

compositions from which it is trained on. Figure 3—figure supplement 3 compares the fit of our

model to the simple linear model and the linear interactions model.
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Figure 3. Our model of bias explains the systematic error observed in the Brooks et al. (2015) cell-mixture experiment. The top row compares the

observed proportions of individual taxa to the actual proportions (Panel A) and to those predicted by our fitted bias model (Panel B). Panel A shows

significant error across all taxa and mixture types that is almost entirely removed once bias is accounted for in Panel B. Panel C shows the observed

error in proportions of individual taxa, while Panel D shows the error in the ratios of pairs of taxa for five of the seven taxa. The ratio predicted by the

fitted model is given by the black cross in Panel D. As predicted by our model, the error in individual proportions (Panel C) depends highly on sample

composition, while the error in ratios (Panel D) does not.

DOI: https://doi.org/10.7554/eLife.46923.004

The following figure supplements are available for figure 3:

Figure supplement 1. The observed error in taxon ratios for all three mixture experiments.

DOI: https://doi.org/10.7554/eLife.46923.005

Figure supplement 2. Observed vs. expected proportions under no bias, copy-number bias only, and the estimated bias.

DOI: https://doi.org/10.7554/eLife.46923.006

Figure supplement 3. Comparison between the simple linear model, the linear interactions model of Brooks et al. (2015), and our model.

DOI: https://doi.org/10.7554/eLife.46923.007
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Metagenomic sequencing of fecal samples with a spike-in mock community
The Phase III experiment of Costea et al. (2017) performed shotgun metagenomic sequencing of a

cellular mock community spiked into fecal samples. The mock spike-in contained 10 bacterial taxa

with known abundance spanning 2.5 orders of magnitude and (unintentionally) an Escherichia/Shi-

gella contaminant with unknown true abundance. It was added to fecal specimens from eight indi-

viduals as well as a blank ‘mock-only’ sample. DNA was then extracted from each specimen using

three distinct DNA extraction protocols (Protocols H, Q, and W) and measured via a common shot-

gun sequencing protocol. Here we test whether bias among the spike-in taxa is consistent across the

varying backgrounds of the nine specimens.

Taxonomic profiles measured by MetaPhlAn2 (Materials and methods) showed substantial varia-

tion in the native bacterial composition across fecal specimens and in the proportion formed by the

spike-in, both of which were protocol-dependent (Figure 4A). In contrast, the observed relative

abundances of the spike-in taxa were consistent across specimens for a given protocol (Figure 4A).

This observation is what we expect given that the true spike-in composition is fixed, since our model

predicts that the error in the ratios among the spike-in taxa is independent of the presence and

abundance of other taxa. Figure 4A shows abundances relative to the geometric mean of the 10

mock taxa. The average difference between the observed and actual abundance for each taxon esti-

mates the bias of the protocol in terms of the taxon’s efficiency relative to the average taxon (Fig-

ure 4—figure supplement 1 and Table 2). The bias shows qualitative differences between

protocols, with certain mock taxa being enriched by one protocol and diminished by another. Also,

the consistent difference in the observed relative abundance of the contaminant indicates a consis-

tent differential bias between Protocol W and the other two protocols of the contaminant relative to

the 10 mock taxa. These results indicate a consistent and unique bias associated with each protocol

when bias is measured in accordance to our model.

Applications of the model
Calibration
Our model implies that a protocol’s bias can be estimated from control sample(s) of known composi-

tion and used to calibrate (through Equation 9) the measured compositions of unknown samples

Table 1. Estimated bias for the three Brooks et al. (2015) mixture experiments.

The first three columns show the bias estimated in each mixture experiment; the second three col-

umns show the bias estimated for individual protocol steps from the mixture estimates. In each case,

bias is shown as relative to the average taxon; that is, the efficiency of each taxon is divided by the

geometric mean efficiency of all seven taxa. The last three rows summarize the multiplicative error in

taxon ratios due to bias and noise. Taxa are ordered by decreasing efficiency in the cell mixtures.

Abbreviations: PCR prod.: PCR product; Seq. + Inf.: Sequencing + Informatics.

Mixtures Steps

Taxon Cells DNA PCR prod. Extraction PCR Seq.+Inf.

Lactobacillus iners 4.7 2.3 1.2 2.0 1.9 1.2

Sneathia amnii 4.6 2.4 1.3 1.9 1.8 1.3

Lactobacillus crispatus 2.3 0.5 0.9 4.3 0.6 0.9

Prevotella bivia 1.8 0.4 0.9 4.6 0.4 0.9

Atopobium vaginae 0.3 1.1 1.0 0.3 1.0 1.0

Streptococcus agalactiae 0.2 2.0 0.9 0.1 2.2 0.9

Gardnerella vaginalis 0.2 0.4 0.8 0.4 0.5 0.8

Max pairwise bias 29.3 6.1 1.6 36.6 5.2 1.6

Avg. pairwise bias 5.6 2.7 1.2 5.5 2.3 1.2

Avg. pairwise noise 1.2 1.2 1.3 — — —

DOI: https://doi.org/10.7554/eLife.46923.008

McLaren et al. eLife 2019;8:e46923. DOI: https://doi.org/10.7554/eLife.46923 9 of 31

Research article Computational and Systems Biology Microbiology and Infectious Disease

https://doi.org/10.7554/eLife.46923.008
https://doi.org/10.7554/eLife.46923


towards their true compositions. In the Brooks et al. (2015) cell mixtures, we estimated the bias

from two samples containing all seven taxa and used this estimate to calibrate the measurements of

the other 69 samples. Calibration reduced the mean squared error of the proportions in the cali-

brated samples by 92.6% and the average Bray-Curtis dissimilarity between the actual and observed

compositions from 0.35 to 0.08. In the Costea et al. (2017) dataset, the measured composition of

the spike-in mock community deviated from the truth in a protocol-specific fashion (Figure 5, top

row). We estimated the bias of each protocol on the mock taxa from three fecal specimens and used

those estimates to calibrate all samples (Materials and methods). Calibration removed most of the

systematic error and greatly increased the accuracy of the measurements (Figure 5, middle row).

Random error, or noise, in the measurement process creates error in the estimated bias that

propagates into the calibrated measurements. To evaluate the effect of noise on the accuracy of

bias estimation, we picked the protocol with an intermediate noise level (Protocol H) and estimated

the standard error in the relative efficiencies as a function of the number of control samples (Fig-

ure 5—figure supplement 1). Because noise was much weaker than bias, standard errors were less

than the bias even for a single control measurement, suggesting substantial benefits from calibration

even with a limited number of control observations. The results further suggest that three or four

control measurements for a taxon substantially reduces the risk of inaccurate bias estimates due to

occasional large random errors.

Differential bias between experiments (Equation 8) can be estimated from samples common to

each experiment, even if the actual composition of the common samples is unknown. Differential

bias can then be used to calibrate measurements from various experiments to those of a chosen ref-

erence protocol, thereby making measured compositions from different experiments quantitatively
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Figure 4. Bias of the mock spike-in in the Costea et al. (2017) experiment is consistent across samples with varying background compositions. Panel A

shows the variation in bacterial composition across protocols and specimens (Labels 1 through 8 denote fecal specimens; M denotes the mock-only

specimen) and Panel B shows the relative abundance of the 10 mock taxa and the spike-in contaminant (dots) against the actual composition (black

line). In Panel A, color indicates source (mock, contaminant, or native gut taxon) and Family for native bacterial taxa with a proportion of 0.02 in at least

one sample. Families are colored by phylum (Red: Actinobacteria, Green: Bacteroidetes, Blue: Firmicutes, Orange: Verrucomicrobia). In Panel B,

abundance is divided by the geometric mean of the mock (non-contaminant) taxa in that sample.

