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Abstract The central processing pathways of the human olfactory system are not fully

understood. The olfactory bulb projects directly to a number of cortical brain structures, but the

distinct networks formed by projections from each of these structures to the rest of the brain have

not been well-defined. Here, we used functional magnetic resonance imaging and k-means

clustering to parcellate human primary olfactory cortex into clusters based on whole-brain

functional connectivity patterns. Resulting clusters accurately corresponded to anterior olfactory

nucleus, olfactory tubercle, and frontal and temporal piriform cortices, suggesting dissociable

whole-brain networks formed by the subregions of primary olfactory cortex. This result was

replicated in an independent data set. We then characterized the unique functional connectivity

profiles of each subregion, producing a map of the large-scale processing pathways of the human

olfactory system. These results provide insight into the functional and anatomical organization of

the human olfactory system.

DOI: https://doi.org/10.7554/eLife.47177.001

Introduction
The human sense of smell serves a variety of important functions in everyday life (Bushdid et al.,

2014; Devanand et al., 2015; McGann, 2017). It is used to monitor the safety of inhaled air

(Pence et al., 2014) and edibility of food (Yeomans, 2006). It also strongly impacts our social and

emotional lives (Durand et al., 2013; Endevelt-Shapira et al., 2018; Frumin et al., 2015;

Gelstein et al., 2011; Krusemark et al., 2013; Walla, 2008; Walla et al., 2003). Thus, the brain

must extract different types of information from odor stimuli, including information about the identi-

ties of objects and foods, environmental hazards, and social and emotional cues. These functions are

likely carried out by distinct cortical networks within the olfactory system, yet the organization of

these functional networks is not fully understood.

This incomplete understanding is due partly to ambiguity about the anatomical and functional

properties of the cortical targets of human olfactory bulb projections. Collectively, these areas are

commonly referred to as primary olfactory cortex (Carmichael et al., 1994; Feher and Feher, 2017;

Gottfried, 2010; Mai and Paxinos, 2012; Price, 2009) (although see Wilson, 2009; Haberly, 2001;

Chapuis and Wilson, 2011 and others for discussions of the accuracy of this definition of the pirmary

olfactory cortex). In humans, this includes the anterior olfactory nucleus, the olfactory tubercle, the

frontal and temporal piriform cortices, and subregions of both the amygdala and entorhinal cortex

(Allison, 1954; Eslinger et al., 1982; Gonçalves Pereira et al., 2005; Insausti et al., 2002;

Milardi et al., 2017). The fact that the olfactory bulb simultaneously projects directly to a number of

structures suggests parallel functional pathways in the olfactory system (Haberly, 2001;

Kauer, 1991), but the distinct roles of these primary olfactory areas and their functional pathways

are not fully understood (Bensafi et al., 2007; Gottfried et al., 2006; Gottfried et al., 2004;
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Gottfried et al., 2002; Howard et al., 2009; Li et al., 2008; Li et al., 2006; Sobel et al., 2000;

Sobel et al., 1999; Zelano et al., 2005). Additionally, the olfactory system is organized differently

than other sensory systems, which contain pre-cortical thalamic relays, further suggesting a deeper

understanding of the organization of olfactory networks in the human brain is warranted.

The vast majority of research on primary olfactory cortex has focused on piriform cortex, which is

the largest recipient of bulbar projections. Most of this research has been conducted in rodents,

where piriform cortex is divided into anatomically and functionally distinct anterior and posterior

subdivisions (Calu et al., 2007; Grau-Perales et al., 2019; Haberly and Price, 1978; Stettler and

Axel, 2009; Yang et al., 2017). In humans, the anatomy and functionality of piriform cortex is less

understood. Although it can be divided into frontal- and temporal-lobe subregions (Mai et al.,

2015; Vaughan and Jackson, 2014; Young et al., 2018; Allison, 1954), whether these correspond

to rodent anterior and posterior subdivisions is unclear. While neuroimaging studies have pointed to

functional heterogeneity within human piriform cortex (Bensafi, 2012; Fournel et al., 2016;

Gottfried et al., 2002; Howard et al., 2009; Howard and Gottfried, 2014; Li et al., 2008;

Porter et al., 2005; Seubert et al., 2013; Zelano et al., 2011; Zelano et al., 2005), its anatomical

and functional distinctions are still not clearly defined.

While numerous rodent and human studies have focused on piriform cortex, far fewer have exam-

ined other primary olfactory structures, such as the anterior olfactory nucleus and the olfactory

tubercle. These structures have been anatomically well-defined in rodents (Aqrabawi and Kim,

2018a; Haberly and Price, 1978; Shipley and Adamek, 1984), primates (Carmichael et al., 1994),

and humans (Allison, 1954; Eslinger et al., 1982; Mai et al., 2015), but their roles in olfactory proc-

essing are not fully understood in any of these species (Gadziola et al., 2015; Wesson and Wilson,

2011). Recent rodent data suggest that the anterior olfactory nucleus may be involved in odor mem-

ory (Aqrabawi and Kim, 2018b; Oettl et al., 2016) and localization (Kikuta et al., 2010), and the

olfactory tubercle may play an important role in multisensory integration and attention (Wesson and

Wilson, 2010; Zelano et al., 2005), although a complete understanding of the functions of these

areas is lacking.

Previous studies have used task-related and resting functional magnetic resonance imaging (fMRI)

to examine olfactory networks, using primary olfactory and orbitofrontal cortices as seed regions

(Banks et al., 2016; Cecchetto et al., 2019; Fjaeldstad et al., 2017; Karunanayaka et al., 2017;

Karunanayaka et al., 2014; Kiparizoska and Ikuta, 2017; Kollndorfer et al., 2015; Krusemark and

Li, 2012; Nigri et al., 2013; Sreenivasan et al., 2017; Sunwoo et al., 2015). These studies have

contributed important broad knowledge of parallel olfactory networks (Karunanayaka et al., 2014),

how they compare to trigeminal networks (Karunanayaka et al., 2017), and how they change with

age (Wang et al., 2005) and disease (Caffo et al., 2010; Fjaeldstad et al., 2017; Killgore et al.,

2013; Sunwoo et al., 2015; Wang et al., 2010; Wang et al., 2015). However, the functional con-

nectivity profiles of the primary olfactory subregions have not been considered separately. This is

important because these subregions, which receive direct and parallel input from the bulb, likely

form the anatomical substrates of ethological, parallel olfactory networks. Therefore, a quantitative

characterization of the distinct functional pathways of human primary olfactory subregions would be

an important step toward understanding the large-scale networks that underlie the basic, parallel,

purposes of olfactory processing. The discovery of unique whole-brain connectivity profiles for the

different primary olfactory subregions could also provide insight into the nature of the distinct func-

tions of these areas in olfactory perception. This information, in turn, could have clinical implications

for diseases that impact particular primary olfactory subregions.

Thus, the goals of this study were two-fold: first, to test the hypothesis that primary olfactory sub-

regions form distinct large-scale olfactory processing networks; and second, if so, to characterize

these networks across the whole brain. For the first, we used well-established, unsupervised k-means

clustering techniques (Eickhoff et al., 2018; Kahnt et al., 2012; Kahnt and Tobler, 2017;

Wang et al., 2017), to parcellate primary olfactory cortex into distinct clusters based solely on

whole-brain connectivity patterns. We reasoned that if whole-brain functional connectivity patterns

alone could be used to accurately parcellate primary olfactory cortex into its established, anatomi-

cally-defined subregions, this would suggest that these subregions do in fact form distinct functional

pathways. We also reasoned that if these parcellation results were robust, the results should repli-

cate in an independent data set. For the second, we characterized the distinct functional connectivity

patterns of each primary olfactory subregion in order to produce a whole-brain map of the networks
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formed by each area. Our results provide insight into the functional and anatomical organization of

the human olfactory system and provide a basis for future investigation into the functions of the dis-

tinct cortical targets of the olfactory bulb.

