
Manuscript submitted to eLife

Brian 2, an intuitive and efficient1

neural simulator2

Marcel Stimberg1*, Romain Brette1†, Dan F.M. Goodman2†3

*For correspondence:

marcel.stimberg@inserm.fr (MS)

†These authors contributed equally

to this work

1Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France; 2Department of4

Electrical and Electronic Engineering, Imperial College London, UK5

6

Abstract Brian 2 allows scientists to simply and efficiently simulate spiking neural network7

models. These models can feature novel dynamical equations, their interactions with the8

environment, and experimental protocols. To preserve high performance when defining new9

models, most simulators offer two options: low-level programming or description languages. The10

first option requires expertise, is prone to errors, and is problematic for reproducibility. The second11

option cannot describe all aspects of a computational experiment, such as the potentially complex12

logic of a stimulation protocol. Brian addresses these issues using runtime code generation.13

Scientists write code with simple and concise high-level descriptions, and Brian transforms them14

into efficient low-level code that can run interleaved with their code. We illustrate this with several15

challenging examples: a plastic model of the pyloric network, a closed-loop sensorimotor model, a16

programmatic exploration of a neuron model, and an auditory model with real-time input.17

18

Introduction19

Neural simulators are increasingly used to develop models of the nervous system, at different20

scales and in a variety of contexts (Brette et al., 2007). These simulators generally have to find a21

trade-off between performance and the flexibility to easily define new models and computational22

experiments. Brian 2 is a complete rewrite of the Brian simulator designed to solve this apparent23

dichotomy using the technique of code generation. The design is based around two fundamental24

ideas. Firstly, it is equation based: defining new neural models should be no more difficult than25

writing down their equations. Secondly, the computational experiment is fundamental: the interac-26

tions between neurons, environment and experimental protocols are as important as the neural27

model itself. We cover these points in more detail in the following paragraphs.28

Popular tools for simulating spiking neurons and networks of such neurons are NEURON29

(Carnevale and Hines, 2006), GENESIS (Bower and Beeman, 1998), NEST (Gewaltig and Diesmann,30

2007), and Brian (Goodman and Brette, 2008, 2009, 2013). Most of these simulators come with a31

library of standard models that the user can choose from. However, we argue that to be maximally32

useful for research, a simulator should also be designed to facilitate work that goes beyond what33

is known at the time that the tool is created, and therefore enable the user to investigate new34

mechanisms. Simulators take widely different approaches to this issue. For some simulators,35

adding new mechanisms requires specifying them in a low-level programming language such as36

C++, and integrating them with the simulator code (e.g. NEST). Amongst these, some provide37

domain-specific languages, e.g. NMODL (Hines and Carnevale, 2000, for NEURON) or NESTML38

(Plotnikov et al., 2016, for NEST), and tools to transform these descriptions into compiled modules39

that can then be used in simulation scripts. Finally, the Brian simulator has been built around40

mathematical model descriptions that are part of the simulation script itself.41

Another approach to model definitions has been established by the development of simulator-42

1 of 41

marcel.stimberg@inserm.fr

Manuscript submitted to eLife

independent markup languages, for example NeuroML/LEMS (Gleeson et al., 2010; Cannon et al.,43

2014) and NineML (Raikov et al., 2011). However, markup languages address only part of the44

problem. A computational experiment is not fully specified by a neural model: it also includes a45

particular experimental protocol (set of rules defining the experiment), for example a sequence of46

visual stimuli. Capturing the full range of potential protocols cannot be done with a purely declara-47

tive markup language, but is straightforward in a general purpose programming language. For this48

reason, the Brian simulator combines the model descriptions with a procedural, computational49

experiment approach: a simulation is a user script written in Python, with models described in50

their mathematical form, without any reference to predefined models. This script may implement51

arbitrary protocols by loading data, defining models, running simulations and analysing results.52

Due to Python’s expressiveness, there is no limit on the structure of the computational experiment:53

stimuli can be changed in a loop, or presented conditionally based on the results of the simulation,54

etc. This flexibility can only be obtained with a general-purpose programming language, and is55

necessary to specify the full range of computational experiments that scientists are interested in.56

While the procedural, equation-oriented approach addresses the issue of flexibility for both57

the modelling and the computational experiment, it comes at the cost of reduced performance,58

especially for small-scale models that do not benefit much from vectorization techniques (Brette59

and Goodman, 2011). The reduced performance results from the use of an interpreted language to60

implement arbitrary models, instead of the use of pre-compiled code for a set of previously defined61

models. Thus, simulators generally have to find a trade-off between flexibility and performance, and62

previous approaches have often chosen one over the other. In practice, this makes computational63

experiments that are based on non-standard models either difficult to implement or slow to64

perform. We will describe four case studies in this article: exploring unconventional plasticity rules65

for a small neural circuit (case study 1, Figure 1, Figure 2); running a model of a sensorimotor loop66

(case study 2, Figure 3); determining the spiking threshold of a complex model by bisection (case67

study 3, Figure 4, Figure 5); and running an auditory model with real-time input from a microphone68

(case study 4, Figure 6, Figure 7).69

Brian 2 solves the performance-flexibility trade-off using the technique of code generation70

(Goodman, 2010; Stimberg et al., 2014; Blundell et al., 2018). The term code generation here refers71

to the process of automatically transforming a high-level user-defined model into executable code72

in a computationally efficient low-level language, compiling it in the background and running it73

without requiring any actions from the user. This generated code is inserted within the flow of74

the simulation script, which makes it compatible with the procedural approach. Code generation75

is not only used to run the models but also to build them, and therefore also accelerates stages76

such as synapse creation. The code generation framework has been designed to be extensible on77

several levels. On a general level, code generation targets can be added to generate code for other78

architectures, e.g. graphical processing units, from the same simulation description. On a more79

specific level, new functionality can be added by providing a small amount of code written in the80

target language, e.g. to connect the simulation to an input device. Implementing this solution in a81

way that is transparent to the user requires solving important design and computational problems,82

which we will describe in the following.83

Methods84

Design and Implementation85

We will explain the key design decisions by starting from the requirements that motivated them.86

Note that from now on we will use the term “Brian” as referring to its latest version, i.e. Brian 2, and87

only use “Brian 1” and “Brian 2” when discussing differences between them.88

Before discussing the requirements, we start by motivating the choice of programming language.89

Python is a high-level language, that is, it is abstracted from machine level details and highly90

readable (indeed, it is often described as “executable pseudocode”). In this sense, it is higher91

2 of 41

Manuscript submitted to eLife

level than C++, for example, which in this article we will refer to as a low-level language (since92

we will not need to refer to even lower level languages such as assembly language). The use of93

a high-level language is important for scientific software because the majority of scientists are94

not trained programmers, and high-level languages are generally easier to learn and use, and95

lead to shorter code that is easier to debug. This last point, and the fact that Python is a very96

popular general purpose programming language with excellent built-in and third party tools, is97

also important for reducing development time, enabling the developers to be more efficient. It is98

now widely recognised that Python is well suited to scientific software, and it is commonly used99

in computational neuroscience (Davison et al., 2009; Muller et al., 2015). Note that expert level100

Python knowledge is not necessary for using Brian or the Python interfaces for other simulators.101

We now move on to the major design requirements.102

1. Users should be able to easily define non-standard models, which may include models of103

neurons and synapses but also of other aspects such as muscles and environment. This is104

made possible by an equation-oriented approach, i.e., models are described by mathematical105

equations. We first focus on the design at themathematical level, and we illustrate with two106

unconventional models: a model of intrinsic plasticity in the pyloric network of the crustacean107

stomatogastric ganglion (case study 1, Figure 1, Figure 2), and a closed-loop sensorimotor108

model of ocular movements (case study 2, Figure 3).109

2. Users should be able to easily implement a complete computational experiment in Brian.110

Models must interact with a general control flow, which may include stimulus generation111

and various operations. This is made possible by taking a procedural approach to defining a112

complete computational experiment, rather than a declarativemodel definition, allowing users113

to make full use of the generality of the Python language. In the section on the computational114

experiment level, we demonstrate the interaction between a general control flow expressed in115

Python and the simulation run in a case study that uses a bisection algorithm to determine116

a neuron’s firing threshold as a function of sodium channel density (case study 3, Figure 4,117

Figure 5).118

3. Computational efficiency. Often, computational neuroscience research is limited more by the119

scientist’s time spent designing and implementing models, and analysing results, rather than120

the simulation time. However, there are occasions where high computational efficiency is121

necessary. To achieve high performance while preserving maximum flexibility, Brian generates122

code from user-defined equations and integrates it into the simulation flow.123

4. Extensibility: no simulator can implement everything that any user might conceivably want,124

but users shouldn’t have to discard the simulator entirely if they want to go beyond its built-in125

capabilities. We therefore provide the possibility for users to extend the code either at a126

high or low level. We illustrate these last two requirements at the implementation level with a127

case study of a model of pitch perception using real-time audio input (case study 4, Figure 6,128

Figure 7).129

In this section, we give a high level overview of the major decisions. A detailed analysis of the130

case studies and the features of Brian they use can be found in Appendix 1. Source code for the131

case studies has been deposited in a repository at https://github.com/brian-team/brian2_paper_132

examples (Stimberg et al., 2019a).133

Mathematical level134

Case study 1: Pyloric network135

We start with a case study of a model of the pyloric network of the crustacean stomatogastric136

ganglion (Figure 1a), adapted and simplified from earlier studies (Golowasch et al., 1999; Prinz et al.,137

2004; Prinz, 2006; O’Leary et al., 2014). This network has a small number of well characterized138

neuron types – anterior burster (AB), pyloric dilator (PD), lateral pyloric (LP), and pyloric (PY) neurons139

– and is known to generate a stereotypical triphasic motor pattern (Figure 1b–c). Following previous140

3 of 41

https://github.com/brian-team/brian2_paper_examples
https://github.com/brian-team/brian2_paper_examples
https://github.com/brian-team/brian2_paper_examples

Manuscript submitted to eLife

(a)

LP PY

AB/PD

Slow cholinergic
Fast glutamatergic

(b)

50
25

initial adapted

50
25

time (in s)

75
50
25v

(in
 m

V)

0 2 4 0 2 4

(c)

60
50

initial adapted

60
40

time (in s)

60
40

V s
 (i

n
m

V)

0 2 0 2

Figure 1. Case study 1: A model of the pyloric network of the crustacean stomatogastric ganglion, inspired by

several modeling papers on this subject (Golowasch et al., 1999; Prinz et al., 2004; Prinz, 2006; O’Leary et al.,

2014) (a) Schematic of the modeled circuit (after Prinz et al., 2004). The pacemaker kernel is modeled by a

single neuron representing both anterior burster and pyloric dilator neurons (AB/PD, blue). There are two types

of follower neurons, lateral pyloric (LP, orange), and pyloric (PY, green). Neurons are connected via slow

cholinergic (thick lines) and fast glutamatergic (thin lines) synapses. (b) Activity of the simulated neurons.

Membrane potential is plotted over time for the neurons in (a), using the same colour code. The bottom row

shows their spiking activity in a raster plot, with spikes defined as excursions of the membrane potential over

−20mV. In the left column (“initial”), activity is shown for 4 s after an initial settling time of 2.5 s. The right column
(“adapted”) shows the activity with fully adapted conductances (see text for details) after an additional time of

49 s. (c) Activity of the simulated neurons of a biologically detailed version of the circuit shown in (a), following

Golowasch et al. (1999). All conventions as in (b), except for showing 3 s of activity after a settling time of 0.5 s
(“initial”), and after an additional time of 24 s (“adapted”). Also note that the biologically detailed model consists

of two coupled compartments, but only the membrane potential of the somatic compartment (Vs) is shown
here.

studies, we lump AB and PD neurons into a single neuron type (AB/PD) and consider a circuit with141

one neuron of each type. The neurons in this circuit have rebound and bursting properties. We142

model this using a variant of the model proposed by Hindmarsh and Rose (1984), a three-variable143

model exhibiting such properties. We make this choice only for simplicity: the biophysical equations144

originally used in Golowasch et al. (1999) can be used instead (see Figure 2–Figure Supplement 1).145

Although this model is based on widely used neuron models, it has the unusual feature that146

some of the conductances are regulated by activity as monitored by a calcium trace. One of the147

first design requirements of Brian, then, is that non-standard aspects of models such as this should148

be as easy to implement in code as they are to describe in terms of their mathematical equations.149