DOI: https://doi.org/10.7554/eLife.46923.009

The following figure supplement is available for figure 4:

Figure supplement 1. Estimated bias for the mock taxa for the three protocols.

DOI: https://doi.org/10.7554/eLife.46923.010
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comparable even if their fidelity to the true compositions remains unclear. We illustrate calibration

to a reference protocol using the multi-protocol design of the Costea et al. (2017) experiment (Fig-

ure 5). We defined the measurements by Protocol W as the reference composition that was then

used in place of the actual composition in our calibration procedure. This greatly reduced the sys-

tematic differences between measurements from different protocols, without necessarily improving

the accuracy compared to the actual composition (Figure 5, bottom row).

Bias measurement as a means of evaluating and improving protocols
Under our model, the compositional vector of relative efficiencies completely describes the effect of

bias in samples of any composition, and thus is the correct way to measure and evaluate bias.

For the purpose of selecting less-biased protocols, the overall magnitude of bias can be quanti-

fied through the use of ratio-based summary statistics. We provide two such statistics for the

Brooks et al. (2015) experiment in Table 1 and the Costea et al. (2017) experiment in Table 2. The

maximum pairwise bias, equal to the geometric range of the relative efficiencies, indicates the maxi-

mum error due to bias in the ratio of any two taxa. The average pairwise bias indicates the magni-

tude of the multiplicative error averaged over all pairs of taxa. For the three shotgun protocols in

Table 2, these statistics indicate that Protocol H has a much larger bias than the other two protocols,

though one should keep in mind that the large values for Protocol H are heavily influenced by its

extremely low efficiency for L. plantarum and high efficiency for F. nucleatum. Summarizing the

residual error in the control samples leads to an analogous average pairwise measure of the noise,

or random error, associated with each protocol, which we also include in the tables. The noise mea-

sure for the three shotgun protocols indicates that, in this case, the least biased protocol (Protocol

Q) also yielded the noisiest measurements of the mock taxa. However, the average noise of the

Table 2. Estimated bias and differential bias among the spike-in taxa for the three protocols

(Protocols H, Q, and W) in the Costea et al. (2017) experiment.

The first three columns show the bias of the given protocol for the 10 mock taxa; the second three

columns show the differential bias between protocols for the 10 mock taxa and the contaminant. In

each case, bias is shown as relative to the average mock (non-contaminant) taxon; that is, the effi-

ciency of each taxon is divided by the geometric mean efficiency of the 10 mock taxa. The last three

rows summarize the multiplicative error in taxon ratios due to bias and noise; the contaminant is

excluded from these statistics to allow direct comparison between bias and differential bias. Taxa are

ordered as in Figure 4B.

Protocol Protocol/Reference

Taxon H Q W H/Q H/W Q/W

Prevotella melaninogenica 2.81 1.55 1.37 1.82 2.05 1.12

Clostridium perfringens 1.18 0.49 1.14 2.41 1.04 0.43

Salmonella enterica 1.77 2.29 0.79 0.77 2.25 2.90

Clostridium difficile 0.11 0.09 0.22 1.24 0.49 0.40

Lactobacillus plantarum 0.02 0.77 0.35 0.02 0.05 2.18

Vibrio cholerae 2.10 1.16 0.89 1.81 2.37 1.31

Clostridium saccharolyticum 1.21 1.44 0.59 0.84 2.05 2.45

Yersinia pseudotuberculosis 1.46 1.35 0.66 1.08 2.21 2.05

Blautia hansenii 0.54 0.74 1.80 0.72 0.30 0.41

Fusobacterium nucleatum 46.29 4.98 16.51 9.30 2.80 0.30

Contaminant — — — 0.89 2.13 2.38

Max pairwise bias 2751 56 74 428 59 10

Avg. pairwise bias 9.7 3.2 3.5 4.7 3.9 2.8

Avg. pairwise noise 1.3 1.5 1.1 1.5 1.3 1.5

DOI: https://doi.org/10.7554/eLife.46923.011
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Figure 5. Calibration can remove bias and make MGS measurements from different protocols quantitatively comparable. For the sub-community

defined by the mock spike-in of the Costea et al. (2017) dataset, we estimated bias from three specimens (the estimation set ‘Est’) and used the

estimate to calibrate all specimens. The left column shows taxon relative abundances as in Figure 4B and the right column shows the first two principal

components from a compositional principle-components analysis (Gloor et al., 2017). The top row shows the measurements before calibration; the

middle, after calibration to the actual composition; and the bottom, after calibration to Protocol W.

DOI: https://doi.org/10.7554/eLife.46923.012

The following figure supplement is available for figure 5:

Figure supplement 1. Precision in the bias estimate vs. the number of control samples for Protocol H.

DOI: https://doi.org/10.7554/eLife.46923.013
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protocols decreases with the propensity of the protocol to sequence the mock over the native gut

taxa (Figure 4A), indicating that the greater noise of Protocol Q may be at least partially an artifact

of limited sequencing depth.

Given suitable experimental designs, the estimated vectors of relative efficiencies can be used to

quantify the bias attributable to specific parts of the workflow (Materials and methods and Appendix

1). In the Brooks et al. (2015) study, the same MGS workflow was run from different starting points:

cells, extracted DNA, and PCR product. Comparing the bias resulting from different starting points

leads to estimates of the bias attributable to DNA extraction, PCR amplification, and sequencing

plus (bio)informatics (Figure 3; Figure 6A). For instance, dividing the relative efficiencies measured

in the cell mixtures by those in the PCR mixtures provides an estimate of the bias that arises during

DNA extraction. These estimates indicate that for these taxa and workflow, DNA extraction is the

largest single source of bias, although PCR bias was also substantial. We can alternately understand

these estimates through their predicted effect on the composition of an even mixture of taxa as it

moves through the experimental workflow (Figure 6B), which clearly shows how extraction and PCR

can oppose each other or work together. PCR and extraction bias acted in opposite directions for

some taxa, such as L. crispatus and P. bivia, and in the same direction for others, such as G. vaginalis

and for L. iners, leading to more moderate or extreme total relative efficiencies, respectively.

In the Costea et al. (2017) study, the same MGS workflow with different DNA extraction proto-

cols was used to measure a common set of samples. This design implies that the differential bias

between protocols (Table 2) can be attributed specifically to the effect of extraction (including possi-

ble effects of extraction on downstream steps; see Appendix 1). The differential bias of Protocol H

relative to Protocols Q or W is substantially less than its bias (relative to the actual abundances), as

can be seen from the summary statistics in Table 2 and visually in Figure 4—figure supplement 1.

This observation suggests that components of bias are shared between protocols, either due to simi-

larities among the extraction protocols or bias from shared steps such as library preparation.
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the workflow, starting from an even mixture of all seven taxa, obtained by sequentially multiplying the best estimates in Panel A.

DOI: https://doi.org/10.7554/eLife.46923.014

The following figure supplement is available for figure 6:

Figure supplement 1. PCR bias and total bias vs. bias predicted by 16S copy number.