Results
We used resting-state fMRI connectivity to examine the functional pathways of human primary olfac-

tory cortex in two main steps. First, we used k-means clustering techniques to parcellate primary

olfactory cortex into distinct clusters. These clusters were based on the group-level, whole-brain

functional connectivity of all voxels within primary olfactory cortex, separately for each hemisphere.

Second, using the results of the parcellation analysis, we characterized the distinct, large-scale net-

works of the human olfactory system. To do this, we first determined that there were no hemispheric

differences in the connectivity profiles of primary olfactory subregions, suggesting we should com-

bine corresponding clusters across the left and right hemispheres. We then quantified the whole-

brain functional networks that were unique to each subdivision, and those that were common to all

subdivisions. Finally, as a discussion point, we considered the functional properties of connected

brain areas for each primary olfactory subdivision and attempted to form a speculative hypothetical

model of human olfactory functional networks.

Parcellation of human primary olfactory cortex
To test the hypothesis that primary olfactory subregions form distinct, large-scale olfactory networks,

we tested whether their anatomical boundaries could be accurately delineated based on whole-brain

functional connectivity maps. To do this, we conducted a functional-connectivity-based parcellation

of human primary olfactory cortex. Twenty-five subjects (average ± standard error age: 25.5 ± 1.2

years; 14 female) underwent a 10 min resting-state fMRI scan. We first outlined the entirety of pri-

mary olfactory cortex into a combined region-of-interest (ROI) on which to perform the k-means clus-

tering analysis. This ROI was drawn for the left and right hemispheres separately, according to a

human brain atlas which contains detailed demarcation of most primary olfactory areas (Mai et al.,

2015; Ongür et al., 2003) (Figure 1A). The ROI included only those subregions with detailed

boundaries in the atlas, and consisted of a combination of the anterior olfactory nucleus, olfactory

tubercle, and frontal and temporal piriform cortices (Figure 1B), defined based on Mai et al. (2015).

Note that additional primary olfactory areas, including amygdala and entorhinal cortex (Alli-

son, 1954; Carmichael et al., 1994; Eslinger et al., 1982; Gonçalves Pereira et al., 2005;

Zatorre et al., 1992), were not included in our ROI because the exact location of olfactory afferents

into these areas is poorly understood (Gonçalves Pereira et al., 2005). This is an important topic for

future investigation of human olfactory networks.

We then estimated the whole-brain functional connectivity profile of each voxel within the ROI by

computing the Pearson correlation coefficient between the resting-state fMRI time-series of a given

voxel and that of every other voxel in the rest of the brain. This resulted in subject-wise connectivity

matrices. We then performed a leave-one-out analysis (Kahnt et al., 2012) to estimate the stability

of the connectivity profiles of individual primary olfactory cortex voxels across participants, as a pre-

requisite for averaging the connectivity matrices across subjects (Figure 2A). To examine the similar-

ity between the individual functional connectivity matrices, we computed a histogram of correlation

values between individual matrices and the group matrix. The histogram of correlation values

showed that the similarity of connectivity patterns was above zero in all voxels in primary olfactory

cortex (mean correlation coefficient: 0.19, standard error: 0.0041), justifying averaging across sub-

jects. Note that because they are computed across rest-of-the-brain voxels, R values larger than

0.0088 are statistically significant at p<0.05 (Bonferroni corrected for the number of voxels in primary

olfactory cortex). To parcellate within-ROI voxels into subdivisions based on their whole-brain func-

tional connectivity profiles, we applied unsupervised k-means clustering methods to the average

connectivity matrix. We used a priori k = 4 based on the fact that our ROI was comprised of four

anatomically distinct brain regions. For both the left and right hemispheres, this analysis successfully

parcellated the primary olfactory cortex ROI into four distinct brain regions that corresponded

anatomically to the anterior olfactory nucleus, olfactory tubercle, and frontal and temporal piriform

cortices (Figure 2B).
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Figure 1. Region of interest. (A) Panels show examples from the human brain atlas used to define the region of

interest used in the parcellation analysis. Relevant areas include the anterior olfactory nucleus (AON), olfactory

tubercle (TUB), and frontal (PirF) and temporal (PirT) piriform cortex (Mai et al., 2015). (B) The region of interest

shown overlaid on the FSL’s MNI152_T1_1mm_brain. The coronal and axial slices correspond to the vertical and

horizontal lines on the sagittal slice respectively. R, right hemisphere.

DOI: https://doi.org/10.7554/eLife.47177.002

The following source data is available for figure 1:

Source data 1. Relates to Figure 1.

DOI: https://doi.org/10.7554/eLife.47177.003
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To confirm the correspondence between our parcellation results and the anatomical delineation

of primary olfactory subregions in the Atlas of the Human Brain (Mai et al., 2015), we computed the

proportion of voxels from each parcellation cluster located within each of the atlas-derived subdivi-

sions, drawn prior to performing the parcellation analysis (Figure 2B). The statistical significance of

this proportion was tested using a permutation test. Specifically, for each permutation, we shuffled

the labels of the anatomical subdivision and re-calculated the proportion. This procedure was

repeated 10,000 times, resulting in a distribution of permuted proportions for each parcellation clus-

ter. A z score of the actual proportion values was computed by subtracting the average and then

dividing by the standard deviation, which was obtained by normal distribution fitting of the per-

muted data (Matlab’s normfit). We found that for each parcellated subdivision, there was one
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Figure 2. Parcellation of human left and right primary olfactory cortex. (A) Inter-subject stability of functional connectivity patterns. The correlation of

the functional connectivity patterns between each subject and all other subjects was calculated for each voxel using a leave-one-out method. The

coronal slices, corresponding to the vertical lines on the sagittal slice, show the average stability map. The bar plot shows the histogram of the

correlation values. (B) k-means (k = 4) clustering results shown on the FSL’s MNI152_T1_1mm_brain. The right column shows one axial and one coronal

slice of the Atlas (Mai et al., 2015). (C) Parcellation accuracy of each subregion. Left column: proportion of voxels from each parcellation subdivision

located within each anatomical subregion. Right column: z score of the proportion maps. * indicates p<0.001 (false discovery rate corrected). R, right

hemisphere; AON, anterior olfactory tubercle; TUB, olfactory tubercle; PirF, frontal piriform cortex; PirT, temporal piriform cortex.

DOI: https://doi.org/10.7554/eLife.47177.004

The following source data and figure supplements are available for figure 2:

Source data 1. Relates to Figure 2, panel (A).

DOI: https://doi.org/10.7554/eLife.47177.008

Source data 2. Relates to Figure 2, panel (B) and (C).

DOI: https://doi.org/10.7554/eLife.47177.009

Figure supplement 1. Replication analyses.

DOI: https://doi.org/10.7554/eLife.47177.005

Figure supplement 1—source data 1. Relates to Figure 2—figure supplement 1.

DOI: https://doi.org/10.7554/eLife.47177.006

Figure supplement 2. Example sagittal slice from one fMRI volume for each subject (S1–S25).

DOI: https://doi.org/10.7554/eLife.47177.007
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anatomical ROI that contained significantly more voxels than the other anatomical ROIs (Figure 2C,

minimal z score = 7.18). Thus, we found that the location of voxels within each parcellated subdivi-

sion corresponded to a single anatomically-determined ROI. Specifically, the medial-rostral-most

parcellated subdivision corresponded to the anterior olfactory nucleus. The adjacent caudal subdivi-

sion corresponded to the olfactory tubercle. Within the frontal lobe, the lateral-rostral subdivision

corresponded to the frontal piriform cortex, and within the temporal lobe, the caudal-most subdivi-

sion corresponded to temporal piriform cortex.