We briefly summarise how it applies to this model (see appendix 1 and Stimberg et al. (2014) for150

more detail). The three-variable underlying neuron model is implemented by writing its differential151

equations directly in standard mathematical form (Figure 2, l. 8–10). The calcium trace increases at152

each spike (l. 21; defined by a discrete event triggered after a spike, reset='Ca += 0.1') and then153

decays (l. 13; again defined by a differential equation). A slow variable z tracks the difference of this154

calcium trace to a neuron-type-specific target value (l. 14) which then regulates the conductances s155

and g (l. 11–12).156

Not only the neuron model but also their connections are non-standard. Neurons are connected157

together by nonlinear graded synapses of two different types, slow and fast (l. 29–54). These are158

unconventional synapses in that the synaptic current has a graded dependence on the pre-synaptic159

action potential and a continuous effect rather than only being triggered by pre-synaptic action160

potentials (Abbott and Marder, 1998). A key design requirement of Brian was to allow for the same161

expressivity for synaptic models as for neuron models, which led us to a number of features that162

allow for a particularly flexible specification of synapses in Brian. Firstly, we allow synapses to have163

dynamics defined by differential equations in precisely the same way as neurons. In addition to164

the usual role of triggering instantaneous changes in response to discrete neuronal events such as165

spikes, synapses can directly and continuously modify neuronal variables allowing for a very wide166

4 of 41

Manuscript submitted to eLife

1 from brian2 import *
2 defaultclock.dt = 0.01*ms;
3 Delta_T = 17.5*mV ; v_T = -40*mV ; tau = 2*ms ; tau_adapt = .02*second
4 tau_Ca = 150*ms ; tau_x = 2*second ; v_r = -68*mV ; tau_z = 5*second
5 a = 1/Delta_T**3 ; b = 3/Delta_T**2 ; c = 1.2*nA ; d = 2.5*nA/Delta_T**2
6 C = 60*pF ; S = 2*nA/Delta_T ; G = 28.5*nS
7 eqs = '''
8 dv/dt = (Delta_T*g*(-a*(v - v_T)**3 + b*(v - v_T)**2) + w - x - I_fast - I_slow)/C : volt
9 dw/dt = (c - d*(v - v_T)**2 - w)/tau : amp

10 dx/dt = (s*(v - v_r) - x)/tau_x : amp
11 s = S*(1 - tanh(z)) : siemens
12 g = G*(1 + tanh(z)) : siemens
13 dCa/dt = -Ca/tau_Ca : 1
14 dz/dt = tanh(Ca - Ca_target)/tau_z : 1
15 I_fast : amp
16 I_slow : amp
17 Ca_target : 1 (constant)
18 label : integer (constant)
19 '''
20 ABPD, LP, PY = 0, 1, 2
21 circuit = NeuronGroup(3, eqs, threshold='v > -20*mV', refractory='v > -20*mV',
22 reset='Ca += 0.1', method='rk2')
23 circuit.label = [ABPD, LP, PY]
24 circuit.v = v_r
25 circuit.w = '-5*nA*rand()'
26 circuit.z = 'rand()*0.2 - 0.1'
27 circuit.Ca_target = [0.048, 0.0384, 0.06]
28

29 s_fast = 0.2/mV; V_fast = -50*mV; E_syn = -75*mV
30 eqs_fast = '''
31 g_fast : siemens (constant)
32 I_fast_post = g_fast*(v_post - E_syn)/(1+exp(s_fast*(V_fast-v_pre))) : amp (summed)
33 '''
34 fast_synapses = Synapses(circuit, circuit, model=eqs_fast)
35 fast_synapses.connect('label_pre != label_post and not (label_pre == PY and label_post == ABPD)')
36 fast_synapses.g_fast['label_pre == ABPD and label_post == LP'] = 0.015*uS
37 fast_synapses.g_fast['label_pre == ABPD and label_post == PY'] = 0.005*uS
38 fast_synapses.g_fast['label_pre == LP and label_post == ABPD'] = 0.01*uS
39 fast_synapses.g_fast['label_pre == LP and label_post == PY'] = 0.02*uS
40 fast_synapses.g_fast['label_pre == PY and label_post == LP'] = 0.005*uS
41

42 s_slow = 1/mV; V_slow = -55*mV; k_1 = 1/ms
43 eqs_slow = '''
44 k_2 : 1/second (constant)
45 g_slow : siemens (constant)
46 I_slow_post = g_slow*m_slow*(v_post-E_syn) : amp (summed)
47 dm_slow/dt = k_1*(1-m_slow)/(1+exp(s_slow*(V_slow-v_pre))) - k_2*m_slow : 1 (clock-driven)
48 '''
49 slow_synapses = Synapses(circuit, circuit, model=eqs_slow, method='exact')
50 slow_synapses.connect('label_pre == ABPD and label_post != ABPD')
51 slow_synapses.g_slow['label_post == LP'] = 0.025*uS
52 slow_synapses.k_2['label_post == LP'] = 0.03/ms
53 slow_synapses.g_slow['label_post == PY'] = 0.015*uS
54 slow_synapses.k_2['label_post == PY'] = 0.008/ms
55

56 run(59.5*second)

Figure 2. Case study 1: A model of the pyloric network of the crustacean stomatogastric ganglion. Simulation

code for the model shown in Figure 1a, producing the circuit activity shown in Figure 1b.

Figure 2–Figure supplement 1. Simulation code for the more biologically detailed model of the circuit shown

in Figure 1a, producing the circuit activity shown in Figure 1c

5 of 41

Manuscript submitted to eLife

range of synapse types. To illustrate this, for the slow synapse, we have a synaptic variable (m_slow)167

that evolves according to a differential equation (l. 47) that depends on the pre-synaptic membrane168

potential (v_pre). The effect of this synapse is defined by setting the value of a post-synaptic neuron169

current (I_slow) in the definition of the synapse model (l. 46; referred to there as I_slow_post). The170

keyword (summed) in the equation specifies that the post-synaptic neuron variable is set using the171

summed value of the expression across all the synapses connected to it. Note that this mechanism172

also allows Brian to be used to specify abstract rate-based neuron models in addition to biophysical173

graded synapse models.174

The model is defined not only by its dynamics, but also the values of parameters and the connec-175

tivity pattern of synapses. The next design requirement of Brian was that these essential elements176

of specifying a model should be equally flexible and readable as the dynamics. In this case, we have177

added a label variable to the model that can take values ABPD, LP or PY (l. 18, 20, 23) and used this la-178

bel to set up the initial values (l. 36–40, 51–54) and connectivity patterns (l. 35, 50). Human readability179

of scripts is a key aspect of Brian code, and important for reproducibility (which we will come back to180

in the Discussion). We highlight line 35 to illustrate this. We wish to have synapses between all neu-181

rons of different types but not of the same type, except that we do not wish to have synapses from182

PY neurons to AB/PD neurons. Having set up the labels, we can now express this connectivity pattern183

with the expression 'label_pre!=label_post and not (label_pre==PY and label_post==ABPD)'.184

This example illustrates one of the many possibilities offered by the equation-oriented approach to185

concisely express connectivity patterns (for more details see Appendix 1 and Stimberg et al. (2014)).186

Comparison to other approaches In this case study, we have shown how a non-standard187

neural network, with graded synapses and adapting conductances, can be described in the Brian188

simulator. How could such a model be implemented with one of the other approaches described189

previously? We will briefly discuss this by focussing on implementations of the graded synapse190

model. One approach is to directly write an implementation of the model in a programming191

language like C++, without the use of any simulation software. While this requires significant192

technical skill, it allows for complete freedom in the definition of the model itself. This was193

the approach taken for a study that ran 20 million parametrized instances of the same pyloric194

network model (Günay and Prinz, 2010). The increased effort of writing the simulation was offset195

by reusing the same model an extremely large number of times. An excerpt of this code is shown in196

Appendix 3 Figure 1c. Note that unless great care is taken, this approach may lead to a very specific197

implementation of the model that is not straightforward to adapt for other purposes. With such198

long source code (3,510 lines in this case) it is also difficult to check that there are no errors in the199

code, or implicit assumptions that deviate from the description (as in, for example Hathway and200

Goodman, 2018; Pauli et al., 2018).201

Another approach for describing model components such as graded synapses is to use a202

description language such as LEMS/NeuroML2. If the specific model has already been added203

as a “core type”, then it can be readily referenced in the description of the model (Appendix 3204

Figure 2d). If not, then the LEMS description can be used to describe it (Appendix 3 Figure 2d).205

Such a description is on a similar level of abstraction as the Brian description, but somewhat more206

verbose (although this may be reduced by using a library such as PyLEMS to create the description;207

Vella et al., 2014).208

If the user chooses to use the NEURON simulator to simulate the model, then a new synaptic209

mechanism can be added using the NMODL language (Appendix 3 Figure 2e). However, for the210

user this requires learning a new, idiosyncratic language, and detailed knowledge about simulator211

internals, e.g. the numerical solution of equations. Other simulators, such as NEST, are focussed212

on discrete spike-based interactions and currently do not come with models of graded synapses,213

and such models are not yet supported by its description language NESTML. Leveraging the214

infrastructure added for gap-junctions (Hahne et al., 2015) and rate models (Hahne et al., 2017),215

the NEST simulator could certainly integrate such models in principle but in practice this may not216

6 of 41

Manuscript submitted to eLife

be feasible without direct support from the NEST team.217

Case study 2: Ocular model218

The second example is a closed-loop sensorimotor model of ocular movements (used for illustration219

and not intended to be a realistic description of the system), where the eye tracks an object220

(Figure 3a, b). Thus, in addition to neurons, the model also describes the activity of ocular muscles221

and the dynamics of the stimulus. Each of the two antagonistic muscles is modelled mechanically222

as an elastic spring with some friction, which moves the eye laterally.223

The next design requirement of Brian was that it should be both possible and straightforward to224

define non-neuronal elements of a model, as these are just as essential to the model as a whole,225

and the importance of connecting with these elements is often neglected in neural simulators. We226

will come back to this requirement in various forms over the next few case studies, but here we227

emphasise how the mechanisms for specifying arbitrary differential equations can be re-used for228

non-neuronal elements of a simulation.229

The position of the eye follows a second order differential equation, with resting position x0, the230

difference in resting positions of the two muscles (Figure 3c, l. 4–5). The stimulus is an object that231

moves in front of the eye according to a stochastic process (l. 7–8). Muscles are controlled by two232

motoneurons (l. 11–13), for which each spike triggers a muscular “twitch”. This corresponds to a233

transient change in the resting position x0 of the eye in either direction, which then decays back to234

zero (l. 6, 15).235

Retinal neurons receive a visual input, modelled as a Gaussian function of the difference236

between the neuron’s preferred position and the actual position of the object, measured in retinal237

coordinates (l. 21). Thus, the input to the neurons depends on dynamical variables external to238

the neuron model. This is a further illustration of the design requirement above that we need to239

include non-neuronal elements in our model specifications. In this case, to achieve this we link the240

variables in the eye model with the variables in the retina model using the linked_var function (l. 4,241

7, 23–24, 28–29).242

Finally, we implement a simple feedback mechanism by having retinal neurons project onto243

the motoneuron controlling the contralateral muscle (l. 33), with a strength proportional to their244

eccentricity (l. 35): thus, if the object appears on the edge of the retina, the eye is strongly pulled245

towards the object; if the object appears in the center, muscles are not activated. This simple246

mechanism allows the eye to follow the object (Figure 3b), and the code illustrates the previous247

design requirement that the code should reflect the mathematical description of the model.248

Comparison to other approaches The remarks wemade earlier regarding the graded synapse249

in case study 1 mostly apply here as well. For LEMS/NeuroML2, both motor neurons and the envi-250

ronment could be modelled with a LEMS description. Similarly, a simulation with NEURON would251

require NMODL specifications of both models, using its POINTERmechanism (see Appendix 3 Fig-252

ure 2) to link them together. Since NEST’s modelling language NESTML does not allow for the253

necessary continuous interaction between a single environment and multiple neurons, implement-254

ing this model would be a major effort and require writing code in C++ and detailed knowledge of255

NEST’s internal architecture.256

Computational experiment level257

The mathematical model descriptions discussed in the previous section provide only a partial258

description of what we might call a “computational experiment”. Let us consider the analogy to an259

electrophysiological experiment: for a full description, we would not only state the model animal,260

the cell type and the preparation that was investigated, but also the stimulation and analysis261

protocol. In the same way, a full description of a computational experiment requires not only a262

description of the neuron and synapse models, but also information such as how input stimuli are263

generated, or what sequence of simulations is run. Some examples of computational experimental264

7 of 41

Manuscript submitted to eLife

(a)
xeye xobject

retina

motor neurons

ocular muscles

eye

space

(b)

ne
ur

on
 in

de
x

0 2 4 6 8 10
time (s)

left

right
eye
object

(c)

1 from brian2 import *
2

3 alpha = (1/(50*ms))**2; beta = 1/(50*ms); tau_muscle = 20*ms; tau_object = 500*ms
4 eqs_eye = '''dx/dt = velocity : 1
5 dvelocity/dt = alpha*(x0-x)-beta*velocity : 1/second
6 dx0/dt = -x0/tau_muscle : 1
7 dx_object/dt = (noise - x_object)/tau_object: 1
8 dnoise/dt = -noise/tau_object + tau_object**-0.5*xi : 1'''
9 eye = NeuronGroup(1, model=eqs_eye, method='euler')

10

11 taum = 20*ms
12 motoneurons = NeuronGroup(2, model='dv/dt = -v/taum : 1', threshold='v > 1',
13 reset='v = 0', refractory=5*ms, method='exact')
14

15 motosynapses = Synapses(motoneurons, eye, model='w : 1', on_pre='x0_post += w')
16 motosynapses.connect() # connects all motoneurons to the eye
17 motosynapses.w = [-0.5, 0.5]
18

19 N = 20; width = 2./N; gain = 4.
20 eqs_retina = '''dv/dt = (I-(1+gs)*v)/taum : 1
21 I = gain*exp(-((x_object-x_eye-x_neuron)/width)**2) : 1
22 x_neuron : 1 (constant)
23 x_object : 1 (linked) # position of the object
24 x_eye : 1 (linked) # position of the eye
25 gs : 1 # total synaptic conductance'''
26 retina = NeuronGroup(N, model=eqs_retina, threshold='v > 1', reset='v = 0',
27 method='exact')
28 retina.v = 'rand()'
29 retina.x_eye = linked_var(eye, 'x')
30 retina.x_object = linked_var(eye, 'x_object')
31 retina.x_neuron = '-1.0 + 2.0*i/(N-1)'
32

33 sensorimotor_synapses = Synapses(retina, motoneurons, model='w : 1 (constant)',
34 on_pre='v_post += w')
35 sensorimotor_synapses.connect(j='int(x_neuron_pre > 0)')
36 # Strength scales with eccentricity:
37 sensorimotor_synapses.w = '20*abs(x_neuron_pre)/N_pre'
38

39 run(10*second)

Figure 3. Case Study 2: Smooth pursuit eye movements. (a) Schematics of the model. An object (green) moves

along a line and activates retinal neurons (bottom row; black) that are sensitive to the relative position of the

object to the eye. Retinal neurons activate two motor neurons with weights depending on the eccentricity of

their preferred position in space. Motor neurons activate the ocular muscles responsible for turning the eye.