DOI: https://doi.org/10.7554/eLife.46923.015
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Estimates of bias can be used to test mechanistic hypotheses and proposed methods for predict-

ing bias. To demonstrate this application, we considered the effect of 16S copy number (CN) on

bias in the Brooks et al. (2015) data. We estimated 16S CN per genome and per bp for the seven

taxa using available CN and genome size estimates (Materials and methods; Table 3). We then com-

pared the bias predicted by CN to the estimated PCR bias and the estimated bias of the total proto-

col without CN correction (Figure 6—figure supplement 1). 60% of the variance in estimated PCR

bias was explained by CN variation (log relative efficiency scale; coefficient of determination

» 0:60; p» 0:021 by permutation test). In contrast, total bias was poorly explained by CN variation

(coefficient of determination » 0:10; p » 0:23 by permutation test). Accordingly, CN correction

reduced the mean squared error in the taxon proportions by about half in the DNA mixtures but

only slightly in the cell mixtures (Figure 3—figure supplement 2). The limited effect of CN correc-

tion can also be seen in Figure 6B. These results indicate that CN variation is just one component of

PCR bias, which itself is just one component of total bias, and thus even perfect correction of CN

bias may not substantially ameliorate total bias in marker-gene sequencing experiments.

Discussion
The lack of a rigorous understanding of how bias distorts marker-gene and metagenomic sequenc-

ing (jointly, MGS) measurements stands in the way of accurate and reproducible community-compo-

sition measurements. Previous analyses of bias in MGS experiments have largely relied on

descriptive statistical models (Brooks et al., 2015; Sinha et al., 2017; Krehenwinkel et al., 2017;

Bell et al., 2019) whose parameters cannot be identified with biophysical quantities that one might

expect to apply to differently composed samples. Failure to develop more mechanistic models may

have stemmed from the seeming hopelessness of accounting for the many verified sources of bias.

Here we proposed a mathematical model of bias in MGS experiments as a set of taxon-specific fac-

tors (the relative efficiencies) that multiply the true relative abundances to produce the measured rel-

ative abundances. Our model was inspired by the observation that many sources of bias, such as

differences in DNA extraction efficiency (Morgan et al., 2010), PCR primer binding and amplifica-

tion efficiency (Wagner et al., 1994; Suzuki and Giovannoni, 1996; Polz and Cavanaugh, 1998;

Edgar, 2017), and marker-gene copy number (Kembel et al., 2012), are thought to act multiplica-

tively, and hence so could their cumulative effect. The parameters in our model (the relative efficien-

cies) have biophysical interpretations as the relative yield per unit of input for each taxon, for

individual steps or for the workflow overall. Our hypothesis that the relative efficiencies are consis-

tent across samples is grounded in existing understanding of individual bias mechanisms and was

supported by marker-gene and shotgun-metagenomic sequencing measurements of mock bacterial

communities with varying composition. We further showed how our model could be used to mea-

sure, understand, and correct bias.

We found bias to be independent of sample composition only after accounting for the composi-

tional nature of MGS measurements. Bias appeared inconsistent when viewed in terms of taxon pro-

portions—for example the measured proportion of L. crispatus was both higher and lower than its

Table 3. Estimated genome size and 16S copy number for the seven mock taxa in the

Brooks et al. (2015) experiment (Materials and methods).

Taxon Genome size (Mbp) Copy number

Atopobium vaginae 1.44 2*

Gardnerella vaginalis 1.64 2

Lactobacillus crispatus 2.04 4

Lactobacillus iners 1.28 5*

Prevotella bivia 2.52 4*

Sneathia amnii 1.33 3*

Streptococcus agalactiae 2.16 7

*Denotes copy numbers that were instead estimated to be 1 by Brooks et al. (2015).

DOI: https://doi.org/10.7554/eLife.46923.016
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true value in different samples (Figure 3C). However, these apparent inconsistencies did not reflect

inconsistency in the action of bias, but instead were a consequence of the compositional nature of

MGS data. A limited number of sequencing reads are generated from each sample, so if one taxon

is enriched by bias then other taxa must be correspondingly diminished. Therefore, a taxon’s pro-

portional over- or under-representation depends not on its absolute measurement efficiency but on

its efficiency relative to the average individual (e.g. microbial cell) in the sample—L. crispatus

increased in proportion when its efficiency was greater than the sample average, and decreased oth-

erwise. Models that do not account for this effect (such as those of Brooks et al., 2015;

Krehenwinkel et al., 2017; Bell et al., 2019; Kevorkian et al., 2018) will yield parameter estimates

that do not extrapolate to differently-composed samples. Once we accounted for compositionality it

became clear that relative efficiencies were consistent across differently composed samples. Bias

had the same effect in each sample when we divided out the effect of compositionality by consider-

ing ratios of taxa (Figure 3D), and when we fully modeled the normalization involved in constructing

proportions we found that a single set of relative efficiencies explained the observed proportions in

every sample (Figure 3B).

A quantitative model allows the sensitivity of downstream analyses to bias to be rigorously evalu-

ated. Consider the often unstated assumption that analyses of the differences between samples

measured in the same experiment should be robust to bias, because each sample is biased in the

same way. We can formally evaluate this assumption in the simple numerical example shown in Fig-

ure 2: Sample S1 has higher Shannon diversity than Sample S2 but the measured diversity of Sample

S1 is lower than Sample S2, and Sample S1 has a higher proportion of Taxon 3 than Sample S2 but is

observed to have a lower proportion of Taxon 3, despite the same bias distorting each sample.

Whether such qualitative errors are likely can be investigated by simulating our model with empirical

distributions of bias and community compositions. For example, consider the Bacteroidetes:Firmi-

cutes ratio, a repeatedly-proposed diagnostic of gut health (Ley et al., 2006; Finucane et al.,

2014). The range of relative efficiencies within the Firmicutes indicates that the Bacteroidetes:Firmi-

cutes ratio measured by the metagenomic sequencing protocols evaluated in Costea et al. (2017)

can differ from the true ratio by very little, or by as much as 100-fold, depending on which Firmicutes

species is dominant in the sample!

If bias acts (as we propose) as a consistent multiplication of the relative abundances, then analy-

ses of MGS data based on taxon ratios could reduce the possibility for spurious results and make

results from different experiments more comparable. The key insight is that the fold changes

between samples in the ratios between taxa is invariant to consistent multiplicative bias, because the

relative efficiencies divide out (Equation 6 and Equation 7). In contrast, such canceling does not

occur for the fold-changes in taxon proportions, as exemplified by the spurious observed increase of

Taxon 2 in Figure 2. To be clear, this bias-invariance property for ratio-based analyses only holds for

samples biased in the same way, so these analyses still must be conducted within experiments shar-

ing a common MGS protocol. But by controlling for study-specific bias, these analyses may give

results that are more concordant across studies than other analyses. One ready source of such meth-

ods is the field of Compositional Data Analysis (CoDA) (Aitchison, 1986; Gloor et al., 2017). In fact,

our model of bias is equivalent to what is referred to as a compositional perturbation in the CoDA

field; many CoDA methods are invariant to compositional perturbations (Aitchison, 2003; van den

Boogaart and Tolosana-Delgado, 2013) and thus would be invariant to bias. CoDA methods are

being increasingly used to analyze MGS data, but to date this has been motivated by the need to

account for the compositionality of MGS data. The possibility that such methods could also reduce

or remove the effect of bias has not been widely appreciated.