Replication of parcellation results
To confirm the robustness of our parcellation results, we performed two control analyses aimed at

replicating the initial findings. First, we performed the k-means clustering analysis on a different ROI

of primary olfactory cortex, drawn independently by one of the co-authors of this paper. Second, we

performed the k-means clustering analysis on an independent data set (N = 53), collected for a pre-

vious study on a different scanner, with different acquisition parameters and different subjects

(Kahnt and Tobler, 2017).

In the first control analysis, performed on an independently drawn ROI, we found that k-means

clustering still successfully parcellated primary olfactory cortex into four distinct regions, correspond-

ing anatomically to the anterior olfactory nucleus, olfactory tubercle, and frontal and temporal piri-

form cortices (Figure 2—figure supplement 1A,B). In our second control analysis, performed on an

independent data set, we found that, again, primary olfactory cortex successfully parcellated into

the same four distinct regions (Figure 2—figure supplement 1C,D). Importantly, all analysis steps

performed on this independent data set were identical to those performed in our initial analysis.

These results suggest good reliability of our finding that human olfactory cortex can be accurately

parcellated based on whole-brain functional connectivity patterns.

Parcellation results across hemispheres and k values
Thus far, we demonstrated that both the left and right primary olfactory areas can be accurately sub-

divided based on their functional connectivity profiles. To further examine differences between the

left and right hemispheres and at different k values, we conducted additional parcellation analyses

using a single primary olfactory ROI containing all subregions from both hemispheres, at a range of

k values. We reasoned that if connectivity patterns were similar across hemispheres for each subre-

gion, then parcellation analysis of this combined ROI should group left and right sides of each pri-

mary olfactory subregion, as opposed to grouping, for example, the neighboring subregions on the

same hemisphere. We computed this analysis using k values ranging from 3 to 6 (Figure 3). We

found that for a k value of 3, the parcellation analysis grouped left and right anterior olfactory

nucleus and left tubercle as one cluster, left and right frontal piriform cortex and left temporal piri-

form cortex as a second cluster, and right temporal piriform cortex alone as the third cluster. For a k

value of 4, the analysis successfully grouped left and right hemispheres for both piriform subregions,

but it grouped left anterior olfactory nucleus with left olfactory tubercle and right anterior olfactory

nucleus with right olfactory tubercle, suggesting these two primary olfactory areas have relatively

more lateralized connectivity patterns. A k value of 5 grouped the left and right hemispheres of all

subregions, with a fifth cluster consisting of only right temporal piriform cortex. Finally, a k value of 6

grouped all subregions across hemispheres except for the anterior olfactory nucleus. These results

indicate a clear separation of frontal and temporal piriform cortex for a wide range of cluster solu-

tions and even across hemispheres (Figure 3A). All parcellation results showed good agreement

with the anatomical subregions (Figure 3B,C). Of note, the anterior olfactory nucleus and olfactory

tubercle are classified as one subregion for a clustering solution of k = 3. The left and right anterior

olfactory nucleus were separated into different subregions for k = 4, 6. These findings suggest stron-

ger lateralization of connectivity patterns for the anterior olfactory nucleus compared to other pri-

mary olfactory areas.

Primary olfactory cortical functional connectivity does not statistically
differ between hemispheres
Our next step was to examine the whole-brain functional connectivity profiles of the different pri-

mary olfactory subregions. Prior to performing this analysis, we first determined whether to use
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hemispherically combined clusters, or hemispherically distinct clusters. We reasoned that if connec-

tivity profiles of left and right primary olfactory areas did not statistically differ, then they should not

be analyzed separately. We therefore conducted a lateralization-index analysis to directly statistically

compare connectivity patterns across hemispheres. The lateralization index was defined as (Zleft –

Zright)/(Zleft + Zright), where Zleft and Zright were the functional connectivity maps for the left and right

seed regions, respectively. We found no statistically significant difference between whole-brain con-

nectivity maps for the corresponding left and right primary olfactory subregions (Figure 4—figure

supplement 1) (threshold-free cluster enhancement (TFCE) corrected p>0.001). Based on this result,

all proceeding analyses were conducted using combined ROIs of corresponding left and right

subregions.

Distinct whole-brain human olfactory networks
The fact that primary olfactory subregions were accurately anatomically parcellated based on their

functional connectivity profiles suggests that they form distinct, parallel olfactory networks. To
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Figure 3. Parcellation of primary olfactory cortex combined across left and right hemispheres. (A) k-means

clustering results shown on the FSL’s MNI152_T1_1mm_brain for k = 3 to 6. Each color represents one cluster. (B)

Proportion of voxels of each parcellation subdivision within each anatomical subregion. (C) z score of the

proportion maps in panel B. * indicates p<0.001 (false discovery rate corrected). L, left hemisphere; R, right

hemisphere; AON, anterior olfactory tubercle; TUB, olfactory tubercle; PirF, frontal piriform cortex; PirT, temporal

piriform cortex.

DOI: https://doi.org/10.7554/eLife.47177.010

The following source data is available for figure 3:

Source data 1. Relates to Figure 3.

DOI: https://doi.org/10.7554/eLife.47177.011
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examine these functional networks, we produced whole-brain maps of the non-overlapping brain

areas exhibiting functional connectivity with each subregion. To do this, we first applied a statistical

threshold to the whole-brain functional connectivity map for each subregion (TFCE corrected

p<0.001), and binarized them (assigned a value of 1 or 0). This resulted in four distinct whole-brain

maps. We then further masked them according to whether each voxel exhibited statistically signifi-

cant functional connectivity with a single subregion or with multiple subregions. This produced two

maps of functional connectivity: one with the unique connectivity patterns for each subregion, and

the other with connectivity patterns shared by multiple subregions. The complete list of areas show-

ing subregion-specific connectivity is contained in Table 1.

Below, we outline the unique connectivity patterns we found for each primary olfactory

subregion.

Functional connectivity profiles of anterior olfactory nucleus and
olfactory tubercle
The brain areas that showed connectivity unique to the anterior olfactory nucleus were largest in the

orbitofrontal cortex, with smaller clusters in the left inferior temporal gyrus, bilateral anterior tempo-

ral gyri, the bilateral anterior insula and the mammillary bodies and retromammillary commissure

(Figure 4A,E). Areas of connectivity in the orbitofrontal cortex were extensive, including the entire

gyrus rectus and encompassing parts of the medial, anterior and lateral orbital gyri. Notably, there

was a strong cluster of connectivity corresponding to bilateral areas along the medial orbital sulcus,

close to its intersection with the transverse orbital sulcus—this is significant because this part of orbi-

tofrontal cortex is sometimes referred to as human secondary olfactory cortex (Gottfried and Zald,

2005). Connectivity with the left inferior temporal gyrus was centered around a posterior region

along the established object-recognition pathway. There were also large clusters in the bilateral

anterior temporal gyri, and the bilateral anterior insula, in gustatory cortex. Finally, there was a

medial cluster centered around the region between the mammillary bodies, the retromammillary

commissure and the posterior hypothalamic nucleus.

The brain areas that exhibited connectivity unique to the olfactory tubercle were largest in the

medial prefrontal cortex, with smaller clusters in the perisplenial region, the left temporal fusiform

cortex, the red nucleus of the brainstem and the accumbens (Figure 4B,F). Connectivity between

the olfactory tubercle and the medial prefrontal cortex was mainly located in the paracingulate gyrus

and frontal pole. In the paracingulate, it centered bilaterally around the anterior-most aspect of

Brodman’s area 32. Connectivity with the frontal pole was stronger in the left hemisphere, and

extended from the dorsal edge of the ventro-medial prefrontal cortex into the medial prefrontal cor-

tex, with a smaller cluster extending even more dorsal, reaching the dorsomedial prefrontal cortex.