(b) Top: Simulated activity of the sensory neurons (black), and the left (blue) and right (orange) motor neurons.

Bottom: Position of the eye (black) and the stimulus (green). (c) Simulation code.

8 of 41

Manuscript submitted to eLife

(a)

step = 25mV

v0 = 25mV

run with

v = v0

neuron

spiked?

decrease

v0 by step

increase

v0 by step

Replace step

by step/2

10 iterations

performed?
stop

yes
no

yes

no

(b)

0 2 4 6 8 10
iteration

0

20

40

20 40 60 80 100
gNA (mS/cm2)

0

20

40

th
re

sh
ol

d
es

tim
at

e
(m

V)

Figure 4. Case study 3: Using bisection to find a neuron’s voltage threshold. (a) Schematic of the bisection

algorithm for finding a neuron’s voltage threshold. The algorithm is applied in parallel for different values of

sodium density. (b) Top: Refinement of the voltage threshold estimate over iterations for three sodium

densities (blue: 23.5mS cm−2, orange: 57.5mS cm−2, green: 91.5mS cm−2); Bottom: Voltage threshold estimation

as a function of sodium density.

protocols would include: threshold finding (discussed in detail below) where the stimulus on the265

next trial depends on the outcome of the current trial; generalisations of this to potentially very266

complex closed-loop experiments designed to determine the optimal stimuli for a neuron (e.g. Edin267

et al., 2004); models including a complex simulated environment defined in an external package268

(e.g. Voegtlin, 2011); or models with plasticity based on an error signal that depends on the global269

behaviour of the network (e.g. Stroud et al., 2018; Zenke and Ganguli, 2018). Capturing all these270

potential protocols in a purely descriptive format (one that is not Turing complete) is impossible by271

definition, but it can be easily expressed in a programming language with control structures such272

as loops and conditionals. The Brian simulator allows the user to write complete computational273

experimental protocols that include both the model description and the simulation protocol in a274

single, readable Python script.275

Case study 3: Threshold finding276

In this case study, we want to determine the voltage firing threshold of a neuron (Figure 4), modelled277

with three conductances, a passive leak conductance and voltage-dependent sodium and potassium278

conductances (Figure 5 l. 4–24).279

To get an accurate estimate of the threshold, we use a bisection algorithm (Figure 4a): starting280

from an initial estimate and with an initial step width (Figure 5, l. 30–31), we set the neuron’s281

membrane potential to the estimate (l. 35) and simulate its dynamics for 20ms (l. 36). If the neuron282

spikes, i.e. if the estimate was above the neuron’s threshold, we decrease our estimate (l. 38); if the283

neuron does not spike, we increase it (l. 37). We then halve the step width (l. 39) and perform the284

same process again until we have performed a certain number of iterations (l. 33) and converged285

to a precise estimate (Figure 4b top). Note that the order of operations is important here. When286

we modify the variable v in lines 37–38, we use the output of the simulation run on line 36, and287

this determines the parameters for the next iteration. A purely declarative definition could not288

represent this essential feature of the computational experiment.289

For each iteration of this loop, we restore the network state (restore(); l. 34) to what it was at290

the beginning of the simulation (store(); l. 27). This store()/restore()mechanism is a key part of291

Brian’s design for allowing computational experiments to be easily and flexibly expressed in Python,292

as it gives a very effective way of representing common computational experimental protocols.293

9 of 41

Manuscript submitted to eLife

1 from brian2 import *
2 defaultclock.dt = 0.01*ms
3

4 El = 10.613*mV; ENa = 115*mV; EK = -12*mV
5 gl = 0.3*mS/cm**2; gK = 36*mS/cm**2; C = 1*uF/cm**2
6 gNa_min = 15*mS/cm**2; gNa_max = 100*mS/cm**2
7

8 eqs = '''dv/dt = (gl*(El - v) + gNa*m**3*h*(ENa - v) + gK*n**4*(EK - v)) / C : volt
9 gNa : siemens/meter**2

10 dm/dt = alpham*(1 - m) - betam*m : 1
11 dn/dt = alphan*(1 - n) - betan*n : 1
12 dh/dt = alphah*(1 - h) - betah*h : 1
13 alpham = (0.1/mV)*(-v + 25*mV)/(exp((-v + 25*mV)/(10*mV)) - 1)/ms : Hz
14 betam = 4 * exp(-v/(18*mV))/ms : Hz
15 alphah = 0.07 * exp(-v/(20*mV))/ms : Hz
16 betah = 1/(exp((-v+30*mV) / (10*mV)) + 1)/ms : Hz
17 alphan = (0.01/mV) * (-v+10*mV) / (exp((-v+10*mV) / (10*mV)) - 1)/ms : Hz
18 betan = 0.125*exp(-v/(80*mV))/ms : Hz'''
19 neurons = NeuronGroup(100, eqs, threshold='v > 50*mV',
20 method='exponential_euler')
21 neurons.gNa = 'gNa_min + (gNa_max - gNa_min)*1.0*i/N'
22 neurons.v = 0*mV
23 neurons.m = '1/(1 + betam/alpham)'
24 neurons.n = '1/(1 + betan/alphan)'
25 neurons.h = '1/(1 + betah/alphah)'
26 S = SpikeMonitor(neurons)
27

28 store()
29

30 # We locate the threshold by bisection
31 v0 = 25*mV*ones(len(neurons))
32 step = 25*mV
33

34 for i in range(10):
35 restore()
36 neurons.v = v0
37 run(20*ms)
38 v0[S.count == 0] += step
39 v0[S.count > 0] -= step
40 step /= 2.0

Figure 5. Case study 3: Simulation code to find a neuron’s voltage threshold, implementing the bisection

algorithm detailed in Figure 4a. The code simulates 100 unconnected neurons with sodium densities between

15mS cm−2 and 100mS cm−2, following the model of Hodgkin and Huxley (1952). Results from these simulations

are shown in Figure 4b.

10 of 41

Manuscript submitted to eLife

Examples that can easily be implemented with this mechanism include a training/testing/validation294

cycle in a synaptic plasticity setting; repeating simulations with some aspect of the model changed295

but the rest held constant (e.g. parameter sweeps, responses to different stimuli); or simply296

repeatedly running an identical stochastic simulation to evaluate its statistical properties.297

At the end of the script, by performing this estimation loop in parallel for many neurons, each298

having a different maximal sodium conductance, we arrive at an estimate of the dependence of the299

voltage threshold on the sodium conductance (Figure 4b bottom).300

Comparison to other approaches Such a simulation protocol could be implemented in other301

simulators as well, since they use a general programming language to control the simulation flow302

(e.g. SLI or Python for NEST; HOC or Python for NEURON) in similar ways to Brian. However, general303

simulation workflows are not part of description languages like NeuroML2/LEMS. While a LEMS304

model description can include a <Simulation> element, this is only meant to specify the duration305

and step size of one or several simulation runs, together with information about what variables306

should be recorded and/or displayed. General workflows, e.g. deciding whether to run another307

simulation based on the results of a previous simulation, are beyond its scope. These could be308

implemented in a separate script in a different programming language.309

Implementation level310

Case study 4: Real-time audio311

The case studies so far were described by equations and algorithms on a level that is independent of312

the programming language and hardware that will eventually perform the computation. However,313

in some cases this lower level cannot be ignored. To demonstrate this, we will consider the example314

presented in Figure 6. We want to record an audio signal with a microphone and feed this signal—in315

real-time—into a neural network performing a crude “pitch detection” based on the autocorrelation316

of the signal (Licklider, 1962). This model first transforms the continuous stimulus into a sequence317

of spikes by feeding the stimulus into an integrate-and-fire model with an adaptive threshold318

(Figure 7, l. 36–41). It then detects periodicity in this spike train by feeding it into an array of319

coincidence detector neurons (Figure 6a; Figure 7, l. 44–47). Each of these neurons receives the320

input spike train via two pathways with different delays (l. 49–51). This arrangement allows the321

network to detect periodicity in the input stimulus; a periodic stimulus will most strongly excite the322

neuron where the difference in delays matches the stimulus’ period. Depending on the periodicity323

present in the stimulus, e.g. for tones of different pitch (Figure 6bmiddle), different sub-populations324

of neurons respond (Figure 6b bottom).325

To perform such a study, our simulator has to meet two new requirements: firstly, the simulation326

has to run fast enough to be able to process the audio input in real-time. Secondly, we need a way327

to connect the running simulation to an audio signal via low-level code.328

The challenge is to make the computational efficiency requirement compatible with the require-329

ment of flexibility. With version 1 of Brian, we made the choice to sacrifice computational efficiency,330

because we reasoned that frequently in computational modelling, considerably more time was331

spent developing the model and writing the code than was spent on running it (often weeks versus332

minutes or hours; cf. De Schutter, 1992). However, there are obviously cases where simulation time333

is a bottleneck. To increase computational efficiency without sacrificing flexibility, We decided to334

make code generation the fundamental mode of operation for Brian 2 (Stimberg et al., 2014). Code335

generation was used previously in Brian 1 (Goodman, 2010), but only in parts of the simulation.336

This technique is now being increasingly widely used in other simulators, see Blundell et al. (2018)337

for a review.338

In brief, from the high level abstract description of the model, we generate independent blocks339

of code (in C++ or other languages). We run these blocks in sequence to carry out the simulation.340

Typically, we first carry out numerical integration in one code block, check for threshold crossings in341

a second block, propagate synaptic activity in a third block, and finally run post-spike reset code in342

11 of 41

Manuscript submitted to eLife

(a)

n0 n1 n2 n3 n4

delay � delay � delay � delay �
(b)

am
pl

itu
de

Raw sound signal

102

6 × 101

2 × 102

3 × 102

4 × 102

Fr
eq

ue
nc

y
(H

z)

Spectrogram of sound signal

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time (s)

102

6 × 101

2 × 102

3 × 102

4 × 102

Pr
ef

er
re

d
Fr

eq
ue

nc
y

(H
z)

Spiking activity

Figure 6. Case study 4: Neural pitch processing with real-time input. (a)Model schematic: Audio input is

converted into spikes and fed into a population of coincidence-detection neurons via two pathways, one

instantaneous, i.e. without any delay (top), and one with incremental delays (bottom). Each neuron therefore

receives the spikes resulting from the audio signal twice, with different temporal shifts between the two. The

inverse of this shift determines the preferred frequency of the neuron. (b) Simulation results for a sample run

of the simulation code in Figure 7. Top: Raw sound input (a rising sequence of tones – C, E, G, C – played on a

synthesized flute). Middle: Spectrogram of the sound input. Bottom: Raster plot of the spiking response of

receiving neurons (group neurons in the code), ordered by their preferred frequency.