Studies investigating bias and/or optimizing protocols should evaluate the systematic errors intro-

duced by bias in a way that accounts for the compositional nature of MGS data. Most previous stud-

ies of bias quantified bias with taxon proportions (e.g. Brooks et al., 2015; Krehenwinkel et al.,

2017; Bell et al., 2019) or proportion-based summary statistics such as Bray-Curtis dissimilarities

(Sinha et al., 2017) or differences in Shannon diversity (Song et al., 2016). Proportion-based meas-

urements do not consistently measure bias in differently composed samples, and thus are difficult to

interpret and can mislead researchers attempting to reduce the effect of bias on their experiments.

The adoption of compositionally aware analytical methods to study bias may lead to insights that

generalize beyond the specific sample compositions considered in these studies. In particular, quan-

tification of bias in the form of the ‘bias vector’ of relative efficiencies we proposed here has a
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natural biological interpretation as the relative yields of each taxon and can be naturally decom-

posed into an element-wise product of bias vectors for each step in a workflow, allowing for granular

investigation of MGS protocol choices.

Our results suggest that calibration could become a practical approach to improving the accuracy

of MGS analyses and diagnostics. If bias is composition independent, then it can be estimated from

one or more control samples and those estimates used to correct the relative abundances in target

samples. Our results overcomes major limitations in recent attempts at MGS calibration

(Brooks et al., 2015; Thomas et al., 2016; Krehenwinkel et al., 2017; Bell et al., 2019) by indicat-

ing how to obtain a compositionally independent estimate of bias for many taxa from a small num-

ber of control samples. Intriguingly, we show that the differential bias between protocols behaves in

the same manner as the bias of an individual protocol. This property opens the possibility of calibra-

tion based on a reference protocol’s measurements of control samples even if their true composition

is not known. Reference calibration does not give the abundances in terms of biologically tangible

units like cell concentration, but can make measurements from differently biased experiments quan-

titatively comparable, allowing diagnostic criteria to be applied outside of the lab in which they were

defined. Reference calibration may sidestep the practical challenges of creating defined cellular mix-

tures of many taxa by using natural samples (or aggregations of natural samples) as calibration con-

trols that would then contain the full range of taxa naturally present.

Limitations and next steps
We found bias to act multiplicatively in accordance with our model in two mock-community experi-

ments; however, many sources of bias may deviate from multiplicativity under non-ideal conditions.

For example, it has been observed that the efficiency of a target sequence is altered by saturation

during PCR amplification when the target is either rare or highly abundant (Suzuki and Giovannoni,

1996; Gonzalez et al., 2012). In a non-microbial marker-gene experiment, Thomas et al. (2016)

found a strong and consistent saturation effect that may have been caused by such a mechanism.

The opposite of saturation, where taxa have lower efficiencies when rarer in the sample, may occur if

low-abundance taxa are culled by the minimum-abundance thresholds used by taxonomic profilers

such as MetaPhlAn2 (Truong et al., 2015). Such deviations from multiplicativity may be eliminated

through protocol design (e.g. to avoid PCR saturation; Polz and Cavanaugh, 1998) or accounted

for with extensions allowing for deterministic and random variation in efficiencies.

Even when bias does act multiplicatively on individual microbial taxa, that multiplicativity will not

hold for aggregates of taxa that vary in their efficiencies (Appendix 1). Consider again the Bacteroi-

detes:Firmicutes ratio diagnostic. We know that within the Firmicutes phylum there is tremendous

phenotypic variation, and that variation manifested itself in the Costea et al. (2017) study as order-

of-magnitude differences between the relative efficiencies of various Firmicutes species. As a result,

consistent multiplicative bias could dramatically enrich or diminish the relative abundance of the Fir-

micutes phylum depending on which Firmicutes species were present. Unfortunately, the potential

for bias to act inconsistently on aggregates of taxa cannot be entirely circumvented by eschewing

aggregation in our analyses because even the fundamental units we derive from MGS data effec-

tively aggregate variation at some level (McLaren and Callahan, 2018). In the bacterial context, the

traditional 97% ribosomal OTU groups variation at roughly the genus level (Yarza et al., 2014),

exact short-read ribosomal sequence variants and common shotgun profilers group variation at

roughly the species level (Edgar, 2018; Hillmann et al., 2018), and metagenome assembly com-

bines strains too similar to be separated by the assembler or by the subsequent binning (Dick, 2018,

p. 79). This does not make bias an intractable problem, but it does mean that additional work is

needed to understand the phylogenetic scales over which bias significantly varies. Methods to con-

trol bias will need to operate on taxonomic objects with commensurate or finer resolution than that

of variation in the bias phenotype (McLaren and Callahan, 2018).

Cellular phenotype and matrix chemistry can vary substantially between samples of different

types, which may cause bias to vary among samples. For example, different cellular growth states

may change the cellular membrane and thus the efficiency of DNA extraction for a given taxon, and

inhibitors in soil samples are known to influence the efficiency of PCR (Schrader et al., 2012). In the

Costea et al. (2017) experiment, protocols differentially extracted the mock and native gut taxa

(Figure 4A), which may have been due to physiological differences between the lab-grown cells and

the preserved fecal cells. Potential phenotype and matrix effects are particularly relevant for
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calibration applications, as accurate calibration will require that bias measured in the controls is rep-

resentative of the bias in the target samples.

The development of effective calibration methodologies will be limited by our ability to develop

control samples that cover the range of taxa present in target communities. The bias estimation pro-

cedure we developed here is limited to those taxa present in the controls, and thus only allows for

partial calibration of the subcomposition of the target samples consisting of those taxa. However,

even partial calibration is useful when controls with key taxa in the target community are available.

For example, vaginal microbiome samples from a patient over several clinical visits analyzed by

Brooks et al. (2015) were mostly comprised of the seven taxa in their mock mixtures. It may be pos-

sible to effectively augment the range of taxa with credible bias estimates beyond those included in

control samples by using phylogenetic inference methods to predict the bias of related taxa

(Goberna and Verdú, 2016). It will be easier to broadly cover the taxa in a given environment when

calibrating to a reference protocol, because any sample measured by the reference protocol can be

used as a reference calibration control, including samples from the environment of interest.

Our discussion has so far ignored another ubiquitous source of error in MGS experiments—con-

tamination, either from the lab, reagents, or other samples (Eisenhofer et al., 2019). Contamination

may be more important than bias in certain scenarios, such as the study of low biomass samples or

analyses that are sensitive to very low frequency taxa, and bias correction may be insufficient for

accurate measurement and inference in such settings. Accurate bias inference also requires accurate

removal of contaminant reads prior to estimation through manual filtering or automated removal

methods (Davis et al., 2018; Larsson et al., 2018). Incorporation of our bias model with models of

contamination may allow for simultaneous and improved estimation and correction of both error

processes.