There was also a cluster of connectivity located bilaterally in the ventral striatum, in the accumbens.

There were bilateral clusters of connectivity in both the red nuclei of the brainstem and in the retro-

splenial area.

Functional connectivity profiles of frontal and temporal piriform
cortices
Interestingly, the frontal and temporal piriform cortices also showed distinct connectivity patterns,

supporting the hypothesis that they are functionally distinct. The frontal piriform cortex showed a

large cluster of connectivity with the dorsal striatum (both putamen and caudate), with smaller clus-

ters in the precentral gyrus, the cingulate gyrus, mediodorsal thalamus and left supramarginal gyrus

(Figure 4C,G). Connectivity with the caudate nucleus and putamen was extensive, covering the bilat-

eral entirety of both regions. In the precentral gyrus, connectivity was evident along the primary

motor strip, close to the lateral sulcus, corresponding to the face/lips/tongue/jaw area. There was

also a large cluster of connectivity in the caudal anterior (anterior mid-cingulate) cortex, a cluster

within the mediodorsal thalamic nucleus extending over the entire anterior-posterior axis, and a clus-

ter unilaterally in the center of the left supramarginal gyrus.

The brain areas that exhibited unique connectivity to the temporal piriform cortex were largest in

the bilateral brainstem (centered in the pons) and temporal pole, with smaller clusters in bilateral

inferior frontal gyri, bilateral superior temporal gyrus, bilateral hippocampus and bilateral posterior

insula (Figure 4D,H). In the brainstem, connectivity was maximal in the ventral aspect of the pons
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Table 1. Summary of functional connectivity results.

Volume (mm3)

Label Overlap AON TUB PirF PirT

Frontal Orbital Cortex 2592 3000 144 - 1048

Frontal Medial Cortex 992 1120 - - -

Cingulate Gyrus 2760 200 80 2304 -

Insular Cortex 384 496 - 224 832

Subcallosal Cortex 3632 616 - - -

Caudate 136 120 - 2024 -

Paracingulate Gyrus 1336 - 2600 - -

Parahippocampal Gyrus 296 - 464 - 2584

Temporal Pole 328 - - - 9184

Putamen 1368 - - 3376 96

Hippocampus 1176 - - 136 1448

Amygdala 2120 - - - -

Accumbens 336 - - - -

Planum Polare - 248 - - 480

Frontal Pole - 2792 1504 - 736

Temporal Fusiform Cortex - 688 352 - 1240

Inferior Frontal Gyrus - 208 - - -

Inferior Temporal Gyrus - 1224 - - 248

Heschl’s Gyrus (includes H1 and H2) - 80 - - 208

Planum Temporale - 104 - - 96

Brainstem - - 592 - 6056

Thalamus - - 120 1384 -

Pallidum - - - 504 -

Precentral Gyrus - - - 1616 -

Postcentral Gyrus - - - 216 296

Frontal Operculum Cortex - - - 128 336

Central Opercular Cortex - - - 224 376

Supramarginal Gyrus - - - 808 -

Juxtapositional Lobule Cortex - - - 1104 -

Superior Frontal Gyrus - - - - 128

Temporal Occipital Fusiform Cortex - - - - 344

Superior Temporal Gyrus - - - - 1464

Middle Temporal Gyrus - - - - 1368

Angular Gyrus - - - - 256

Parietal Operculum Cortex - - - - 640

The volumes of statistically significant voxels in each brain region are shown for overlapping and subregion-specific

clusters. The Overlap column does not include subregion-specific regions. - indicates volume less than 80 mm3 (10

voxels). Atlas query was conducted with FSL’s HarvardOxford-cort-maxprob-thr50-2mm and HarvardOxford-sub-max-

prob-thr50-2mm atlases. AON, anterior olfactory nucleus; TUB, olfactory tubercle; PirF, frontal piriform cortex; PirT,

temporal piriform cortex.

DOI: https://doi.org/10.7554/eLife.47177.012

The following source data is available for Table 1:

Source data 1. Functional connectivity profile of each subregion.

DOI: https://doi.org/10.7554/eLife.47177.013
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Figure 4. Subregion-specific functional connectivity patterns. (A–D) Brain regions that are uniquely positively connected to each of the

primary olfactory subregions including the (A) anterior olfactory nucleus (AON, red), (B) olfactory tubercle (TUB, purple), (C) frontal piriform cortex (PirF,

blue) and (D) temporal piriform cortex (PirT, green). The results are shown on the FSL’s MNI152_T1_1mm_brain. (E–H) Functional connectivity maps

shown on Freesurfer’s cvs_avg35_inMNI152 brain surface for AON, TUB, PirF and PirT. All functional connectivity maps were thresholded at threshold-

free cluster enhancement corrected p<0.001. L, left hemisphere; PHN, posterior hypothalamic nucleus; ITG, inferior temporal gyrus; OFC, orbitofrontal

cortex; INS, insula; PCC, paracingulate cortex; RN, retromammillary nucleus; ACCU, accumbens; RSC, retrosplenial area; FP, frontal pole; FFA, fusiform

face areas; ACC, anterior cingulate cortex; THAL, thalamus; CAU, caudate; PUT, putamen; SUP, supramarginal gyrus; TP, temporal pole; HIPP,

hippocampus; BA, Broca’s area.

DOI: https://doi.org/10.7554/eLife.47177.014

The following source data and figure supplements are available for figure 4:

Source data 1. Relates to Figure 4.

DOI: https://doi.org/10.7554/eLife.47177.017

Figure supplement 1. Lateralization of functional connectivity.

Figure 4 continued on next page
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within the nucleus raphe magnus. There were also large clusters of connectivity in the anterior tem-

poral pole. Within the inferior frontal gyrus, connectivity was stronger on the left side within Broca’s

area, with a smaller cluster in the same area on the right hemisphere. There were clusters in the left

superior temporal gyrus, in the language comprehension areas (Friederici et al., 2003; Leff et al.,

2009) and clusters in the right medial temporal gyrus.

Functional connectivity common to all subregions
Although we have shown that primary olfactory subregions have distinct functional connectivity pro-

files, they likely also have some functional pathways in common, especially considering the strong

reciprocal connectivity between the subregions. To identify the common primary olfactory connectiv-

ity network, the connectivity map of each subregion was binarized at a threshold of TFCE corrected

p<0.001 to include only those clusters that exhibited connectivity with all subregions. This resulted

in a whole-brain connectivity map of areas that are functionally connected to all primary olfactory

cortical subregions (Figure 5, Table 1). We found that these areas included large clusters in the

bilateral hippocampus, amygdala and subgenual area, with smaller clusters in the anterior insula and

posterior orbitofrontal cortex (Figure 5A,B). Connectivity with the hippocampus covered the entire

anterior-posterior extent. In the amygdala, connectivity was maximal in the medial subregions and in

the central amygdala. Interestingly, for both the right and left primary olfactory cortical subregions,

connectivity clusters with the rest of the brain were generally more extensive in the right hemisphere

compared to the left hemisphere (Frasnelli et al., 2010; Herz et al., 1999; Royet and Plailly, 2004;

Zatorre et al., 1992) (Figure 5A,B). The common connectivity of all primary olfactory subregions

with the orbitofrontal cortex could explain why it is so reliably activated even in basic and passive

olfactory tasks.

Discussion
In the olfactory system, information flows from the bulb to the cortex in a direct and parallel manner.