12 of 41

Manuscript submitted to eLife

1 from brian2 import *
2 import os
3 set_device('cpp_standalone')
4

5 sample_rate = 48*kHz; buffer_size = 128; defaultclock.dt = 1/sample_rate
6 max_delay = 20*ms; tau_ear = 1*ms; tau_th = 5*ms
7 min_freq = 50*Hz; max_freq = 1000*Hz; num_neurons = 300; tau = 1*ms; sigma = .1
8

9 @implementation('cpp','''
10 PaStream *_init_stream() {
11 PaStream* stream;
12 Pa_Initialize();
13 Pa_OpenDefaultStream(&stream, 1, 0, paFloat32, SAMPLE_RATE, BUFFER_SIZE, NULL, NULL);
14 Pa_StartStream(stream);
15 return stream;
16 }
17

18 float get_sample(const double t) {
19 static PaStream* stream = _init_stream();
20 static float buffer[BUFFER_SIZE];
21 static int next_sample = BUFFER_SIZE;
22

23 if (next_sample >= BUFFER_SIZE)
24 {
25 Pa_ReadStream(stream, buffer, BUFFER_SIZE);
26 next_sample = 0;
27 }
28 return buffer[next_sample++];
29 }''', libraries=['portaudio'], headers=['<portaudio.h>'],
30 define_macros=[('BUFFER_SIZE', buffer_size),
31 ('SAMPLE_RATE', sample_rate)])
32 @check_units(t=second, result=1)
33 def get_sample(t):
34 raise NotImplementedError('Use a C++-based code generation target.')
35

36 eqs_ear = '''dx/dt = (sound - x)/tau_ear: 1 (unless refractory)
37 dth/dt = (0.1*x - th)/tau_th : 1
38 sound = clip(get_sample(t), 0, inf) : 1 (constant over dt)'''
39 receptors = NeuronGroup(1, eqs_ear, threshold='x > th',
40 reset='x = 0; th = th*2.5 + 0.01',
41 refractory=2*ms, method='exact')
42 receptors.th = 1
43

44 eqs_neurons = '''dv/dt = -v/tau+sigma*(2./tau)**.5*xi : 1
45 freq : Hz (constant)'''
46 neurons = NeuronGroup(num_neurons, eqs_neurons, threshold='v > 1',
47 reset='v = 0', method='euler')
48 neurons.freq = 'exp(log(min_freq/Hz)+(i*1.0/(num_neurons-1))*log(max_freq/min_freq))*Hz'
49

50 synapses = Synapses(receptors, neurons, on_pre='v += 0.5', multisynaptic_index='k')
51 synapses.connect(n=2) # one synapse without delay; one with delay
52 synapses.delay['k == 1'] = '1/freq_post'
53

54 run(10*second)

Figure 7. Case study 4: Simulation code for the model shown in Figure 6a. The sound input is acquired in real

time from a microphone, using user-provided low-level code written in C that makes use of an Open Source

library for audio input (Bencina et al., 1999–).

13 of 41

Manuscript submitted to eLife

a fourth block. To generate this code, we make use of a combination of various techniques from343

symbolic mathematics and compilers that are available in third party Python libraries, as well as344

some domain specific optimisations to further improve performance (see Appendix 1 for more345

details, or Stimberg et al. 2014; Blundell et al. 2018). We can then run the complete simulation in346

one of two modes, as follows.347

In runtime mode, the overall simulation is controlled by Python code, which calls out to the348

compiled code objects to do the heavy lifting. This method of running the simulation is the default,349

because despite some computational overhead associated with repeatedly switching from Python350

to another language, it allows for a great deal of flexibility in how the simulation is run: whenever351

Brian’s model description formalism is not expressive enough for a task at hand, the researcher352

can interleave the execution of generated code with a hand-written function that can potentially353

access and modify any aspect of the model. This facility is widely used in computational models354

using Brian.355

In standalonemode, additional low-level code is generated that controls the overall simulation,356

meaning that during the main run of the simulation it is not necessary to switch back to Python.357

This gives an improvement to performance, but at the cost of reduced flexibility since we cannot358

translate arbitrary Python code into low level code. The standalone mode can also be used to359

generate code to run on a platform where Python is not available or not practical (such as a GPU;360

Stimberg et al. 2018).361

The choice of which mode to use is left to the user, and will depend on details of the simulation362

and how much additional flexibility is required. The performance that can be gained from using the363

standalone mode also depends strongly on the details of the model; we will come back to this point364

in the discussion.365

The second issue we needed to address for this case study was how to connect the running366

simulation to an audio signal via low-level code. The general issue here is how to extend the367

functionality of Brian. While Brian’s syntax allows a researcher to define a wide range of models368

within its general framework, inevitably it will not be sufficient for all computational research369

projects. Taking this into account, Brian has been built with extensibility in mind. Importantly, it370

should be possible to extend Brian’s functionality and still include the full description of the model371

in the main Python script, i.e. without requiring the user to edit the source code of the simulator372

itself or to add and compile separate modules.373

As discussed previously, the runtime mode offers researchers the possibility to combine their374

simulation code with arbitrary Python code. However, in some cases such as a model that requires375

real-time access to hardware (Figure 6), it may be necessary to add functionality at the target-376

language level itself. To this end, simulations can use a general extension mechanism: model code377

can refer not only to predefined mathematical functions, but also to functions defined in the target378

language by the user (Figure 7, l. 9–34). This can refer to code external to Brian, e.g. to third-party379

libraries (as is necessary in this case to get access to the microphone). In order to establish the380

link, Brian allows the user to specify additional libraries , header files or macro definitions (l. 29–31)381

that will be taken into account during the compilation of the code. With this mechanism the382

Brian simulator offers researchers the possibility to add functionality to their model at the lowest383

possible level, without abandoning the use of a convenient simulator and forcing them to write384

their model “from scratch” in a low-level language. We think it is important to acknowledge that385

a simulator will never have every possible feature to cover all possible models, and we therefore386

provide researchers with the means to adapt the simulator’s behaviour to their needs at every level387

of the simulation.388

Comparison to other approaches The NEURON simulator can include user-written C code389

in VERBATIM blocks of an NMODL description, but there is no documented mechanism to link to390

external libraries. Another approach to interface a simulation with external input or output is to391

do this on the script level. For example, a recent study (Dura-Bernal et al., 2017) linked a NEURON392

14 of 41

Manuscript submitted to eLife

simulation of the motor cortex to a virtual musculoskeletal arm, by running a single simulation393

step at a time, and then exchanging values between the two systems. The NEST simulator provides394

a general mechanism to couple a simulation to another system (e.g. another simulator) via the395

MUSIC interface (Djurfeldt et al., 2010). This framework has been successfully used to connect the396

NEST simulators to robotic simulators (Weidel et al., 2016). The MUSIC framework does support397

both spike-based and continuous interactions, but NEST cannot currently apply continuous-valued398

inputs as used here. Finally, model description languages such as NeuroML2/LEMS are not designed399

to capture this kind of interaction.400

Discussion401

Brian 2 was designed to overcome some of the major challenges we saw for neural simulators402

(including Brian 1). Notably: the flexibility/performance dichotomy, and the need to integrate403

complex computational experiments that go beyond their neuronal and network components. As a404

result of this work, Brian can address a wide range of modelling problems faced by neuroscientists,405

as well as giving more robust and reproducible results and therefore contributing to increasing406

reproducibility in computational science. We now discuss these challenges in more detail.407

Brian’s code generation framework allows for a solution to the dichotomy between flexibility408

and performance. Brian 2 improves on Brian 1 both in terms of flexibility (particularly the new,409

very general synapse model; for more details see appendix 5) and performance, where it performs410

similarly to simulators written in low-level languages which do not have the same flexibility (Tikidji-411

Hamburyan et al., 2017, also see section Performance below). Flexibility is essential to be useful for412

fundamental research in neuroscience, where basic concepts and models are still being actively413

investigated and have not settled to the point where they can be standardised. Performance is414

increasingly important, for example as researchers begin to model larger scale experimental data415

such as that provided by the Neuropixels probe (Jun et al., 2017), or when doing comprehensive416

parameter sweeps to establish robustness of models (O’Leary et al., 2015).417

It is possible to write plugins for Brian to generate code for other platforms without modifying418

the core code, and there are several ongoing projects to do so. These include Brian2GeNN (Stimberg419

et al., 2018) which uses the GPU-enhanced Neural Network simulator (GeNN; Yavuz et al. 2016)420

to accelerate simulations in some cases by tens to hundreds of times, and Brian2CUDA (https:421

//github.com/brian-team/brian2cuda). The modular structure of the code generation framework422

was designed for this in order to be ready for future trends in both high performance computing423

and computational neuroscience research. Increasingly, high performance scientific computing424

relies on the use of heterogeneous computing architectures such as GPUs, FPGAs, and even more425

specialised hardware (Fidjeland et al., 2009; Richert et al., 2011; Brette and Goodman, 2012;Moore426

et al., 2012; Furber et al., 2014; Cheung et al., 2016), as well as techniques such as approximate427

computing (Mittal, 2016). In addition to basic research, spiking neural networks may increasingly428

be used in applications thanks to their low power consumption (Merolla et al., 2014), and the429

standalone mode of Brian is designed to facilitate the process of converting research code into430

production code.431

A neural computational model is more than just its components (neurons, synapses, etc.) and432

network structure. In designing Brian, we put a strong emphasis on the complete computational433

experiment, including specification of the stimulus, interaction with non-neuronal components,434

etc. This is important both to minimise the time and expertise required to develop computational435

models, but also to reduce the chance of errors (see below). Part of our approach here was to436

ensure that features in Brian are as general and flexible as possible. For example the equations437

system intended for defining neuron models can easily be repurposed for defining non-neuronal438

elements of a computational experiment (case study 2, Figure 3). However, ultimately we recognise439

that any way of specifying all elements of a computational experiment would be at least as complex440

as a fully featured programming language. We therefore simply allow users to define these aspects441

in Python, the same language used for defining the neural components, as this is already highly442

15 of 41

https://github.com/brian-team/brian2cuda
https://github.com/brian-team/brian2cuda
https://github.com/brian-team/brian2cuda

Manuscript submitted to eLife

capable and readable. We made great efforts to ensure that the detailed work in designing and443

implementing new features should not interfere with the goal that the user script should be a444

readable description of the complete computational experiment, as we consider this to be an445

essential element of what makes a computational model valuable.446

Brian’s approach to defining models leads to particularly concise code (Tikidji-Hamburyan et al.,447

2017), as well as code whose syntax matches closely descriptions of models in papers. This is448

important not only because it saves scientists time if they have to write less code, but also because449

such code is easier to verify and reproduce. It is difficult for anyone, the authors of a model included,450

to verify that thousands of lines of model simulation code match the description they have given451

of it. An additional advantage of the clean syntax is that Brian is an excellent tool for teaching,452

for example in the computational neuroscience textbook of Gerstner et al. (2015). Expanding on453

this point, a major issue in computational science generally, and computational neuroscience in454

particular, is the reproducibility of computational models (LeVeque et al., 2012; Eglen et al., 2017;455

Podlaski et al., 2017; Manninen et al., 2018). A frequent complaint of students and researchers456

at all levels, is that when they try to implement published models using their own code, they get457

different results. A fascinating and detailed description of one such attempt is given in Pauli et al.458

(2018). These sorts of problems led to the creation of the ReScience journal, dedicated to publishing459

replications of previous models or describing when those replication attempts failed (Rougier et al.,460

2017). A number of issues contribute to this problem, and we designed Brian with these in mind.461

So, for example, users are required to write equations that are dimensionally consistent, a common462

source of problems. In addition, by requiring users to write equations explicitly rather than using463

pre-defined neuron types such as “integrate-and-fire” and “Hodgkin-Huxley”, as in other simulators,464

we reduce the chance that the implementation expected by the user is different to the one provided465

by the simulator. We discuss this point further below, but we should note the opposing view that466

standardization and common implementation are advantages has also been put forward (Davison467

et al., 2008; Gleeson et al., 2010; Raikov et al., 2011). Perhaps more importantly, by making user-468

written code simpler and more readable, we increase the chance that the implementation faithfully469

represents the description of a model. Allowing for more flexibility and targeting the complete470

computational experiment increases the chances that the entire simulation script can be compactly471

represented in a single file or programming language, further reducing the chances of such errors.472

Comparison to other approaches473

We have described some of the key design choices we made for version 2 of the Brian simulator.474

These represent a particular balance between the conflicting demands of flexibility, ease-of-use,475

features and performance, and we now compare the results of these choices to other available476

options for simulations.477

There are two main differences of approach between Brian and other simulators. Firstly,478

we require model definitions to be explicit. Users are required to give the full set of equations479

and parameters that define the model, rather than using “standard” model names and default480

parameters (cf. Brette, 2012). This approach requires a slightly higher initial investment of effort481

from the user, but ensures that users know precisely what their model is doing and reduces the482

risk of a difference between the implementation of the model and the description of it in a paper483

(see discussion above). One limitation of this approach is that it makes it more difficult to design484

tools to programmatically inspect a model, for example to identify and shut down all inhibitory485

currents (although note that this issue remains for languages such as NeuroML and NineML that486

are primarily based on standard models as they include the ability to define arbitrary equations).487

The second main difference is that we consider the complete computational experiment to488

be fundamental, and so everything is tightly integrated to the extent that an entire model can be489

specified in a single, readable file, including equations, protocols, data analysis, etc. In Neuron and490

NEST, model definitions are separate from the computational experiment script, and indeed written491

in an entirely different language (see below). This adds complexity and increases the chance of492

16 of 41

Manuscript submitted to eLife

errors. In NeuroML and NineML, there is no way of specifying arbitrary computational experiments.493