The model of bias we explored in this paper treats bias and measurement error more generally as

deterministic. In practice, however, there is variability in the error of taxon ratios around the mean

(Figure 3D; Figure 4—figure supplement 1). We developed a point-estimation method with a

bootstrapping procedure to estimate the bias with associated uncertainty from random observations

(Materials and methods). However, robust estimation and calibration may require a statistical model

of bias that explicitly accounts for sources of random error such as variation in relative efficiencies

across samples and limited sequencing depth. A statistical model would facilitate the construction of

confidence intervals for the calibrated taxon proportions in a sample. Challenges associated with

building such a model include modeling the presence of taxa thought to be absent from the commu-

nity (but observed due to contamination or index switching; Eisenhofer et al., 2019), the absence of

taxa known to be present (Yeh et al., 2018), and accounting for the noise associated with the count

nature of sequencing data. Our finding that multiplicative error in taxon ratios provides a parsimoni-

ous model for bias paves the way for the development of a such a statistical model, which we leave

for future work.

Conclusion
We suggest a simple yet profound change in how researchers view MGS measurements. Currently,

researchers tend to either 1) take MGS measurements as telling us only about presence and absence

of detectable taxa, 2) hope that bias in the measurements of individual samples will somehow cancel

out when analyzing differences between samples within a given experiment, or 3) pretend bias

doesn’t exist. We propose a new view in which the measured relative abundances within an experi-

ment are biased by unknown—but constant—multiplicative factors. When bias acts consistently in

this manner it can be accounted for through the use of bias-insensitive analyses or corrected by a

calibration procedure. Our results lay a foundation for the rigorous understanding of bias in marker-

gene and metagenomic sequencing measurements that is required for accurate and reproducible

research using MGS methods and for the development of reliable MGS diagnostics and

interventions.
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Materials and methods

Bias estimation
We describe a procedure for averaging multiple control observations to obtain a single estimate of

the protocol’s bias; additional details and motivation are given in Appendix 2. For sample s in a set

of control samples S, let AðsÞ denote the actual composition and OðsÞ be the observed composition.

We assume that OðsÞ and AðsÞ are non-zero for the same taxa; in practice, this assumption requires

ignoring sequencing reads from taxa not supposed to be in the sample and adding a small abun-

dance to taxa actually present but not detected. Under our deterministic model, the observed com-

position is given exactly by Equation 2. In practice, however, each measurement will vary—for

example, due to random error in sample construction, variation in sample handling, and random

sampling of reads during sequencing. We decompose the error OðsÞ=AðsÞ into a deterministic com-

ponent B and a random component �ðsÞ,

OðsÞ~AðsÞ �B � �ðsÞ: (10)

The random error �ðsÞ is a random compositional vector that we assume has an expected value of

ð1; . . . ;1Þ in the compositional Aitchison geometry (given by the element-wise geometric mean;

Aitchison, 2003, p. 38). Intuitively, we estimate B by the vector B̂ that minimizes the residual errors,

�̂ðsÞ~OðsÞ=ðAðsÞ � B̂Þ.

We quantify the magnitude of errors by the Aitchison norm. The Aitchison norm (Pawlowsky-

Glahn, 2015; Aitchison, 2003, Chapter 2) of a K-element composition X is given by

Xk k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

K

X

i<j

ln
Xi

Xj

� �2

v

u

u

t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

K

i¼1

ln
Xi

gðXÞ

� �2

v

u

u

t ; (11)

where gðXÞ ¼ ð
QK

i¼1
XiÞ

1=K is the geometric mean of the elements of X. When estimating the bias

from a sample s that is missing some of the taxa, the elements of OðsÞ=AðsÞ and of the residual error

�̂ðsÞ corresponding to the missing taxa are undefined. We define �̂ðsÞk k in this case by restricting to

just the defined elements (and adjusting K accordingly) before applying Equation 11.

We take our estimate of B to be the compositional vector that minimises the sum of squared

residual error over all samples,

B̂~ argmin
B

X

s2S

OðsÞ=ðAðsÞ �BÞk k2: (12)

This definition equates B̂ with the compositional mean, or center, of the compositional errors

OðsÞ=AðsÞ when the center is defined to allow missing values (Appendix 2). If all samples contain all

K taxa, then B̂ is given by the element-wise geometric mean of the set fOðsÞ=AðsÞg,

B̂~

Y

s2S

O1ðsÞ

A1ðsÞ

" #1= Sj j

; . . . ;
Y

s2S

OKðsÞ

AKðsÞ

" #1= Sj j
0

@

1

A; (13)

where Sj j is the number of samples in the set S. More generally, the solution to B̂ can be computed

using the projection approach of van den Boogaart et al. (2006). The solution is unique up to com-

positional equivalence given sufficient taxonomic overlap among the samples (Appendix 2).

Differential bias of the given protocol to a reference Protocol R that has also measured the sam-

ples in S can be estimated without knowing the actual sample compositions by replacing the actual

compositions AðsÞ in the above with the reference measurements OðRÞðsÞ.

We describe a bootstrap procedure for estimating the uncertainty of the bias estimate in Appen-

dix 2. Each bootstrap replicate consists of drawing either multinomial or Dirichlet weights for the

control samples and computing the weighted center to obtain the replicate value of B̂. Standard

errors for the relative efficiencies are estimated by the geometric standard deviation of the corre-

sponding efficiency ratio across replicates.
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Bioinformatics and statistical analysis
Data and code availability
Functions and a tutorial for estimating and visualizing bias and performing calibration are provided

in the ‘metacal’ R package, available on GitHub (McLaren, 2019a, copy archived at https://github.

com/elifesciences-publications/metacal). The raw data for our analysis is available in the ‘Additional

files’ of Brooks et al. (2015) and in European Nucleotide Archive study accession PRJEB14847 for

Costea et al. (2017). The processed data—along with all code used to download and process the

raw data, perform all statistical analyses, and generate all figures and tables—is contained in the

manuscript’s GitHub repository (McLaren, 2019b, copy archived at https://github.com/elifescien-

ces-publications/mgs-bias-manuscript). Analysis and visualization is performed using the R software

environment (R Development Core Team, 2018) with the ‘metacal’ package, the ‘tidyverse’ suite of

R packages (Wickham, 2019), and the ‘cowplot’ R package (Wilke, 2019). Analysis code is con-

tained in R-markdown documents that can be executed to generate all numerical results, tables, and

figures. Versions that have been ‘knit’ into html documents showing code interlaced with output and

figures are available in the GitHub repository.

Brooks et al. (2015) experiment
We used taxonomic profiles generated in the original study and provided as supplemental informa-

tion. Specifically, we used the sample information and read assignments in Additional Files 2, 10,

and 11 of Brooks et al. (2015) to build a table of amplicon sequences assigned to each of the seven

mock taxa in each sample. Brooks et al. (2015) used a classification method and 16S reference data-

base designed for species-level classification of vaginally associated taxa from V1-V3 region ampli-

cons (Fettweis et al., 2012). Reads were assigned to species in the database according to a 97%

sequence identity threshold, resulting in 93.5% of reads assigned and for which the vast majority

(99.98%) were assigned to species corresponding to the seven mock taxa. We discarded the small

fraction (0.0002%) of reads assigned to other species. Most samples were assigned a small fraction

of their reads from species not expected to be in the sample. These out-of-sample species generally

had much lower frequency than the expected species, suggesting they were the result of cross-sam-

ple contamination rather than mislabeling or misconstruction of the samples. We therefore removed

these reads before evaluating and estimating bias.

We took the actual composition of each sample to be an even mixture of the taxa added to that

sample, in units of cell concentration, DNA concentration, or PCR-product concentration.