Similarly, other sensory systems have parallel organization of processing pathways, but these typi-

cally occur at a later stage of processing. For example, information from other systems, including

somatosensation, gustation, vision and audition, is processed in the thalamus prior to primary sen-

sory cortex, and is parallelized downstream from there. In olfaction, thalamic processing occurs

after direct parallel primary cortical processing, and, based on data from this study, may only occur

for a subset of olfactory processing streams. From the olfactory bulb, mitral and tufted cells project

to several different brain regions which are thought to play unique roles in olfactory processing

(Ghosh et al., 2011; Haberly, 2001; Miyamichi et al., 2011; Sosulski et al., 2011). In rodents, the

anatomical locations and properties of these regions have been well defined (Igarashi et al., 2012;

Nagayama et al., 2010; Vassar et al., 1994). In humans, however, far fewer studies have attempted

to identify and define these primary olfactory areas (Crosby and Humphrey, 1939; Eslinger et al.,

1982; Allison, 1954; Shipley and Reyes, 1991). Similarly, whereas many studies have begun to out-

line unique functional properties of primary olfactory areas within the rodent olfactory system (Ike-

moto, 2003; Illig, 2005; Lei et al., 2006; Myhrer et al., 2010; Wesson and Wilson, 2010), fewer

have done the same in humans. In the current study, we used data-driven connectivity-based parcel-

lation techniques to show that whole-brain functional connectivity patterns alone could be used to

parcellate human primary olfactory cortical regions into subregions that anatomically corresponded

to the anterior olfactory nucleus, olfactory tubercle and frontal and temporal piriform cortices. Our

findings indicate a dissociation in whole-brain functional connectivity patterns across the subregions

of human primary olfactory cortex. This suggests that the human olfactory system is comprised of

distinct parallel processing pathways (Cecchetto et al., 2019; Savic et al., 2000) that may be

related to the different recipients of projections from the olfactory bulb, in line with previous studies

in rodents (Geramita et al., 2016; Haberly, 2001; Igarashi et al., 2012; Kauer, 1991;

Figure 4 continued

DOI: https://doi.org/10.7554/eLife.47177.015

Figure supplement 1—source data 1. Relates to Figure 4—figure supplement 1.

DOI: https://doi.org/10.7554/eLife.47177.016
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Payton et al., 2012). Our findings provide a detailed description of the particular brain areas that

exhibit unique connectivity with each individual primary olfactory subregion. This could be used to

gain insight into the specific role that each subregion plays in olfactory perception. We also demon-

strate parallel organization of the olfactory system, in which olfactory networks reach a broader set

of cortical targets at an earlier stage of processing compared to other sensory systems. This data

might have implications for understanding the olfactory decline that appears in early stages of

some neurological disease states. For example, olfactory structures that form networks with brain

areas implicated in particular pathologies likely perform critical olfactory sensory functions (e.g. the

olfactory tubercle is connected to areas involved in depression, see Croy and Hummel, 2017, and

the temporal piriform cortex is connected to areas involved in primary progressive aphasia, see

Olofsson et al., 2013).

x = 22 x = 22x = 0

z = 19 z = 11 z = 3

R

A

B

Figure 5. Functional connectivity common to all subregions. (A) Brain regions that showed statistically significant

positive functional connectivity with each of the primary olfactory subregions. Results are overlaid on the FSL’s

sagittal and axial MNI152_T1_1mm_brain. (B) Same brain regions as in (A) shown on medial (top row) and lateral

(bottom row) Freesurfer’s cvs_avg35_inMNI152 brain surfaces. Red indicates the functional connectivity maps that

were thresholded at threshold-free cluster enhancement corrected p<0.001. R, right hemisphere.

DOI: https://doi.org/10.7554/eLife.47177.018

The following source data is available for figure 5:

Source data 1. Relates to Figure 5.

DOI: https://doi.org/10.7554/eLife.47177.019
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Across species, the most frequently studied primary olfactory area is piriform cortex. In rodents, it

has been consistently shown that projections from the bulb to piriform cortex are spatially distrib-

uted (Ghosh et al., 2011; Iurilli and Datta, 2017; Miyamichi et al., 2011) and that information

about odor identity can be extracted from the spatiotemporal dynamics of these ensemble patterns

(Haddad et al., 2013; Illig and Haberly, 2003; Poo and Isaacson, 2009; Rennaker et al., 2007;

Stettler and Axel, 2009; Sugai et al., 2005; Zhan and Luo, 2010). At the same time, numerous

studies suggest that the function of piriform cortex goes beyond simple odor-identity coding and is

strongly impacted by its regional connectivity with other cortical areas (Cleland and Linster, 2003;

Sadrian and Wilson, 2015). Numerous studies have implicated posterior piriform cortex in associa-

tive functions such as odor learning and memory (Calu et al., 2007; Chen et al., 2014; Choi et al.,

2011; Gire et al., 2013; Gottfried and Dolan, 2003; Johnson et al., 2000; Karunanayaka et al.,

2015; Martin et al., 2006; Roesch et al., 2007; Sacco and Sacchetti, 2010; Schoenbaum and

Eichenbaum, 1995), and also suggest that the region may mediate learned olfactory responses and

behaviors (Choi et al., 2011). Moreover, the strength and composition of piriform networks has also

been shown to depend on experience and on the state of the organism (Chapuis et al., 2013;

Cohen et al., 2015; Cohen et al., 2008; Hasselmo and Barkai, 1995; Kay and Freeman, 1998;

Linster and Hasselmo, 2001; Wilson and Sullivan, 2011).

While human studies suggest a role for piriform cortex that goes beyond pure odor-object cod-

ing, (Bensafi, 2012; Gottfried, 2010; Porter et al., 2007; Schulze et al., 2017; Zelano et al.,

2005), the anatomical and functional properties of human piriform cortex are not well understood

compared to rodents. In fact, in some cases, it is not even clear which human bulbar recipients corre-

spond to the well-defined rodent ones. While it has been suggested that the frontal and temporal

subdivisions of human piriform may correspond to the anterior and posterior subdivisions of rodent

piriform respectively, there is little anatomical or functional evidence to support this. For example,

the rodent anterior piriform receives a greater density of bulb projections than the posterior piri-

form, while the same is not true for human frontal, relative to temporal, piriform. The lack of clear

correspondence between human and rodent piriform subdivisions suggest that functional differen-

ces in primary olfactory areas across species could be substantial.

In our study, we found a clear differentiation between the functional connectivity patterns of

human frontal and temporal piriform subdivisions, suggesting these two areas play different roles in

olfactory processing in the human brain (Albrecht et al., 2010; Bao et al., 2016; Bensafi et al.,

2007; Howard et al., 2009; Plailly et al., 2012; Porter et al., 2005; Zelano et al., 2005). This dis-

tinction between frontal and temporal piriform cortices was robust, surviving across k values and

hemispheres. Interestingly, our findings suggest that frontal piriform cortex has strong functional

connectivity with motor planning areas, including the caudate/putamen and the primary motor cor-

tex, specifically at the face/nose/jaw section of the motor homunculus (perhaps the facial movement

areas include sniffing). Intriguingly, frontal piriform cortex was also connected to the left supramargi-

nal gyrus, an area that has been consistently implicated in tool-grasping in humans (Glover et al.,

2012; Johnson-Frey et al., 2005), leading us to the tempting and highly speculative hypothesis that

frontal piriform cortex may play a specific role in combining olfactory information with motor plan-

ning in order to guide food with the hand to the mouth. In contrast, we found that the temporal piri-

form cortex was connected to the brainstem raphe magnus and posterior insula, areas implicated in

pain processing (Segerdahl et al., 2015; Woo et al., 2009) and respiratory modulations

(Ackermann and Riecker, 2010; Evans et al., 2009), as well as the core language network

(Ardila et al., 2014; Wible et al., 2005). Interestingly, in the context of olfaction, respiratory modu-

lation and pain mediation are tightly linked, since many olfactory stimuli also activate trigeminal

nerve endings that are located inside the nasal cavities. If a painful stimulus enters the nasal cavities

(e.g. ammonia), a protective, fast respiratory reduction occurs, to minimize entry of dangerous chem-

icals into the body. Intriguingly, verbal communication also requires modulations in breathing, and

thus, temporal piriform cortex may mediate both olfactory-related verbal communication and pro-

tective changes in respiration. These findings may be applicable to the hypothesized neurocognitive

limitations of olfactory language (Cain, 1979; Engen and Ross, 1973; Olofsson and Gottfried,

2015), since our data may suggest that the same olfactory subregion exhibiting connectivity with

language networks is involved in other critical olfactory functions.