One counter-argument to this approach is that clearly separating model definitions may reduce the494

effort in re-using models or programmatically comparing them (as in Podlaski et al. 2017).495

A consequence of the requirement to make model definitions explicit, and an important feature496

for doing novel research, is that the simulator must support arbitrary user-specified equations.497

This is available in Neuron via the NMODL description format (Hines and Carnevale, 2000), and498

in a limited form in NEST using NESTML (Plotnikov et al., 2016). NeuroML and NineML now both499

include the option for specifying arbitrary equations, although the level of simulator support500

for these aspects of the standards is unclear. While some level of support for arbitrary model501

equations is now fairly widespread in simulators, Brian was the first to make this a fundamental,502

core concept that is applied universally. Some simulators that have since followed this approach503

include DynaSim (Sherfey et al., 2018), which is based on MATLAB, and ANNarchy (Vitay et al., 2015).504

Other new simulators have taken an alternative approach, such as Xolotl (Gorur-Shandilya et al.,505

2018) which is based on building hierarchical representations of neurons from a library of basic506

components. One aspect of the equation-based approach that is missing from other simulators is507

the specification of additional defining network features, such as synaptic connectivity patterns, in508

an equally flexible, equation-oriented way. Neuron is focused on single neuron modeling rather509

than networks, and only supports directly setting the connectivity synapse-by-synapse. NEST, PyNN510

(Davison et al., 2008), NeuroML, and NineML support this too, and also include some predefined511

general connectivity patterns such as one-to-one and all-to-all. NEST further includes a system for512

specifying connectivity via a “connection set algebra” (Djurfeldt, 2012) allowing for combinations513

of a few core types of connectivity. However, none have yet followed Brian in allowing the user to514

specify connectivity patterns via equations, as is commonly done in research papers.515

Performance516

Running compiled code for arbitrary equations means that code generation must be used. This517

requirement leads to a problem: a simulator that makes use of a fixed set of models can provide518

hand-optimised implementations of them, whereas a fully flexible simulator must rely on auto-519

mated techniques. By contrast, an advantage of automated techniques is that they can generate520

optimisations for specialisations of models. For example, using the CUBA benchmark (Vogels and521

Abbott, 2005; Brette et al., 2007) in which all neurons have identical time constants, Brian 2 is522

dramatically faster than Brian 1, NEURON and NEST (Figure 8, left). This happens because Brian523

2 can generate a specialised optimisation of the code since the model definition states that time524

constants are the same. If instead we modify the benchmark to feature heterogeneous time525

constants (Figure 8, right), then Brian 2 has to do much more work since it can no longer use these526

optimisations, while the run times for NEST and NEURON do not change.527

We can make two additional observations based on this benchmark. Firstly, the benefits of528

parallelisation via multi-threading depend heavily on the model being simulated. For a large529

homogeneous population, the single threaded and multi-threaded standalone runs of Brian 2 take530

approximately the same time, and the single threaded run is actually faster at smaller network531

sizes. For the heterogeneous population, the opposite result holds: multi-threaded is always faster532

at all network sizes.533

The second observation is that the advantage of running a Brian 2 simulation in standalone534

mode is most significant for smaller networks, at least for the single threaded case (for the moment,535

multi-threaded code is only available for standalone mode).536

It should be noted, however, that despite the fact that Brian 2 is the fastest simulator at large537

network sizes for this benchmark, this does not mean that Brian 2 is faster than other simulators538

such as NEURON or NEST in general. The NEURON simulator can be used to simulate the point539

neuron models used in this benchmark, but with its strong focus on the simulation of biologically540

detailed, multi-compartment neuron models, it is not well adapted to this task. NEST, on the other541

hand, has been optimised to simulate very large networks, with many synapses impinging on each542

17 of 41

Manuscript submitted to eLife

103 104 105

Number of neurons

10 1

100

101

102

ex
ec

ut
io

n
tim

e
/ b

io
lo

gi
ca

l t
im

e
homogeneous population

NEST (12 threads)
NEURON
Brian 1

Brian 2: runtime
Brian 2: standalone (single thread)
Brian 2: standalone (12 threads)

103 104 105

Number of neurons

heterogeneous population

Figure 8. Benchmark of the simulation time for the CUBA network (Vogels and Abbott, 2005; Brette et al.,

2007), a sparsely connected network of leaky-integrate and fire network with synapses modelled as

exponentially decaying currents. Synaptic connections are random, with each neuron receiving on average 80

synaptic inputs and weights set to ensure ongoing asynchronous activity in the network. The simulations use

exact integration, but spike spike times are aligned to the simulation grid of 0.1ms. Simulations are shown for a

homogeneous population (left), where the membrane time constant, as well as the excitatory and inhibitory

time constant, are the same for all neurons. In the heterogeneous population (right), these constants are

different for each neuron, randomly set between 90% and 110% of the constant values used in the

homogeneous population. Simulations were performed with NEST 2.16 (blue, Linssen et al., 2018,

RRID:SCR_002963), NEURON 7.6 (orange; RRID:SCR_005393), Brian 1.4.4 (red), and Brian 2.2.2.1 (shades of

green, Stimberg et al., 2019b, RRID:SCR_002998). Benchmarks were run under Python 2.7.16 on an Intel Core

i9-7920X machine with 12 processor cores. For NEST and one of the Brian 2 simulations (light green),

simulations made use of all processor cores by using 12 threads via the OpenMP framework. Brian 2 “runtime”

simulations execute C++ code via the weave library, while “standalone” code executes an independent binary file
compiled from C++ code (see appendix 1 for details). Simulation times do not include the one-off times to

prepare the simulation and generate synaptic connections as these will become a vanishing fraction of the total

time for runs with longer simulated times. Simulations were run for a biological time of 10 s for small networks

(8000 neurons or fewer) and for 1 s for large networks. The times plotted here are the best out of 3 repetitions.

Note that Brian 1.4.4 does not support exact integration for a heterogeneous population, and has therefore not

been included for that benchmark.

Figure 8–source data 1. Benchmark results for the homogeneous network.

Figure 8–source data 2. Benchmark results for the heterogeneous network.

18 of 41

Manuscript submitted to eLife

neuron. Most importantly, Brian’s performance here strongly benefits from its focus on running543

simulations on individual machines where all simulation elements are kept in a single, shared544

memory space. In contrast, NEST and NEURON use more sophisticated communication between545

model elements which may cost performance in benchmarks like the one shown here, but can546

scale up to bigger simulations spread out over multiple machines. For a fairly recent and more547

detailed comparison of simulators, see Tikidji-Hamburyan et al. (2017), although note that they did548

not test the standalone mode of Brian 2.549

Limitations of Brian550

The main limitation of Brian compared to other simulators is the lack of support for running large551

networks over multiple machines, and scaling up to specialised, high-performance clusters as552

well as supercomputers. While this puts a limit on the maximum feasible size of simulations, the553

majority of neuroscientists do not have direct access to such equipment, and few computational554

neuroscience studies require such large scale simulations (tens of millions of neurons). More555

common is to run smaller networks but multiple times over a large range of different parameters.556

This “embarrassingly parallel” case can be easily and straightforwardly carried out with Brian at557

any scale, from individual machines to cloud computing platforms or the non-specialised clusters558

routinely available as part of university computing services. An example for such a parameter559

exploration is shown in Appendix 4 Figure 2. This simulation strongly benefits from parallelization560

even on a single machine, with the simulation time reduced by about a factor of about 45 when run561

on a GPU.562

Finally, let us note that this manuscript has focused exclusively on single-compartment point563

neuron models, where an entire neuron is represented without any spatial properties or com-564

partmentalisation into dendrites, soma, and axon. Such models have been extensively used for565

the study of network properties, but are not sufficiently detailed for studying other questions, e.g566

dendritic integration. For such studies, researchers typically investigate multi-compartment models,567

i.e. neurons modelled as a set of interconnected compartments. Currents across the membrane in568

each compartment are modelled in the same way as for point neurons, but there are additional569

axial currents with neighbouring compartments. Such models are the primary focus of simulators570

such as NEURON and GENESIS, but only have very limited support in simulators such as NEST. While571

Brian is used mostly for point neurons, it does offer support for multi-compartmental models, using572

the same equation-based approach (see Appendix 4, Figure 1). This feature is not yet as mature as573

those of specialised simulators such as NEURON and GENESIS, and is an important area for future574

development in Brian.575

Development and availability576

Brian is released under the free and open CeCILL 2 license. Development takes place in a public577

code repository at https://github.com/brian-team/brian2 (Brian contributors, 2012–2019). All exam-578

ples in this article have been simulated with Brian 2 version 2.2.2.1 (Stimberg et al., 2019b). Brian579

has a permanent core team of three developers (the authors of this paper), and regularly receives580

substantial contributions from a number of students, postdocs and users (see Acknowledgements).581

Code is continuously and automatically checked against a comprehensive test suite run on all582

platforms, with almost complete coverage. Extensive documentation, including installation instruc-583

tions, is hosted at http://brian2.readthedocs.org. Brian is available for Python 2 and 3, and for the584

operating systems Windows, OS X and Linux; our download statistics show that all these versions585

are in active use. More information can be found at http://briansimulator.org/.586

Acknowledgements587

We thank the following contributors for having made contributions, big or small, to the Brian 2 code588

or documentation: Moritz Augustin, Victor Benichoux, Werner Beroux, Edward Betts, Daniel Bliss,589

Jacopo Bono, Paul Brodersen, Romain Cazé, Meng Dong, Guillaume Dumas, Ben Evans, Charlee590

19 of 41

https://github.com/brian-team/brian2
http://brian2.readthedocs.org
http://briansimulator.org/

Manuscript submitted to eLife

Fletterman, Dominik Krzemiński, Kapil Kumar, ThomasMcColgan, Matthieu Recugnat, Dylan Richard,591

Cyrille Rossant, Jan-Hendrik Schleimer, Alex Seeholzer, Martino Sorbaro, Daan Sprenkels, Teo Stocco,592

Mihir Vaidya, Adrien F. Vincent, Konrad Wartke, Pierre Yger, Friedemann Zenke. Three of these593

contributors (CF, DK, KK) contributed while participating in Google’s Summer of Code program.594

References595

Abbott LF, Marder E. Modeling small networks. In: Koch C, Segev I, editors. Methods in Neuronal Modeling MIT596

Press, Cambridge, MA, USA; 1998.p. 361–410.597

Ascoli GA, Donohue DE, Halavi M. NeuroMorpho.Org: A Central Resource for Neuronal Morphologies. J598

Neurosci. 2007 Aug; 27(35):9247–9251. doi: 10.1523/JNEUROSCI.2055-07.2007.599

Behnel S, Bradshaw R, Citro C, Dalcin L, Seljebotn DS, Smith K. Cython: The Best of Both Worlds. Computing in600

Science Engineering. 2011 Mar/Apr; 13(2):31–39. doi: 10.1109/MCSE.2010.118.601

Bencina R, Burk P, et al., PortAudio: Portable Real-Time Audio Library; 1999–. http://www.portaudio.com/.602

Blundell I, Brette R, Cleland TA, Close TG, Coca D, Davison AP, Diaz-Pier S, Fernandez Musoles C, Gleeson603

P, Goodman DFM, Hines M, Hopkins MW, Kumbhar P, Lester DR, Marin B, Morrison A, Müller E, Nowotny604

T, Peyser A, Plotnikov D, et al. Code Generation in Computational Neuroscience: A Review of Tools and605

Techniques. Frontiers in Neuroinformatics. 2018; doi: 10.3389/fninf.2018.00068.606

Bower JM, Beeman D. The Book of GENESIS: Exploring Realistic Neural Models with the GEneral NEural607

SImulation System. 2 ed. Springer-Verlag; 1998.608

Brette R, Goodman DFM. Simulating spiking neural networks on GPU. Network: Computation in Neural Systems.609

2012; 23(4). doi: 10.3109/0954898X.2012.730170.610

Brette R. On the design of script languages for neural simulation. Network. 2012; 23(4):150–156. doi:611

10.3109/0954898X.2012.716902.612

Brette R, Goodman DFM. Vectorized algorithms for spiking neural network simulation. Neural Comput. 2011613

Jun; 23(6):1503–1535. doi: 10.1162/NECO_a_00123.614

Brette R, Rudolph M, Carnevale T, Hines M, Beeman D, Bower JM, Diesmann M, Morrison A, Goodman PH,615

Harris FC Jr, Zirpe M, Natschläger T, Pecevski D, Ermentrout B, Djurfeldt M, Lansner A, Rochel O, Vieville T,616

Muller E, Davison AP, et al. Simulation of networks of spiking neurons: a review of tools and strategies. J617

Comput Neurosci. 2007 Dec; 23(3):349–398. doi: 10.1007/s10827-007-0038-6.618

Brian contributors, brian2. Github; 2012–2019. https://github.com/brian-team/brian2, ddf44c2.619

Cannon RC, Gleeson P, Crook S, Ganapathy G, Marin B, Piasini E, Silver RA. LEMS: a language for expressing620

complex biological models in concise and hierarchical form and its use in underpinning NeuroML 2. Front621