Brooks et al. (2015) constructed the cell mixtures to be even mixtures based on CFUs (a proxy for

cell concentration); the DNA mixtures based on DNA concentration; and the PCR mixtures based on

volume from amplification of a fixed weight of DNA. Extraction and PCR protocols differed some-

what when using pure cultures to create the DNA and PCR-product mixtures than when applied to

communities in the cell experiment. Thus, the DNA and PCR product in the second and third experi-

ments may differ qualitatively from that in the cell mixture experiments, which could in principle

affect the bias of downstream steps.

We estimated genome size and 16S copy number for the seven mock taxa from available genome

databases and experimental measurements. We estimated genome size by the average genome size

for the given species in NCBI RefSeq release 86 as collated by the GTDB (Parks et al., 2018). We

estimated 16S copy number (CN) through a combination of RefSeq annotations for the given spe-

cies; CN estimates in the rrnDB for the given species or their nearby relatives identified in the GTDB

phylogeny (Parks et al., 2018); and measurement by pulse-field gel electrophoresis reported by

Yuan et al. (2012) for A. vaginae and L. iners. A full account is given in the manuscript GitHub

repository. The resulting genome size estimates approximately agree with those of

Brooks et al. (2015), but the 16S CN estimates differ substantially for several taxa (compare our

Table 3 to their Table 5). In particular, Brooks et al. (2015) estimated four taxa to have CNs of 1

based on NCBI annotations then available, but we suspect these numbers to be artifacts of poor

assembly and annotation.

We estimated the bias predicted due to CN variation for each mixture type as follows. Cell mix-

tures: CN bias is simply the compositional vector of CNs (16S copies per genome). DNA mixtures:

CN bias is the compositional vector of CN divided by genome size (16S copies per bp). PCR-product
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mixtures: CN bias is the compositional identity vector (1,..., 1) (i.e. no bias). Denoting the estimated

CN bias as B̂ðCNÞ for the given experiment, the CN-corrected proportions are Pr½O=B̂ðCNÞ�.

For each mixture experiment, we estimated bias as described above in ‘Bias estimation’. We then

used these estimates to partition our estimate of the total protocol bias into three steps—1) DNA

extraction, 2) PCR amplification, and 3) sequencing and bioinformatics—under the simplifying

assumption that the bias of shared steps are the same across experiments. We assume the bias of

the cell mixture experiments is B
ðCellsÞ ¼ B

ðP1Þ �BðP2Þ �BðP3Þ, of the DNA mixtures is

B
ðDNAÞ ¼ B

ðP2Þ �BðP3Þ, and of the PCR-product mixtures is B
ðPCR productÞ ¼ B

ðP3Þ. We therefore esti-

mate the extraction bias as B̂
ðP1Þ ¼ B̂

ðCellsÞ=B̂ðDNAÞ, the PCR bias as B̂
ðP2Þ ¼ B̂

ðPCR productÞ=B̂ðDNAÞ, and

the sequencing and bioinformatics bias as B̂ðP3Þ ¼ B̂
ðPCR productÞ.

Costea et al. (2017) Phase III experiment
We downloaded raw sequencing reads for the Phase III experiment from European Nucleotide

Archive study accession PRJEB14847 and generated taxonomic profiles using MetaPhlAn2 version

2.7.6 (Truong et al., 2015) with the command-line options –min_cu_len 0 –stat avg_g. These

options were chosen to increase sensitivity and accuracy for the rarest spike-in taxa and resulted in

the detection of all spike-in taxa in every sample. Taxonomic profiles generated by MetaPhlAn2 pro-

vide estimated proportions of taxa at various taxonomic levels. We restricted our analysis to species-

level abundances and the kingdom Bacteria, which constituted over 99% of non-viral abundance in

each sample.

Costea et al. (2017) reported Escherichia coli as a likely spike-in contaminant due to its presence

in sequence data from the mock-only samples. Consistent with this report, the MetaPhlAn2 profiles

showed a substantial presence of Shigella flexneri in the mock-only samples and we identified this

species as the ‘Contaminant’ in our subsequent analyses and in all figures and tables.

We estimated the true mock-community composition using the flow cytometry (FACS) measure-

ments reported in Costea et al. (2017). We used the arithmetic mean of two replicate measure-

ments where available and ignored any measurement error in the resulting actual mock composition

for our analysis. The FACS measurements provided by Costea et al. (2017) disagree with those

shown in their Figure 6 for three taxa (V. cholerae, C. saccharolyticum, and Y. pseudotuberculosis).

Analysis of our MetaPhlAn2 profiles indicates that these taxa are most likely mislabeled in the figure

and not in the FACS measurements. A mislabeling in the FACS measurements would change the

specific bias values we estimate for these taxa but not our main results or conclusions.

We estimated the bias of each protocol and the differential bias between protocols as described

in ‘Bias estimation’. We estimated standard errors using the Dirichlet-weighted bootstrap method

described in Appendix 2. To determine how precision in the bias estimate for Protocol H varies with

the number of control samples (Figure 4—figure supplement 1), we computed standard errors

using the multinomial-weighted bootstrap method with the number of trials in the multinomial distri-

bution equal to the specified number of control samples (Appendix 2).

To demonstrate calibration, we randomly chose three fecal specimens to use as the ‘estimation

set’ to estimate bias, and then calibrated all samples using Equation 9. We excluded the mock-only

specimen from the estimation set since its atypical values for a few taxa resulted in an unrepresenta-

tive picture of the success of calibration; however, we included it when evaluating the effect of noise

on bias estimation in Figure 4—figure supplement 1.
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DOI: https://doi.org/10.7554/eLife.46923.018

Model details

Qualitative or downstream effects of a step
In the most general formulation of our model first presented in the Results, we allow for the

possibility that the protocol choice at a step influences the qualitative, as well as the

quantitative, properties of the taxa. For instance, DNA extraction protocols yield differently

fragmented DNA (Costea et al., 2017), which may affect the bias of downstream steps such

as PCR and sequencing. Therefore, the bias at a step in general will depend on the protocol

for that step as well as for all previous steps. To make this dependence explicit, let

Pl j P1 . . .Pl�1 denote the l-th step of protocol P performed after steps 1 through l� 1 of

protocol P. The bias of protocol P is then

B
ðPÞ ¼B

ðP1Þ �BðP2 j P1Þ �BðP3 j P1P2Þ � . . . �BðPL j P1P2���PL�1Þ: (14)

Our core assumption is that the bias at each step is fixed within the context of the total

protocol P, but independent of the composition of the sample. All properties and implications

of bias or differential bias of the total protocols described in the main text are valid under this

condition in the presence of such qualitative or downstream effects.

Downstream effects are important to consider, however, when attempting to estimate the

bias of an individual step or protocol choice. Consider using differential bias to estimate the

effect of DNA extraction protocol in the Costea et al. (2017) experiment, where the protocols

differ only at the extraction step. The differential bias between Protocols H and W, BðH=WÞ,

includes both the direct effect of the differential bias at the extraction step as well as the

indirect downstream effects the extraction protocol has on later steps. Here we cannot

distinguish the two, as estimating the size of indirect effects requires experiments where

protocols at different steps are varied in a combinatorial fashion.

A different but related issue arises in our estimation of bias from different steps in the

Brooks et al. (2015) experiment. There, DNA extraction from pure cultures to create the DNA

mixtures differed from extraction in the community samples (the cell mixtures). In order to

estimate the bias during extraction, we must assume that there is no qualitative difference in

the DNA, and so the bias of PCR, sequencing, etc. will be the same whether starting from the

cell or the DNA mixtures. In other words, we must assume that the bias at a step Pl is only a

property of the individual step.