Beyond piriform cortex, other cortical recipients of olfactory bulb output are less explored,

including the anterior olfactory nucleus (Brunjes et al., 2005) and olfactory tubercle (Wesson and

Zhou et al. eLife 2019;8:e47177. DOI: https://doi.org/10.7554/eLife.47177 13 of 27

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.47177


Wilson, 2011). In rodents, the anterior olfactory nucleus is a true cortical structure that can be

divided into two main subdivisions, the pars externa and pars principalis (Pigache, 1970;

Valverde et al., 1989). Studies suggest that some of the spatial properties of rodent glomerular

activation are preserved in the pars externa, whereas the pars principalis exhibits a

spatially distributed activation similar to other primary olfactory areas (Kay et al., 2011;

Miyamichi et al., 2011). This suggests functional heterogeneity across the rodent anterior olfactory

nucleus. In humans, the anterior olfactory nucleus is also a true cortical structure, but it does not

appear to contain an analog to the pars externa (Crosby and Humphrey, 1941). It can be divided

anatomically into retrobulbar and cortical anterior and posterior subdivisions (Mai et al., 2015;

Ubeda-Bañon et al., 2017; Ongür et al., 2003). That said, only a small number of studies have

directly explored the human anterior olfactory nucleus (Ubeda-Bañon et al., 2017), so its functional

subdivisions remain unclear. Rodent studies suggest the pars externa is involved in odor localization

(Esquivelzeta Rabell et al., 2017; Kikuta et al., 2010) and the pars medialis could be involved in

top-down modulation of bulbar responses (Aqrabawi et al., 2016). More broadly, rodent studies

suggest a role for the anterior olfactory nucleus in the initial formation of representations of odor

objects (gestalts) (Haberly, 2001; Lei et al., 2006), allowing piriform cortex to perform more asso-

ciative functions, relating information about odor objects to movement and behavior. In our study,

we found that whole-brain connectivity of the human anterior olfactory nucleus was maximal in orbi-

tofrontal areas and other regions associated with object recognition. Our findings are in line with

rodent studies showing connectivity between anterior olfactory nucleus and orbitofrontal cortex

(Illig, 2005), and with the hypothesized role for the anterior olfactory nucleus in the formation of

odor-object representations (Haberly, 2001). We also found that connectivity profiles for the ante-

rior olfactory nucleus were more lateralized than those of other primary olfactory subregions. This

finding is in line with rodent studies suggesting that anterior olfactory nucleus neurons can distin-

guish between signals from the ipsilateral and contralateral nostrils, suggesting representation of lat-

eralized inputs in this region (Kikuta et al., 2010).

Similar to the anterior olfactory nucleus, we lack a complete understanding of the function of the

olfactory tubercle, especially in humans. The majority of research on the olfactory tubercle has been

conducted in rodents and has focused on its relationship with the reward system (Ikemoto, 2007),

with far fewer studies considering it as a primary olfactory cortical structure (Wesson and Wilson,

2011). Interestingly, the olfactory tubercle is the main recipient of tufted (as opposed to mitral) cell

projections from the rodent olfactory bulb (Scott et al., 1980). Tufted cells show enhanced odor

sensitivity, enhanced respiratory entrainment and broader receptive fields compared to mitral cells

(Mori and Shepherd, 1994; Shepherd et al., 2004), suggesting that the olfactory tubercle is impor-

tant for olfactory tasks requiring high sensitivity. Studies suggest potential roles for the rodent olfac-

tory tubercle in odor discrimination (Murakami et al., 2005; Wesson and Wilson, 2010), olfactory

multisensory integration (Wang et al., 2010), state-dependent modulation of olfactory bulb activity

(Gervais, 1979) and odor reward value (Howard et al., 2016). Studies also suggest a role for the

rodent olfactory tubercle in sensory hedonics and social behavior (Gervais, 1979; Hagamen et al.,

1977; Hitt et al., 1973). Compared to rodents, much less is known about the human olfactory tuber-

cle. In our study, we found connectivity between the olfactory tubercle and brain areas implicated in

emotional processing, depression, and social cognition, including anterior paracingulate cortex and

left frontal pole (Bludau et al., 2014; Eskenazi et al., 2015; Fettes et al., 2018; Jackson et al.,

2003; Koch et al., 2018; Koechlin, 2011; Papmeyer et al., 2015; Veer et al., 2010). Interestingly,

we also found connectivity between the olfactory tubercle and the left fusiform gyrus (fusiform face

area), a brain region that is highly responsive to human faces (Çukur et al., 2013; Grill-

Spector et al., 2004; Kanwisher et al., 1997; McCarthy et al., 1997). Our findings are consistent

with rodent data suggesting a role for the tubercle in emotion and social cognition.

In an attempt to summarize and clarify the basic implications of our findings, we created a simpli-

fied, speculative illustrative diagram suggesting potential roles for each of the primary olfactory sub-

divisions that our study parcellated (Figure 6). One possible interpretation of our data suggests the

following basic functions for human primary olfactory cortical subregions: Anterior olfactory nucleus,

a cortical structure, may function as a first step in forming olfactory object representations; The

olfactory tubercle may function in extracting social and emotional information from olfactory stimuli,

mediating olfactory-related social and emotional responses; Frontal piriform cortex may be involved

in planning olfactory-related movements, speculatively those involved in eating; Temporal piriform
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cortex may mediate pain-related (protective) respiratory modulations and verbal communication

about olfactory stimuli. Importantly, the functions of primary olfactory areas cannot be determined

from resting connectivity networks explored here, and there are numerous alternate interpretations

of our data. Future experiments that combine psychophysics with the measurement of neural activity

AON PirTPirFTUB

OFC

ACC

SC
HIPP

AMY

B

ITG OFC

aINS

THAL

AMC

CAU/PUT

MOT

BA

Brainstem
TP

mPFC

A

RN

RSC

pINS

Common

Figure 6. Schematic illustrative summary of the functional organization of human primary olfactory cortex. (A) Summary of brain regions that are

uniquely connected to each subregion, including the anterior olfactory nucleus (AON), olfactory tubercle (TUB), frontal piriform cortex (PirF), and

temporal piriform cortex (PirT). (B) Summary of brain regions that are commonly connected to all subregions. mPFC, medial prefrontal cortex; CAU,

caudate; PUT, putamen; AMC, anterior mid-cingulate cortex; THAL, thalamus; RN, red nucleus; RSC, retrosplenial cortex; ITG, inferior temporal gyrus;

pINS, posterior insular cortex; MOT, motor area; TP, temporal pole; BA, Broca’s area; aINS, anterior insular cortex; OFC, orbitofrontal cortex; ACC,

anterior cingulate cortex; SC, subcallosal cortex; HIPP, hippocampus; AMY, amygdala.

DOI: https://doi.org/10.7554/eLife.47177.020

The following source data is available for figure 6:

Source data 1. Relates to Figure 6.