Neuroinform. 2014 Sep; 8. doi: 10.3389/fninf.2014.00079.622

Carnevale NT, Hines ML. The NEURON Book. Cambridge University Press; 2006.623

Cheung K, Schultz SR, Luk W. NeuroFlow: A general purpose spiking neural network simulation platform using624

customizable processors. Frontiers in Neuroscience. 2016; 9(JAN). doi: 10.3389/fnins.2015.00516.625

Crook SM, Bednar JA, Berger S, Cannon R, Davison AP, Djurfeldt M, Eppler J, Kriener B, Furber S, Graham B,626

Plesser HE, Schwabe L, Smith L, Steuber V, van Albada S. Creating, documenting and sharing network models.627

Network: Computation in Neural Systems. 2012; 23(4):131–149. doi: 10.3109/0954898X.2012.722743.628

Davison AP, Brüderle D, Eppler J, Kremkow J, Muller E, Pecevski D, Perrinet L, Yger P. PyNN: A Common Interface629

for Neuronal Network Simulators. Frontiers in Neuroinformatics. 2008; 2:11. doi: 10.3389/neuro.11.011.2008.630

Davison AP, Hines M, Muller E. Trends in programming languages for neuroscience simulations. Front Neurosci.631

2009; 3. doi: 10.3389/neuro.01.036.2009.632

De Schutter E. A consumer guide to neuronal modeling software. Trends in Neurosciences. 1992 Nov;633

15(11):462–464. doi: 10.1016/0166-2236(92)90011-V.634

Destexhe A, Neubig M, Ulrich D, Huguenard J. Dendritic Low-Threshold Calcium Currents in Thalamic Relay635

Cells. J Neurosci. 1998 May; 18(10):3574–3588.636

20 of 41

10.1523/JNEUROSCI.2055-07.2007
10.1109/MCSE.2010.118
http://www.portaudio.com/
10.3389/fninf.2018.00068
10.3109/0954898X.2012.730170
10.3109/0954898X.2012.716902
10.3109/0954898X.2012.716902
10.3109/0954898X.2012.716902
https://github.com/brian-team/brian2
10.3389/fninf.2014.00079
10.3389/fnins.2015.00516
10.3109/0954898X.2012.722743
10.3389/neuro.11.011.2008
10.3389/neuro.01.036.2009

Manuscript submitted to eLife

Djurfeldt M. The Connection-set Algebra—A Novel Formalism for the Representation of Connectivity Structure637

in Neuronal Network Models. Neuroinformatics. 2012; 10(3):287–304. doi: 10.1007/s12021-012-9146-1.638

Djurfeldt M, Hjorth J, Eppler JM, Dudani N, Helias M, Potjans TC, Bhalla US, Diesmann M, Hellgren Kotaleski J,639

Ekeberg Ö. Run-Time Interoperability Between Neuronal Network Simulators Based on the MUSIC Framework.640

Neuroinform. 2010 Mar; 8(1):43–60. https://doi.org/10.1007/s12021-010-9064-z, doi: 10.1007/s12021-010-641

9064-z.642

Dura-Bernal S, Neymotin SA, Kerr CC, Sivagnanam S, Majumdar A, Francis JT, Lytton WW. Evolutionary algorithm643

optimization of biological learning parameters in a biomimetic neuroprosthesis. IBM Journal of Research and644

Development. 2017 Mar; 61(2/3):6:1–6:14. doi: 10.1147/JRD.2017.2656758.645

Edin F, Machens CK, Schütze H, Herz AVM. Searching for Optimal Sensory Signals: Iterative Stimulus Re-646

construction in Closed-Loop Experiments. Journal of Computational Neuroscience. 2004 Jul; 17(1):47–56.647

https://doi.org/10.1023/B:JCNS.0000023868.18446.a2, doi: 10.1023/B:JCNS.0000023868.18446.a2.648

Eglen SJ, Marwick B, Halchenko YO, Hanke M, Sufi S, Gleeson P, Silver RA, Davison AP, Lanyon L, Abrams M,649

Wachtler T, Willshaw DJ, Pouzat C, Poline JB. Toward standard practices for sharing computer code and650

programs in neuroscience. Nature Neuroscience. 2017; doi: 10.1038/nn.4550.651

Fidjeland AK, Roesch EB, Shanahan MP, Luk W. NeMo: A platform for neural modelling of spiking neurons652

using GPUs. In: Proceedings of the International Conference on Application-Specific Systems, Architectures and653

Processors; 2009. p. 137–144. doi: 10.1109/ASAP.2009.24.654

Furber SB, Galluppi F, Temple S, Plana LA. The SpiNNaker project. Proceedings of the IEEE. 2014; 102(5):652–665.655

doi: 10.1109/JPROC.2014.2304638.656

Gerstner W, Kistler WM, Naud R, Paninski L. Neuronal Dynamics. Cambridge Univ Press. 2015; (October657

2013):14–17. http://neuronaldynamics.epfl.ch/online/index.html, doi: 10.1017/CBO9781107447615.658

Gewaltig MO, Diesmann M. NEST (NEural Simulation Tool). Scholarpedia. 2007; 2(4):1430.659

Gleeson P, Crook S, Cannon RC, Hines ML, Billings GO, Farinella M, Morse TM, Davison AP, Ray S, Bhalla US,660

Barnes SR, Dimitrova YD, Silver RA. NeuroML: A Language for Describing Data Driven Models of Neurons661

and Networks with a High Degree of Biological Detail. PLOS Computational Biology. 2010; 6(6):1–19. doi:662

10.1371/journal.pcbi.1000815.663

Golowasch J, Casey M, Abbott LF, Marder E. Network Stability from Activity-Dependent Regulation of Neuronal664

Conductances. Neural Computation. 1999; 11(5):1079–1096. doi: 10.1162/089976699300016359.665

Goodman D, Brette R. Brian: a simulator for spiking neural networks in Python. Front Neuroinform. 2008; 2:5.666

doi: 10.3389/neuro.11.005.2008.667

Goodman D, Brette R. Brian simulator. Scholarpedia. 2013; 8(1):10883. doi: 10.4249/scholarpedia.10883.668

Goodman DFM. Code Generation: A Strategy for Neural Network Simulators. Neuroinform. 2010 Oct; 8(3):183–669

196. doi: 10.1007/s12021-010-9082-x.670

Goodman DFM, Brette R. The Brian simulator. Front Neurosci. 2009; 3. doi: 10.3389/neuro.01.026.2009.671

Gorur-Shandilya S, Hoyland A, Marder E. Xolotl: An Intuitive and Approachable Neuron and Network Simulator672

for Research and Teaching. Frontiers in Neuroinformatics. 2018; doi: 10.3389/fninf.2018.00087.673

Günay C, Prinz AA. Model Calcium Sensors for Network Homeostasis: Sensor and Readout Parameter674

Analysis from a Database of Model Neuronal Networks. J Neurosci. 2010 Feb; 30(5):1686–1698. doi:675

10.1523/JNEUROSCI.3098-09.2010.676

Hahne J, Dahmen D, Schuecker J, Frommer A, Bolten M, Helias M, Diesmann M. Integration of Continuous-677

Time Dynamics in a Spiking Neural Network Simulator. Front Neuroinform. 2017; 11:34. doi: 10.3389/fn-678

inf.2017.00034.679

Hahne J, Helias M, Kunkel S, Igarashi J, Bolten M, Frommer A, Diesmann M. A unified framework for spiking680

and gap-junction interactions in distributed neuronal network simulations. Front Neuroinform. 2015; p. 22.681

http://journal.frontiersin.org/article/10.3389/fninf.2015.00022/full, doi: 10.3389/fninf.2015.00022.682

Hathway P, Goodman DFM. [Re] Spike Timing Dependent Plasticity Finds the Start of Repeating Patterns in683

Continuous Spike Trains. ReScience. 2018 Aug; 4(1):6. doi: 10.5281/zenodo.1327348.684

21 of 41

https://doi.org/10.1007/s12021-010-9064-z
10.1147/JRD.2017.2656758
https://doi.org/10.1023/B:JCNS.0000023868.18446.a2
10.1023/B:JCNS.0000023868.18446.a2
10.1038/nn.4550
10.1109/ASAP.2009.24
10.1109/JPROC.2014.2304638
http://neuronaldynamics.epfl.ch/online/index.html
10.1371/journal.pcbi.1000815
10.1371/journal.pcbi.1000815
10.1371/journal.pcbi.1000815
10.3389/neuro.11.005.2008
10.4249/scholarpedia.10883
10.3389/neuro.01.026.2009
10.3389/fninf.2018.00087
10.1523/JNEUROSCI.3098-09.2010
10.1523/JNEUROSCI.3098-09.2010
10.1523/JNEUROSCI.3098-09.2010
10.3389/fninf.2017.00034
10.3389/fninf.2017.00034
10.3389/fninf.2017.00034
http://journal.frontiersin.org/article/10.3389/fninf.2015.00022/full
10.3389/fninf.2015.00022
10.5281/zenodo.1327348

Manuscript submitted to eLife

Hettinger R, PEP 289 – Generator Expressions; 2002. https://www.python.org/dev/peps/pep-0289/.685

Hindmarsh JL, Rose RM. A Model of Neuronal Bursting Using Three Coupled First Order Differential Equations.686

Proceedings of the Royal Society of London Series B, Biological Sciences. 1984; 221(1222):87–102.687

Hines ML, Carnevale NT. Expanding NEURON’s Repertoire of Mechanisms with NMODL. Neural Comput. 2000;688

12(5):995–1007. doi: 10.1162/089976600300015475.689

Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and690

excitation in nerve. J Physiol. 1952; 117(4):500–544.691

Huguenard JR, Prince DA. A novel T-type current underlies prolonged Ca(2+)-dependent burst firing in GABAergic692

neurons of rat thalamic reticular nucleus. J Neurosci. 1992 Oct; 12(10):3804–3817. doi: 10.1523/JNEUROSCI.12-693

10-03804.1992.694

Jones E, Oliphant T, Peterson P, et al., SciPy: Open source scientific tools for Python; 2001–. http://www.scipy.org/.695

Jun JJ, Steinmetz NA, Siegle JH, Denman DJ, Bauza M, Barbarits B, Lee AK, Anastassiou CA, Andrei A, Aydin Ç,696

Barbic M, Blanche TJ, Bonin V, Couto J, Dutta B, Gratiy SL, Gutnisky DA, Häusser M, Karsh B, Ledochowitsch697

P, et al. Fully integrated silicon probes for high-density recording of neural activity. Nature. 2017 nov;698

551(7679):232–236. doi: 10.1038/nature24636.699

LeVeque RJ, Mitchell IM, Stodden V. Reproducible research for scientific computing: Tools and strategies for700

changing the culture. Computing in Science & Engineering. 2012 jul; 14(4):13–17. doi: 10.1109/MCSE.2012.38.701

Licklider JCR. Periodicity pitch and related auditory process models. International Audiology. 1962; 1(1):11–34.702

Linssen C, Lepperød ME, Mitchell J, Pronold J, Eppler JM, Keup C, Peyser A, Kunkel S, Weidel P, Nodem Y, Terhorst703

D, Deepu R, Deger M, Hahne J, Sinha A, Antonietti A, Schmidt M, Paz L, Garrido J, Ippen T, et al., NEST 2.16.0;704

2018. https://doi.org/10.5281/zenodo.1400175, doi: 10.5281/zenodo.1400175.705

Manninen T, Aćimović J, Havela R, Teppola H, Linne ML. Challenges in Reproducibility, Replicability, and706

Comparability of Computational Models and Tools for Neuronal and Glial Networks, Cells, and Subcellular707

Structures. Frontiers in neuroinformatics. 2018; p. 20. doi: 10.3389/fninf.2018.00020.708

Merolla PA, Arthur JV, Alvarez-Icaza R, Cassidy AS, Sawada J, Akopyan F, Jackson BL, Imam N, Guo C, Nakamura709

Y, Brezzo B, Vo I, Esser SK, Appuswamy R, Taba B, Amir A, Flickner MD, Risk WP, Manohar R, Modha DS. A710

million spiking-neuron integrated circuit with a scalable communication network and interface. Science. 2014;711

345(6197):668–673. doi: 10.1126/science.1254642.712

Meurer A, Smith CP, Paprocki M, Čertík O, Kirpichev SB, Rocklin M, Kumar A, Ivanov S, Moore JK, Singh S,713

Rathnayake T, Vig S, Granger BE, Muller RP, Bonazzi F, Gupta H, Vats S, Johansson F, Pedregosa F, Curry MJ,714

et al. SymPy: symbolic computing in Python. PeerJ Comput Sci. 2017 Jan; 3:e103. doi: 10.7717/peerj-cs.103.715

Mittal S. A Survey of Techniques for Approximate Computing. ACM Computing Surveys. 2016; 48(4):1–33. doi:716