Aggregates of taxa
Aggregating groups of taxa through the standard method of summing their abundances can

cause bias to appear to vary among samples with different compositions. Consider four taxa

with bias ðB1;B2;B3;B4Þ such that Taxon 1 is in Phylum 1, Taxon 2 is in Phylum 2, and Taxon 3

and Taxon 4 are both in Phylum 3. In a sample with actual composition ðA1;A2;A3;A4Þ, the

observed composition is ðA1B1;A2B2;A3B3;A4B4Þ. If we aggregate taxa within phyla by the

standard method, we observe the phylum-level composition ðA1B1;A2B2;A3B3 þ A4B4Þ. The bias

we observe at the phylum level is

A1B1

A1

;
A2B2

A2

;
A3B3 þA4B4

A3 þA4

� �

¼ B1;B2;
A3B3þA4B4

A3þA4

� �

:

The observed efficiency of Phylum 1 relative to Phylum 2 remains B1=B2, independent of

sample composition, but the efficiency of Phylum 3 relative to the other phyla depends on the

relative abundances of Taxon 3 and Taxon 4.
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The above example illustrates the general result that if we sum taxa that differ in their

efficiencies, bias will no longer be independent of composition. As a result, estimates of bias

at the aggregate level may find bias to vary among samples and perturbation-invariant

analyses applied to taxonomic aggregates may not be invariant to bias.

When our measurement has sufficient taxonomic resolution to distinguish taxa at the level

at which bias is conserved, then we can overcome these limitations by using the compositional

approach to combining elements, which involves multiplying rather than summing the

elements within each group (van den Boogaart and Tolosana-Delgado, 2013). For instance, if

we multiply rather than sum taxa within a phylum we see that the error is again independent

of composition,

A1B1

A1

;
A2B2

A2

;
A3B3 �A4B4

A3 �A4

� �

¼ B1;B2;B3 �B4ð Þ:

Bias remains independent when individual taxa are replaced with products of taxa, and

analyses that are perturbation invariant to bias on taxa will remain so when applied to taxa

products. CoDA analyses that use this approach are typically based on balances, which are

scaled and log-transformed ratios of the products of groups of taxa (van den Boogaart and

Tolosana-Delgado, 2013). Applications of balances to microbiome analyses are described in

Silverman et al. (2017) and Rivera-Pinto et al. (2018).
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Bias-estimation details
Bias estimation is complicated by the compositional nature of MGS measurement, particularly

if different control samples contain different taxa. Because only relative abundances are

measured, the measurement of a control sample s only provides information about the

efficiencies of the taxa in the sample relative to each other. If we restrict our scope to a set of

K possible taxa, then we can write the actual and observed compositions of s as K-element

compositions denoted AðsÞ and OðsÞ. The measurement error can now be described by the

compositional difference, OðsÞ=AðsÞ, which we denote DðsÞ. Recall that the compositional

difference is computed by element-wise division. If the sample s contains all taxa—that is, if all

of the elements of AðsÞ are positive—then DðsÞ is fully defined. But if s does not contain all

taxa, then some of the elements of DðsÞ are 0=0 or undefined. The undefined elements of DðsÞ

indicate that the control measurement tells us nothing about the bias between the taxa that

are in s and taxa that are not in s.

This appendix first summarizes concepts from the field of Compositional Data Analysis for

computing the mean of a set of compositional vectors with undefined elements. These

concepts allow us to equate the estimator of bias defined in Equation 13 with

the compositional mean, or center, of the compositional errors observed in the control

samples,

B̂~cenfDðsÞg: (15)

We then describe the condition for sufficient taxonomic overlap among the control samples

for this estimate to be fully defined. Finally, we describe a bootstrap procedure for

approximating the sampling distribution of the center that can be used to estimate uncertainty

in the bias estimate.

Distances and means in the compositional Aitchison geometry
The Aitchison geometry (Pawlowsky-Glahn, 2015; Aitchison, 2003, Chapter 2) defines a

normed vector space for compositional vectors of a given length K, in which vector addition

and subtraction are performed by element-wise multiplication and division and distance is

measured according to the Aitchison norm. Equation 11 shows that the Aitchison norm of X

grows with the pairwise ratios among the elements or, equivalently, with the ratios of the

elements to their geometric mean. The distance between two compositions X and Y in the

Aitchison geometry is given by the Aitchison norm of their (compositional) difference and

equals

X=Yk k¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

K

X

i<j

ln
Xi=Xj

Yi=Yj

� �2

v

u

u

t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

K

i¼1

ln
Xi

gðXÞ
� ln

Yi

gðYÞ

� �2

v

u

u

t : (16)

Equation 16 shows that the Aitchison distance between two compositions grows with the

fold-difference in the element ratios between X and Y.

The compositional mean, or center, of a set fXðsÞ j s 2 Sg of compositional vectors with no

undefined elements is typically defined by their element-wise geometric mean (van den

Boogaart and Tolosana-Delgado, 2013, p. 74),

cenfXðsÞg~
Y

s2S

X1ðsÞ

" #1= Sj j

; . . . ;
Y

s2S

XKðsÞ

" #1= Sj j
0

@

1

A; (17)

McLaren et al. eLife 2019;8:e46923. DOI: https://doi.org/10.7554/eLife.46923 28 of 31

Research article Computational and Systems Biology Microbiology and Infectious Disease

https://doi.org/10.7554/eLife.46923


where Sj j is the number of elements in the set S. Alternatively, we can define the center

geometrically as the vector that minimizes the sum of squared distances between the

compositions in fXðsÞg and their center (Pawlowsky-Glahn and Egozcue, 2002),

cenfXðsÞg~ argmin
Y

X

s2S

XðsÞ=Yk k2: (18)

In this way, the compositional mean can be seen to be directly analogous to the familiar mean

in Euclidean geometry, which minimizes the sum of squared Euclidean distances between the

vectors and their mean.

The geometric definition Equation 18 can be used even when some of the compositions

have elements that are undefined, provided that we first define the Aitchison distance

between vectors with undefined elements. In the scenario we are interested in, the elements

of X ¼ DðsÞ are undefined because the taxa corresponding to these elements were not

present in the sample s, leaving us with no information about their ratios to the elements

corresponding to the present taxa. It is therefore natural to compute the distance between X

and a candidate estimate of the center Y with Equation 16 restricted to just the defined

elements. Equivalently, we can define the norm of Z ~X=Y as the norm of the smallest-

normed K-element vector that has the same ratios among the defined elements of Z. This

definition of the norm amounts to computing the norm of the K�-element vector of the

defined elements, as commented below Equation 11. To see why, note that the smallest K-

element vector consistent with Z is given by setting the undefined elements of Z equal to the

geometric mean of the defined elements. When we compute its norm using the second form

in Equation 11, the logarithmic terms corresponding to these elements equal zero and so do

not contribute to the sum.

This generalized definition of the norm now lets us use Equation 18 to define the center of

a set of compositional vectors that may have undefined elements. This definition can be used

to compute the center numerically by minimizing the sum of squared distances. However,

van den Boogaart et al. (2006) have developed an analytical approach based on projections

of the log-transformed compositions; we refer readers to van den Boogaart et al. (2006) and

Bren et al. (2008) for an explanation of this approach, which we use for all bias estimation in

our analysis.