DOI: https://doi.org/10.7554/eLife.47177.021
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across primary olfactory areas are needed to gain a full understanding of parallel functional olfactory

pathways in the human brain.

Materials and methods

Participants
Twenty-five healthy subjects (14 female) with normal or corrected-to-normal vision were recruited for

this study. The average (standard error) age was 25.5 (1.2) years. All subjects were right-handed and

had normal olfactory function by self-report. No participant reported a history of smell, taste or ear-

nose-throat, psychiatry, or neurological disorder. This study was approved by Northwestern Univer-

sity’s Institutional Review Board under Protocol #STU00201746. All participants gave their voluntary

written consent before the experiment. All experiments were conducted according to the principles

of the Declaration of Helsinki.

MRI data acquisition
Magnetic resonance imaging (MRI) data were acquired on a 3T Siemens TIM Trio scanner equipped

with a 64-channel head coil (Siemens Healthcare, Erlangen, Germany), at Northwestern University’s

Center for Translational Imaging. A 10 min resting fMRI scan was acquired for each subject using a

single-shot gradient-echo planar-imaging sequence with following parameters: repetition time (TR):

555 ms; echo time (TE): 22 ms; flip angle: 47˚; MB-8 with Split-slice GRAPPA (Olman et al., 2009;

Todd et al., 2016); field of view (FOV): 208 mm; voxel size: 2.0 � 2.0 � 2.0 mm3; 64 axial slices. To

reduce the distortion and improve the signal-to-noise ratio in the primary olfactory and orbitofrontal

areas, the slice orientation was set to approximately 30˚ from the AC-PC line (Deichmann et al.,

2003). These acquisition parameters resulted in robust signals within orbitofrontal and olfactory

areas in each subject (Figure 2—figure supplement 2). Further, our finding of strong connectivity

between orbitofrontal cortex and all primary olfactory cortical areas suggests good orbitofrontal

coverage. Subjects were instructed to look at a white fixation cross on a black background and to

breathe in and out through their nose.

A high-resolution anatomical image was acquired for each subject using T1-weighted MPRAGE

(TR: 2300 ms; TE: 2.94 ms; flip angle: 9˚; FOV: 256 mm; voxel size: 1.0 � 1.0 � 1.0 mm3; 176 sagittal

slices).

MRI data preprocessing
The structural images were skull-stripped and segmented into gray matter, white matter and cere-

brospinal fluid using the BET (Smith, 2002) and FAST (Zhang et al., 2001) tools of FSL (FMRIB Soft-

ware Library, www.fmrib.ox.ac.uk/fsl; RRID:SCR_002823) (Jenkinson et al., 2012; Smith et al.,

2004; Woolrich et al., 2009). The resulting white matter and cerebrospinal fluid images were further

eroded by one voxel (FSL’s fslmaths).

Preprocessing of the resting fMRI data included removal of the first 10 volumes, motion correc-

tion and generating spatial registration matrices using FSL’s FEAT. Each subject’s functional images

were normalized to their anatomical image using the brain-boundary registration method, and each

individual anatomical image was registered to the Montreal Neurological Institute (MNI) standard

brain (MNI152_T1_2mm_brain) using the non-linear registration method (12 degrees of freedom).

Linear and quadratic trends were removed using Analysis of Functional NeuroImages (AFNI; RRID:

SCR_005927) (Cox, 1996). Nuisance variables, including six head-movement parameters, and white

matter and cerebrospinal signals, were regressed out using multiple linear regression methods

(FSL’s fsl_glm). Finally, the images were intensity normalized, band-pass filtered (0.008–0.01 Hz,

AFNI’s 3dFourier), registered to MNI space and spatially smoothed (Gaussian kernel, sigma = 3).

Functional connectivity-based parcellation
To perform the functional connectivity-based parcellation, we manually drew an ROI that included

the anterior olfactory nucleus, olfactory tubercle, and piriform cortex on the MNI152 template brain,

according to the Atlas of the Human Brain (Mai et al., 2015). The ROI was drawn onto coronal slices

in the range of y = �3 to y = 15 on the MNI152_T1_1mm_brain, which was down-sampled to

MNI152 2 mm space afterwards. For the comparison between parcellated clusters and anatomical
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subregions, we drew ROIs delineating the primary olfactory subregions prior to running the parcella-

tion analysis. Notably, the human primary olfactory subregions differ in relative size and shape from

their rodent analogs. We followed the definition of the olfactory tubercle and anterior olfactory

nucleus used in the Atlas of the Human Brain (Mai et al., 2015; Ongür et al., 2003), and their loca-

tions agree with previous human studies (Allison, 1954; Crosby and Humphrey, 1941;

Eslinger et al., 1982). Although we used an atlas that includes particularly detailed delineations of

olfactory areas, based on rigorous techniques, including data from four human brains (Ongür et al.,

2003), some researchers have postulated that the human anterior olfactory nucleus is part of the

olfactory bulb (Daniel and Hawkes, 1992; Hyman et al., 1991) and that the human olfactory tuber-

cle is actually the anterior perforated substance (Daniel and Hawkes, 1992; Hyman et al., 1991).

However, these discrepencies are mainly terminology-based, as the different studies refer to the

same anatomical structures.

We next parcellated the ROI into subregions based on their connectivity patterns with the rest of

the brain. To do so, the Pearson correlation coefficient was computed between each voxel within

the ROI and every other voxel in the rest of the whole brain, resulting a correlation matrix for each

subject. The whole-brain mask was created using FSL’s gray matter tissue prior image (avg152T1_-

gray.img, threshold of 100). The correlation coefficient was Fisher’s z transformed and then averaged

across subjects. The resulting matrix was transformed back into Pearson correlation coefficients,

which were later used for parcellation analysis.

The parcellation analysis was performed using standard k-means methods, as implemented in

the Matlab Statistics Toolbox (Matlab R2016b, The Mathworks Inc, Natick, MA USA; RRID:SCR_

001622). The correlation between the connectivity pattern of the voxels within the ROI was used as

the distance measure. Although this method is unsupervised, it requires an input of the number of

clusters. Our hypothesis was that subregions of the primary olfactory areas within the ROI were sep-

arable based on their functional connectivity patterns. Thus, we chose a k value of four as the input

for the algorithm. The clustering was performed on left and right hemisphere ROIs separately.

To evaluate the stability of the group-level connectivity patterns, we tested the stability of the

correlation matrix using a leave-one-out method (Kahnt et al., 2012). This analysis tests whether the

connectivity profile of individual voxels in primary olfactory cortex is similar across subjects, as

required for averaging. For this, the correlation matrices were averaged across N�1 subjects, where

N is the total number of subjects, and the correlation with the left-out subject was calculated for

each voxel. We repeated this procedure N times and took the average of these repetitions as the

final stability map.

To calculate the proportion of voxels from each parcellation cluster located within each anatomi-

cal subdivision of primary olfactory subregions, we first used the Atlas of the Human Brain

(Mai et al., 2015 to outline anatomical ROIs of anterior olfactory nucleus, olfactory tubercle, frontal

piriform cortex and temporal piriform cortex prior to performing the parcellation analysis. We then

determined the proportion of voxels from each parcellated subdivision that were located within

each ROI. The significance of the proportion was tested using a permutation method. In each per-

mutation, we shuffled the labels of the voxels within the ROI and re-calculated the proportion num-

ber. This procedure was repeated 10,000 times, resulting in a null distribution of the proportion of

voxels of each parcellated subdivision within each anatomical subregion. The mean and standard

deviation of this distribution was computed by norm line fitting (Matlab’s normfit). A z score of the

real proportion was computed by subtracting the average and then dividing by the standard

deviation.