10.1145/2893356.717

Moore SW, Fox PJ, Marsh SJT, Markettos AT, Mujumdar A. Bluehive - A field-programable custom computing718

machine for extreme-scale real-time neural network simulation. In: Proceedings of the 2012 IEEE 20th Inter-719

national Symposium on Field-Programmable Custom Computing Machines, FCCM 2012; 2012. p. 133–140. doi:720

10.1109/FCCM.2012.32.721

Muller E, Bednar JA, DiesmannM, Gewaltig MO, HinesM, Davison AP. Python in neuroscience. Front Neuroinform.722

2015; 9. doi: 10.3389/fninf.2015.00011.723

Nadim F, Manor Y, Nusbaum MP, Marder E. Frequency Regulation of a Slow Rhythm by a Fast Periodic Input. J724

Neurosci. 1998 Jul; 18(13):5053–5067. doi: 10.1523/JNEUROSCI.18-13-05053.1998.725

O’Leary T, Sutton AC, Marder E. Computational models in the age of large datasets. Current Opinion in726

Neurobiology. 2015; 32:87–94. doi: 10.1016/j.conb.2015.01.006.727

O’Leary T, Williams AH, Franci A, Marder E. Cell Types, Network Homeostasis, and Pathological Compen-728

sation from a Biologically Plausible Ion Channel Expression Model. Neuron. 2014; 82(4):809–821. doi:729

10.1016/j.neuron.2014.04.002.730

Pauli R, Weidel P, Kunkel S, Morrison A. Reproducing Polychronization: A Guide to Maximizing the Reproducibility731

of Spiking Network Models. Frontiers in neuroinformatics. 2018; 12:46. doi: 10.3389/fninf.2018.00046.732

22 of 41

https://www.python.org/dev/peps/pep-0289/
10.1523/JNEUROSCI.12-10-03804.1992
10.1523/JNEUROSCI.12-10-03804.1992
10.1523/JNEUROSCI.12-10-03804.1992
http://www.scipy.org/
10.1109/MCSE.2012.38
https://doi.org/10.5281/zenodo.1400175
10.5281/zenodo.1400175
10.3389/fninf.2018.00020
10.1126/science.1254642
10.7717/peerj-cs.103
10.1109/FCCM.2012.32
10.1109/FCCM.2012.32
10.1109/FCCM.2012.32
10.3389/fninf.2015.00011
10.1523/JNEUROSCI.18-13-05053.1998
10.1016/j.conb.2015.01.006
10.1016/j.neuron.2014.04.002
10.1016/j.neuron.2014.04.002
10.1016/j.neuron.2014.04.002
10.3389/fninf.2018.00046

Manuscript submitted to eLife

Platkiewicz J, Brette R. Impact of Fast Sodium Channel Inactivation on Spike Threshold Dynamics and Synaptic733

Integration. PLoS Comput Biol. 2011 May; 7(5):e1001129. doi: 10.1371/journal.pcbi.1001129.734

Plotnikov D, Blundell I, Ippen T, Eppler JM, Morrison A, Rumpe B. NESTML: a modeling language for spiking735

neurons. In: Oberweis A, Reussner R, editors. Modellierung 2016 Bonn: Gesellschaft für Informatik e.V.; 2016.736

p. 93–108.737

Podlaski WF, Seeholzer A, Groschner LN, Miesenböck G, Ranjan R, Vogels TP. Mapping the function of neuronal738

ion channels in model and experiment. eLife. 2017 mar; 6:e22152. doi: 10.7554/eLife.22152.739

Prinz AA. Insights from models of rhythmic motor systems. Current Opinion in Neurobiology. 2006; 16(6):615–740

620. doi: 10.1016/j.conb.2006.10.001.741

Prinz AA, Bucher D, Marder E. Similar network activity from disparate circuit parameters. Nat Neurosci. 2004;742

7(12):1345–1352. doi: 10.1038/nn1352.743

Raikov I, Cannon R, Clewley R, Cornelis H, Davison A, Schutter ED, Djurfeldt M, Gleeson P, Gorchetchnikov A,744

Plesser HE, Hill S, Hines M, Kriener B, Franc YL, Lo CC, Morrison A, Muller E, Ray S, Schwabe L, Szatmary B.745

NineML: the network interchange for neuroscience modeling language. BMC Neuroscience. 2011 Jul; 12(Suppl746

1):P330. doi: 10.1186/1471-2202-12-S1-P330.747

Richert M, Nageswaran JM, Dutt N, Krichmar JL. An Efficient Simulation Environment for Modeling Large-Scale748

Cortical Processing. Frontiers in Neuroinformatics. 2011; 5:19. doi: 10.3389/fninf.2011.00019.749

Rossant C, Goodman DFM, Platkiewicz J, Brette R. Automatic fitting of spiking neuron models to electrophysio-750

logical recordings. Front Neuroinform. 2010; 4:2. doi: 10.3389/neuro.11.002.2010.751

Rougier NP, Hinsen K, Alexandre F, Arildsen T, Barba LA, Benureau FCY, Brown CT, de Buyl P, Caglayan O, Davison752

AP, Delsuc MA, Detorakis G, Diem AK, Drix D, Enel P, Girard B, Guest O, Hall MG, Henriques RN, Hinaut X, et al.753

Sustainable computational science: the ReScience initiative. PeerJ Computer Science. 2017 dec; 3:e142. doi:754

10.7717/peerj-cs.142.755

Rudolph M, Destexhe A. How much can we trust neural simulation strategies? Neurocomputing. 2007 Jun;756

70(10-12):1966–1969. doi: 10.1016/j.neucom.2006.10.138.757

Sherfey JS, Soplata AE, Ardid S, Roberts EA, Stanley DA, Pittman-Polletta BR, Kopell NJ. DynaSim: A MATLAB758

Toolbox for Neural Modeling and Simulation. Frontiers in Neuroinformatics. 2018; 12:10. https://www.759

frontiersin.org/article/10.3389/fninf.2018.00010, doi: 10.3389/fninf.2018.00010.760

Stimberg M, Brette R, Goodman DFM, brian2_paper_examples. Github; 2019. https://github.com/brian-team/761

brian2_paper_examples, 73045cd.762

Stimberg M, Goodman DFM, Benichoux V, Brette R. Equation-oriented specification of neural models for763

simulations. Front Neuroinform. 2014; 8. doi: 10.3389/fninf.2014.00006.764

Stimberg M, Goodman DFM, Nowotny T. Brian2GeNN: a system for accelerating a large variety of spiking neural765

networks with graphics hardware. bioRxiv. 2018 oct; p. 448050. https://www.biorxiv.org/content/early/2018/766

10/20/448050, doi: 10.1101/448050.767

Stimberg M, Goodman DFM, Brette R, Brian 2 (Version 2.2.2.1); 2019. doi: 10.5281/zenodo.2619969.768

Stimberg M, Goodman DF, Brette R, De Pittà M. Modeling neuron–glia interactions with the Brian 2 simulator.769

In: De Pittà M, Berry H, editors. Computational Glioscience Springer; 2019.p. 471–505.770

Stroud JP, Porter MA, Hennequin G, Vogels TP. Motor primitives in space and time via targeted gain modulation771

in cortical networks. Nature Neuroscience. 2018 dec; 21(12):1774–1783. http://www.nature.com/articles/772

s41593-018-0276-0, doi: 10.1038/s41593-018-0276-0.773

Tikidji-Hamburyan RA, Narayana V, Bozkus Z, El-Ghazawi TA. Software for Brain Network Simulations: A774

Comparative Study. Frontiers in Neuroinformatics. 2017 jul; 11:46. doi: 10.3389/fninf.2017.00046.775

Traub RD, Miles R. Neuronal networks of the hippocampus, vol. 777. Cambridge University Press; 1991.776

Vella M, Cannon RC, Crook S, Davison AP, Ganapathy G, Robinson HPC, Silver RA, Gleeson P. libNeuroML777

and PyLEMS: using Python to combine procedural and declarative modeling approaches in computational778

neuroscience. Front Neuroinform. 2014; 8. doi: 10.3389/fninf.2014.00038.779

23 of 41

10.1371/journal.pcbi.1001129
10.7554/eLife.22152
10.1016/j.conb.2006.10.001
10.3389/fninf.2011.00019
10.3389/neuro.11.002.2010
10.7717/peerj-cs.142
10.7717/peerj-cs.142
10.7717/peerj-cs.142
10.1016/j.neucom.2006.10.138
https://www.frontiersin.org/article/10.3389/fninf.2018.00010
https://www.frontiersin.org/article/10.3389/fninf.2018.00010
https://www.frontiersin.org/article/10.3389/fninf.2018.00010
10.3389/fninf.2018.00010
https://github.com/brian-team/brian2_paper_examples
https://github.com/brian-team/brian2_paper_examples
https://github.com/brian-team/brian2_paper_examples
10.3389/fninf.2014.00006
https://www.biorxiv.org/content/early/2018/10/20/448050
https://www.biorxiv.org/content/early/2018/10/20/448050
https://www.biorxiv.org/content/early/2018/10/20/448050
10.5281/zenodo.2619969
http://www.nature.com/articles/s41593-018-0276-0
http://www.nature.com/articles/s41593-018-0276-0
http://www.nature.com/articles/s41593-018-0276-0
10.3389/fninf.2017.00046
10.3389/fninf.2014.00038

Manuscript submitted to eLife

Vitay J, Dinkelbach HÜ, Hamker FH. ANNarchy: a code generation approach to neural simulations on parallel780

hardware. Frontiers in Neuroinformatics. 2015 jul; 9. http://journal.frontiersin.org/Article/10.3389/fninf.2015.781

00019/abstract, doi: 10.3389/fninf.2015.00019.782

Voegtlin T. CLONES : a closed-loop simulation framework for body, muscles and neurons. BMC Neuroscience.783

2011 dec; 12(S1):P363. https://bmcneurosci.biomedcentral.com/articles/10.1186/1471-2202-12-S1-P363, doi:784

10.1186/1471-2202-12-S1-P363.785

Vogels TP, Abbott LF. Signal Propagation and Logic Gating in Networks of Integrate-and-Fire Neurons. The786

Journal of Neuroscience. 2005 Nov; 25(46):10786 –10795. doi: 10.1523/JNEUROSCI.3508-05.2005.787

Weidel P, Djurfeldt M, Duarte RC, Morrison A. Closed Loop Interactions between Spiking Neural Network and788

Robotic Simulators Based on MUSIC and ROS. Front Neuroinform. 2016; 10. doi: 10.3389/fninf.2016.00031.789

Yavuz E, Turner J, Nowotny T. GeNN: A code generation framework for accelerated brain simulations. Sci Rep.790

2016; 6:18854. doi: 10.1038/srep18854.791

Zenke F, Ganguli S. SuperSpike: Supervised learning in multilayer spiking neural networks. Neural Computation.792

2018; doi: 10.1162/neco_a_01086.793

24 of 41

http://journal.frontiersin.org/Article/10.3389/fninf.2015.00019/abstract
http://journal.frontiersin.org/Article/10.3389/fninf.2015.00019/abstract
http://journal.frontiersin.org/Article/10.3389/fninf.2015.00019/abstract
10.3389/fninf.2015.00019
https://bmcneurosci.biomedcentral.com/articles/10.1186/1471-2202-12-S1-P363
10.1523/JNEUROSCI.3508-05.2005
10.3389/fninf.2016.00031

Manuscript submitted to eLife

Appendix 1794

Design details795

In this appendix, we provide further details about technical design decisions behind the

Brian simulator. We also more exhaustively comment on the simulation code of the four

case studies. Note that the example code provided as jupyter notebooks (https://github.

com/brian-team/brian2_paper_examples; Stimberg et al. 2019a) has extensive additional

annotations as well.

796

797

798

799

800

Mathematical level801

Physical units802

Neural models are models of a physical system, and therefore variables have physical

dimensions such as voltage or time. Accordingly, the Brian simulator requires quantities

provided by the user, such as parameters or initial values of dynamical variables, to be

specified in consistent physical units such as mV or s. This is in contrast to the approach

of most other simulators, which simply define expected units for all model components,

e.g. units of mV for the membrane potential. This is a common source of error because

conventions are not always obvious and can be inconsistent. For example, while membrane

surface area is often stated in units of µm2, channel densities are often given in mS cm−2. To

remove this potential source of error, the Brian simulator enforces explicit use of units. It

automatically takes care of conversions—multiplying a resistance (dimensions of Ω) with
a current (dimensions of A) will result in a voltage (dimensions of V)—and raises an error

when physical dimensions are incompatible, e.g. when adding a current to a resistance. Unit

consistency is also checked within textual model descriptions (e.g. Figure 2, l. 8–18) and

variable assignments (e.g. l. 23–27). To make this possible, a dimension in SI units has to be

assigned to each dimensional model variable in the model description (l. 8–18).

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

Model dynamics818

Neuron and synapse models are generally hybrid systems consisting of continuous dynamics

described by differential equations and discrete events (Brette et al., 2007).