Taxonomic overlap among control samples needed for a fully-
determined bias estimate
Recall that the bias B is a compositional vector and so is defined only up to compositional

equivalence, or an arbitrary positive constant multiplied by all elements. The bias estimate B̂ is

uniquely determined (up to compositional equivalence) for all taxa present in at least one

control sample only if there is sufficient taxonomic overlap among the samples. Here we

explain the intuition for why this is the case and describe the general condition for sufficient

overlap.

Suppose that there are two control samples; the first contains Taxon 1 and Taxon 2 and the

second contains Taxon 3 and Taxon 4. Each sample allows us to learn the efficiencies of its

taxa relative to others in that sample but not in the other sample. The first sample allows us to

estimate B1=B2 and the second to estimate B3=B4, but we cannot estimate B1=B3. The situation

improves if there is a third sample containing Taxon 2 and Taxon 4, allowing us to also

estimate B2=B4. Now we can estimate B1=B3 by the relation B1=B3 ¼ ðB1=B2ÞðB2=B4ÞðB4=B3Þ.

With just the first two samples, the bias estimate B̂ ¼ ðB̂1; B̂2; B̂3; B̂4Þ is not well-defined.

Because we have no information about the ratios between the two groups of taxa, we can

always multiply the estimated efficiencies of one group (say, B̂1 and B̂2) by a constant a while

leaving the other group unchanged. The resulting distinct compositional vector would be just

as consistent with the data from the control measurements in the sense that the residual sum

of squared errors (RSS) would be unaffected. However, once we have the third sample,

changing the ratios between the two groups of taxa in such a manner would increase the RSS
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and yield a worse estimate of the bias. Thus, with the inclusion of the third sample there is a

unique estimate B̂ that minimizes the RSS and the bias estimate is well-defined.

The general condition for determining if there is sufficient taxonomic overlap to uniquely

determine B̂ can be stated using the concept from network theory of a network component. A

(connected) component of an undirected network is a subnetwork whose nodes are connected

by paths through the network and are not connected to nodes in any other component

(Newman, 2010, p. 142). Define the taxon co-occurrence network as the network with taxa as

nodes and undirected edges between any pair of taxa that co-occur in the same sample. Each

component of the taxon co-occurrence network defines a set of taxa within which bias can be

estimated, but for which the bias to other taxa cannot be estimated. Thus the estimate B̂ is

uniquely determined if and only if the taxon co-occurrence network has a single component.

When there are multiple components, the bias estimation method we have implemented

(using the projection method of van den Boogaart et al., 2006) resolves ambiguities by

giving the value of B̂ with the smallest Aitchison norm. The resulting estimate can still be used

to analyze the bias as long as only the efficiency ratios between taxa that share a component

are considered as having any meaning.

Bootstrap method for estimating uncertainty in the bias
We describe two bootstrap (resampling) methods for estimating the uncertainty in the

estimated bias. In the first method, based on the standard bootstrap introduced by

Efron (1979), the weights assigned to the control measurements in each resampling are

drawn from a multinomial distribution. In the second method, based on the Bayesian

bootstrap introduced by Rubin (1981), the weights are drawn from a Dirichlet distribution.

The two methods give approximately the same standard errors if all samples contain all taxa,

but the second method avoids a pathology of the first when different samples contain

different taxa.

Each method works by approximating the sampling distribution of B̂ by computing B̂ for a

large number, R, of resamplings of the observed compositional errors, fDðsÞ ¼ OðsÞ=AðsÞg.

We first describe the multinomial resampling (standard bootstrap) method in the simple case

where all control samples contain all taxa. In this method, a single bootstrap replicate consists

of drawing Sj j error measurements by sampling with replacement from fDðsÞg and computing

the center of the resulting error measurements. Equivalently, we first draw a length- Sj j vector

w from a Multinomialð Sj j; ð1= Sj j; . . . ; 1= Sj jÞÞ distribution to specify the weights assigned to the

Sj j original measurements and compute the weighted center, cen½fDðsÞg;w�, defined by

cen½fXðsÞg;w�~ argmin
Y

X

s2S

ws XðsÞ=Yk k2: (19)

From each bootstrap replicate r we obtain an estimate B̂r ¼ cen½fDðsÞg;wr� of the bias that,

because each sample contains all taxa, is necessarily a fully-determined K-element

compositional vector.

We now use the approximate resampling distribution given by fB̂rg for a large number of

replicates (R) to estimate the uncertainty in B̂. In order to respect the compositional nature of

bias, we propose quantifying the uncertainty in B̂ by the geometric (multiplicative) standard

errors in the relative efficiencies of various taxa. In the tables and figures, we typically present

bias relative to the average taxon, which amounts to dividing the relative efficiency of each

taxon by the geometric mean efficiency of all taxa. To estimate the geometric standard errors

of the relative efficiencies in this case, we first geometrically center the elements of each B̂r

(by taking B̂r 7!B̂r=gðB̂rÞ) and then compute the element-wise geometric standard deviations

over the R replicates,

McLaren et al. eLife 2019;8:e46923. DOI: https://doi.org/10.7554/eLife.46923 30 of 31

Research article Computational and Systems Biology Microbiology and Infectious Disease

https://doi.org/10.7554/eLife.46923


gm: std: err: of Bi

gðBÞ¼ exp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

R� 1

X

R

r¼1

ln
B̂r;i

gðB̂rÞ
�
1

R

X

R

q¼1

ln
B̂q;i

gðB̂qÞ

 !2

v

u

u

t : (20)

This standard error quantifies the uncertainty in the ratio of the efficiency of Taxon i to the

geometric mean efficiency of all taxa. Other ratios are also useful for understanding the

uncertainty in the estimated bias. For example, one can estimate the standard error in the bias

between taxa i and j by the geometric standard deviation of B̂r;i=B̂r;j over the R replicates.

The above procedure can fail if different samples have different taxa. Multinomial

resamplings typically leave out some samples and thus can lack sufficient taxonomic overlap to

give a fully-determined bias estimate even if B̂ is fully determined. A simple way to overcome

this problem is to instead use Dirichlet resampling, as in the Bayesian bootstrap (Rubin, 1981).

Procedurally, the Bayesian bootstrap proceeds like the weight-based formulation of the

standard bootstrap given above, except that the weights wr are sampled from a

Dirichletð1; . . . ; 1Þ distribution rather than the multinomial distribution. Each sample now

receives a positive weight (with probability 1), ensuring that each replicate estimate B̂r is fully

determined so long as B̂ is. We can then proceed to compute compositional standard errors

as before. The Dirichlet and multinomial weights of the two methods have the same expected

value and approximately the same variance (Rubin, 1981). Consequently, the two methods

will give approximately the same standard errors when all samples have all taxa.

To determine how much the precision of the bias estimate for Protocol H of Costea et al.

(2017) varied with the number of control samples (Figure 4—figure supplement 1), we

computed standard errors using the multinomial-weighted bootstrap method with the number

of trials in the multinomial distribution equal to the specified number of control samples. That

is, to estimate the precision associated with a given number n of control samples (1 � n � Sj j),

we drew the length- Sj j weight vector w from a Multinomialðn; ð1= Sj j; . . . ; 1= Sj jÞÞ distribution.
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