To characterize the functional connectivity pattern of each subregion, the time series of all voxels

were averaged for each ROI. The Pearson correlation between the average time series and every

other voxel in the brain was calculated for each subject and Fisher’s z transformed. Finally, random

effects analysis of the functional connectivity maps was performed using one-sample t tests (FSL’s

randomize, 10,000 permutations). Multiple comparisons were corrected using the TFCE method

(Smith and Nichols, 2009). TFCE allows the identification of clusters in data sets without defining

the clusters in a binary way. The output is a weighted sum of the local clustered signal. TCFE has

been shown to produce results with better stability than other methods (Smith and Nichols, 2009).

For functional connectivity network analysis, we focused on positive functional connectivity only,

since the mechanisms of negative functional connectivity are less understood (Murphy et al., 2009).
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To examine the functional connectivity difference between left and right subregions of the ROI,

we computed a lateralization index of the functional connectivity. The lateralization index was calcu-

lated as (Zleft�Zright)/(Zleft + Zright), where Zleft and Zrightrepresent the whole-brain functional connec-

tivity map of the left and right subregions respectively. The lateralization index was further spatially

smoothed (Gaussian kernel, sigma = 3). A one-sample t test analysis of the lateralization index was

conducted using FSL’s randomize (10,000 permutations) and multiple comparisons were corrected

using the TFCE method. Because we found no statistical difference between the maps across hemi-

spheres, we combined the corresponding left and right primary olfactory cortex clusters, and per-

formed all subsequent analyses on these hemispherically-combined seed regions.

For the replication of our parcellation analysis, we performed k-means clustering on subjects from

an independent resting-state fMRI dataset that was published elsewhere (Kahnt and Tobler, 2017).

In brief, 6 min of resting fMRI data were collected from fifty-three healthy subjects on a Philips

Achieva 3T scanner (TR: 2000 ms; TE: 30 ms; voxel size: 2.75 � 2.75 � 3 mm3; flip angle: 90˚). A

high-resolution, T1-weighted MPRAGE anatomical image was acquired (TR: 8.2 ms; TE: 3.8 ms; FOV:

256 mm; voxel size: 1.0 � 1.0 � 1.0 mm3; 181 slices; flip angle: 8˚) for each subject. All analyses per-

formed on this data set were identical to the steps performed in our initial analysis. Full details on

the acquisition parameters can be found in Kahnt and Tobler (2017), but importantly, their

acquisition parameters differed from ours, highlighting the replicability of our findings.

Data availability
Source data and code have been made available via GitHub: https://github.com/zelanolab/pri-

maryolfactorycortexparcellation.git (Zelano Lab, 2019; copy archived at https://github.com/elifes-

ciences-publications/primaryolfactorycortexparcellation).
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Grau-Perales A, Gómez-Chacón B, Morillas E, Gallo M. 2019. Flavor recognition memory related activity of the
posterior piriform cortex in adult and aged rats. Behavioural Brain Research 360:196–201. DOI: https://doi.org/
10.1016/j.bbr.2018.12.016, PMID: 30529404

Grill-Spector K, Knouf N, Kanwisher N. 2004. The fusiform face area subserves face perception, not generic
within-category identification. Nature Neuroscience 7:555–562. DOI: https://doi.org/10.1038/nn1224,
PMID: 15077112

Haberly LB. 2001. Parallel-distributed processing in olfactory cortex: new insights from morphological and
physiological analysis of neuronal circuitry. Chemical Senses 26:551–576. DOI: https://doi.org/10.1093/chemse/
26.5.551, PMID: 11418502

Haberly LB, Price JL. 1978. Association and commissural fiber systems of the olfactory cortex of the rat. I.
systems originating in the piriform cortex and adjacent Areas. The Journal of Comparative Neurology 178:711–
740. DOI: https://doi.org/10.1002/cne.901780408

Haddad R, Lanjuin A, Madisen L, Zeng H, Murthy VN, Uchida N. 2013. Olfactory cortical neurons read out a
relative time code in the olfactory bulb. Nature Neuroscience 16:949–957. DOI: https://doi.org/10.1038/nn.
3407, PMID: 23685720

Hagamen TC, Greeley HP, Hagamen WD, Reeves AG. 1977. Behavioral asymmetries following olfactory tubercle
lesions in cats. Brain, Behavior and Evolution 14:241–250. DOI: https://doi.org/10.1159/000125664

Hasselmo ME, Barkai E. 1995. Cholinergic modulation of activity-dependent synaptic plasticity in the piriform
cortex and associative memory function in a network biophysical simulation. The Journal of Neuroscience 15:
6592–6604. DOI: https://doi.org/10.1523/JNEUROSCI.15-10-06592.1995

Herz RS, McCall C, Cahill L. 1999. Hemispheric lateralization in the processing of odor pleasantness versus odor
names. Chemical Senses 24:691–695. DOI: https://doi.org/10.1093/chemse/24.6.691, PMID: 10587502

Hitt JC, Bryon DM, Modianos DT. 1973. Effects of rostral medial forebrain bundle and olfactory tubercle lesions
upon sexual behavior of male rats. Journal of Comparative and Physiological Psychology 82:30–36.
DOI: https://doi.org/10.1037/h0033797, PMID: 4567890

Howard JD, Plailly J, Grueschow M, Haynes JD, Gottfried JA. 2009. Odor quality coding and categorization in
human posterior piriform cortex. Nature Neuroscience 12:932–938. DOI: https://doi.org/10.1038/nn.2324,
PMID: 19483688

Howard JD, Kahnt T, Gottfried JA. 2016. Converging prefrontal pathways support associative and perceptual
features of conditioned stimuli. Nature Communications 7:11546. DOI: https://doi.org/10.1038/ncomms11546

Howard JD, Gottfried JA. 2014. Configural and elemental coding of natural odor mixture components in the
human brain. Neuron 84:857–869. DOI: https://doi.org/10.1016/j.neuron.2014.10.012, PMID: 25453843

Hyman BT, Arriagada PV, Van Hoesen GW. 1991. Pathologic changes in the olfactory system in aging and
Alzheimer’s disease. Annals of the New York Academy of Sciences 640:14–19. DOI: https://doi.org/10.1111/j.
1749-6632.1991.tb00184.x, PMID: 1776730

Igarashi KM, Ieki N, An M, Yamaguchi Y, Nagayama S, Kobayakawa K, Kobayakawa R, Tanifuji M, Sakano H,
Chen WR, Mori K. 2012. Parallel mitral and tufted cell pathways route distinct odor information to different
targets in the olfactory cortex. Journal of Neuroscience 32:7970–7985. DOI: https://doi.org/10.1523/
JNEUROSCI.0154-12.2012, PMID: 22674272

Ikemoto S. 2003. Involvement of the olfactory tubercle in cocaine reward: intracranial self-administration studies.
The Journal of Neuroscience 23:9305–9311. DOI: https://doi.org/10.1523/JNEUROSCI.23-28-09305.2003,
PMID: 14561857

Ikemoto S. 2007. Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus
accumbens-olfactory tubercle complex. Brain Research Reviews 56:27–78. DOI: https://doi.org/10.1016/j.
brainresrev.2007.05.004, PMID: 17574681

Illig KR. 2005. Projections from orbitofrontal cortex to anterior piriform cortex in the rat suggest a role in
olfactory information processing. The Journal of Comparative Neurology 488:224–231. DOI: https://doi.org/10.
1002/cne.20595, PMID: 15924345

Illig KR, Haberly LB. 2003. Odor-evoked activity is spatially distributed in piriform cortex. The Journal of
Comparative Neurology 457:361–373. DOI: https://doi.org/10.1002/cne.10557, PMID: 12561076
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