819

820

In the Brian simulator, differential equations are specified in strings using mathematical

notation (Figure 2, l. 8–18). Differential equations can also be stochastic by using the symbol

xi representing the noise term �(t) (Figure 3c, l. 8). The numerical integration method can
be specified explicitly, e.g. the pyloric circuit model chooses a second-order Runge-Kutta

method (Figure 2, l. 22); without specification, an appropriate method is automatically

chosen and reported. To this end, the user-provided equations are analysed symbolically

using the Python package sympy (Meurer et al., 2017), and transformed into a sequence

of operations to advance the system’s state by a single time step (for more details, see

Stimberg et al., 2014).

821

822

823

824

825

826

827

828

829

This approach applies both to neuron models and to synaptic models. In many models,

synaptic conductances do not need to be calculated for each synapse individually, instead

they can be lumped into a single post-synaptic variable that is part of the neuronal model

description. In contrast, non-linear synaptic dynamics as in the pyloric network example need

to be calculated for each synapse individually. Using the same formalism as for neurons, the

synaptic model equations can describe dynamics with differential equations (e.g. Figure 2,

l. 31–32/44–47). Post-synaptic conductances or currents can then be calculated individually

and summed up for each post-synaptic neuron as indicated by the (summed) annotation
(l. 32 and 46).

830

831

832

833

834

835

836

837

838

25 of 41

https://github.com/brian-team/brian2_paper_examples
https://github.com/brian-team/brian2_paper_examples

Manuscript submitted to eLife

Neuron- or synapse-specific values which are not updated by differential equations are

also included in the string description. This can be used to define values that are updated

by external mechanisms, e.g. the synaptic currents in each neuron (l. 15–16) are updated

by the respective synapses (l. 32 and l. 46). The same mechanism can also be used for

neuron-specific parameters such as the calcium target value (l. 17), or the label identifying

the neuron type (l. 18). For optimisation, the flag(constant) can be added to indicate that
the value will not change during a simulation.

839

840

841

842

843

844

845

Neural simulations typically refer to two types of discrete events: production of a spike,

and reception of a spike. A spike is produced by a neuron when a certain condition on its vari-

ables is met. A typical case is the integrate-and-fire model, where a spike is produced when

the potential reaches a threshold of a fixed value. But there are other cases when the condi-

tion is more complex, for example when the threshold is adaptive (Platkiewicz and Brette,

2011). To support conditions of all kind, Brian expects the user to define a mathematical

expression as the threshold. In the case study 1, a spike is triggered whenever v > −20mV

(Figure 2, l. 21). No explicit resetting takes place, since the model dynamics describe the

membrane potential trajectory during an action potential. For a simpler integrate-and-fire

model as the one used in case study 2, the membrane potential is reset to a fixed value

after the threshold crossing (Figure 3, l. 12). Such spike-triggered actions are most generally

specified by providing one or more assignments and operations (reset) that should take
place if the threshold condition is fulfilled; in the case study 1, this is mechanism is used to

update the calcium trace (Figure 2, l. 21).

846

847

848

849

850

851

852

853

854

855

856

857

858

859

Once a spike is produced, it may affect variables of synapses and post-synaptic neurons

(possibly after a delay). Again, this is specified generally as a series of assignments and

operations. In the pyloric circuit example, this does not apply because the synaptic effect

is continuous and not triggered by discrete spikes. In case study 2 (Figure 3) however,

each spike has an instantaneous effect. For example, when a motoneuron spikes, the

eye resting position is increased or decreased by a fixed amount. This is specified by

on_pre='x0_post += w' (l. 15), where on_pre is a keyword for stating what operations should
be executed when a pre-synaptic spike is received. These operations can refer to both local

synaptic variables (here w, defined in the synaptic model) and variables of the pre- and
postsynaptic neuron (here x0, a variable of the post-synaptic neuron). In the same way, the
on_post keyword can be used to specify operations executed when a postsynaptic spike is
received, which allows defining various types of spike-timing-dependent models.

860

861

862

863

864

865

866

867

868

869

870

871

This general definition scheme applies to neurons and synapses, but as case study 2

(Figure 3) illustrates, it can also be used to define dynamical models of muscles and the

environment. It also naturally extends to the modelling of non-neuronal elements of the

brain such as glial cells (Stimberg et al., 2019c).

872

873

874

875

Links between model components876

The equations defining the dynamics of variables can only refer to other variables within the

same model component, e.g. within the same group of neurons or synapses. Connections

to other components have to be explicitly modelled using synaptic connections as explained

above. However, we may sometimes also need to directly refer to the state of variables in

other model component. For example, in case study 2 (Figure 3), the input to retinal neurons

depends on eye and object positions, which are updated in a group separate from the group

representing the retinal neurons (Figure 3c, l. 3–9). This can be expressed by defining a

“linked variable”, which refers to a variable defined in a different model component. In the

group modelling the retinal neurons, the variables x_object and x_eye are annotated with
the (linked) flag to state that they are references to variables defined elsewhere (l. 23–
24). This link is then made explicit by stating the group and variable they refer to via the

26 of 41

Manuscript submitted to eLife

linked_var function (l. 28–29).

877

878

879

880

881

882

883

884

885

886

887

888

Initialisation889

The description of its dynamics does not yet completely define a model, we also need to

define its initial state. For some variables, this initial state can simply be a fixed value, e.g.

in the pyloric network model, the neurons’membrane potential is initialised to the resting

potential vr (Figure 2 l. 23). In the general case, however, wemight want to calculate the initial
state; Brian therefore accepts arbitrary mathematical expressions for setting the initial value

of state variables. These expressions can refer to model variables, as well as to pre-defined

constant such as the index of a neuron within its group (i), or the total number of neurons
within a group (N), as well as to pre-defined functions such as rand() (providing uniformly
distributed random numbers between 0 and 1). In case study 1, we use this mechanism to
initialise variables w and z randomly (Figure 2, l. 25–26); in case study 2, we assign individual
preferred positions to each retinal neuron, covering the space from −1 to 1 in a regular
fashion (Figure 3c, l. 30).

890

891

892

893

894

895

896

897

898

899

900

901

Mathematical expressions can also be used to select a subset of neurons and synapses

and make conditional assignments. In case study 1, we assign a specific value to the

conductance of synapses between ABPD and LP neurons by using the selection criterion

'label_pre == ABPD and label_post == LP' (Figure 2, l. 36), referring to the custom label
identifier of the pre- and post-synaptic neuron that has been introduced as part of the

neuron model definition (l. 18). In this example there is only a single neuron per type, but

the syntax generalises to groups of neurons of arbitrary size and is therefore preferable to

the explicit use of numerical indices.

902

903

904

905

906

907

908

909

Synaptic connections910

The second main aspect of model construction is the creation of synaptic connections. For

maximal expressivity, we again allow the use of mathematical expressions to define rules of

connectivity. For example, in case study 1, following the schematic shown in Figure 1a, we

would like to connect neurons with fast glutamatergic synapses according to two rules: 1)

connections should occur between all groups, but not within groups of the same neuron

type; 2) there should not be any connections from PY neurons to AB/PD neurons. We can

express this with a string condition following the same syntax that we used to set initial

values for synaptic conductances earlier (Figure 2, l. 35):

911

912

913

914

915

916

917

918

fast.connect('label_pre!=label_post and not (label_pre==PY and label_post==ABPD)')

For more complex examples, in particular connection specifications based on the spatial

location of neurons, see Stimberg et al. (2014).

919

920

For larger networks, it can be wasteful to check a condition for each possible connection.

Brian therefore also offers the possibility to use a mathematical expression to directly specify

the projections of each neuron. In the eye movement example, each retinal neuron on the

left hemifield (i.e. x
neuron

< 0) should connect to the first motoneuron (index 0), while neurons
on the right hemifield (i.e. x

neuron
> 0) should connect to the second motoneuron (index 1).

We can express this connection scheme by defining j, the postsynaptic target index, for each
presynaptic neuron accordingly (with the int function converting a truth value into 0 or 1):

921

922

923

924

925

926

927

sensorimotor_synapses.connect(j='int(x_neuron_pre > 0)')

This syntax can also be extended to generate more than one post-synaptic target per pre-

synaptic neuron, using a syntax borrowed from Python’s generator syntax (Hettinger, 2002,

see the Brian 2 documentation at http://brian2.readthedocs.io for more details) These

mechanisms can also be used to define stochastic connectivity schemes, either by specifying

27 of 41

http://brian2.readthedocs.io

Manuscript submitted to eLife

a fixed connection probability that will be evaluated in addition to the given conditions, or by

specifying a connection probability as a function of pre- and post-synaptic properties.

928

929

930

931

932

933

Specifying synaptic connections in the way presented here has several advantages over

alternative approaches. In contrast to explicitly enumerating the connections by referring to

pre- and post-synaptic neuron indices, the use of mathematical expressions transparently

conveys the logic behind the connection pattern and automatically scales with the size

of the connected groups of neurons. These advantages are shared with simulators that

provide pre-defined connectivity patterns such as “one-to-one” or “all-to-all”. However, such

approaches are not as general—e.g. they could not concisely define the connectivity pattern

shown in Figure 1a—and can additionally suffer from ambiguity. For example, should a

group of neurons that is “all-to-all” connected to itself form autapses or not (cf. Crook et al.,

2012)?

934

935

936

937

938

939

940

941

942

943

Computational experiment level944

The Brian simulator allows the user to write complete experiment descriptions that include

both the model description and the simulation protocol in a single Python script as exempli-

fied by the case studies in this article. In this section, we will discuss how the Brian simulator

interacts with the statements and programming logic expressed in the surrounding script

code.

945

946

947

948

949

Simulation flow950

In the case study 3 we use a specific simulation workflow, an iterative approach to finding

a parameter value (Figure 4a). Many other simulation protocols are regularly used. For

example, a simulation might consist of several consecutive runs, where some model aspect

such as the external stimulation changes between runs. Alternatively, several different

types of models might be tested in a single script where each is run independently. Or, a

non-deterministic simulation might be run repeatedly to sample its behaviour. Capturing

all these potential protocols in a single descriptive framework is hopeless, we therefore

need the flexibility of a programming language with its control structures such as loops and

conditionals.

951

952

953

954

955

956

957

958

959

Brian offers two main facilities to assist in implementing arbitrary simulation protocols.

Simulations can be continued at their last state, potentially after activating/deactivating

model elements, or changing global or group-specific constants and variables as shown

above. Additionally, simulations can revert back to a previous state using the functions store
and restore provided by Brian. In the example script shown in Figure 5, this mechanism
is used to reset the network to an initial state after each iteration. The same mechanism

allows for more complex protocols by referring to multiple states, e.g. to implement a

train/test/validate protocol in a synaptic plasticity setting.

960

961

962

963

964

965

966

967

Providing explicit support for this functionality is not only a question of convenience;

while the user could approximate this functionality by storing and resetting the systems

state variables (membrane potentials, gating variables, etc.) manually, some model aspects

such as action potentials that have not yet triggered synaptic effects (due to synaptic delays)

are not easily accessible to the user.

968

969

970

971

972

Model component scheduling973

During each time step of a simulation run, several operations have to be performed. These

include the numerical integration of the state variables, the propagation of synaptic activity,

or the application of reset statements for neurons that emitted an action potential. All these

operations have to be executed in a certain order. The Brian simulator approaches this issue

in a flexible and transparent way: each operation has an associated clock with a certain time

28 of 41

Manuscript submitted to eLife

granularity dt, as well as a “scheduling slot” and a priority value within that slot. Together,
these elements determine the order of all operations across and within time steps.

974

975

976

977

978

979

980

By default, all objects are associated with the same clock, which simplifies setting a global

simulation timestep for all objects (Figure 5, l. 2). However, individual objects may chose a

different timestep, e.g. to record synaptic weights only sporadically during a long-running

simulation run. In the same way, Brian offers a default ordering of all operations during a

time step, but allows to change the schedule that is used, or to reschedule individual objects

to other scheduling slots.

981

982

983

984

985

986

This amount of flexibility might appear to be unnecessary at a first glance and indeed

details of the scheduling are rarely reported when describing models in a publication.

Still, subtle differences in scheduling can have significant impact on simulation results (see

Figure 1 in Appendix 2 for an illustration). This is most obvious when investigating paradigms

such as spike-timing-dependent-plasticity with a high sensitivity to small temporal differences

(Rudolph and Destexhe, 2007).

987

988

989

990

991

992

Name resolution993

Model descriptions refer to various “names”, such as variables, constants, or functions. Some

of these references, such as function names or global constants, will have the same meaning

everywhere. Others, such as state variables or neuron indices, will depend on the context.

This context is defined by the model component, i.e. the group of neurons or the set of

synapses, to which the description is attached. For example, consider the assignment to g
Na

(the maximum conductance of the sodium channel) in Figure 5 (l. 20). Here, gNa_min and
gNa_max refer to global constants (defined in l. 6)a, whereas i, the neuron index, is a vector
of values with one value for each neuron, and N refers to the total number of elements in
the respective group.

994

995

996

997

998

999

1000

1001

1002

It is important to note that the context is also given by its position in the program flow.

For example, if we want to set the initial value for the gating variable m to its steady value,
then this value will depend on the membrane potential v via the expressions for �m and �m.
The order in which we set the values for v and m does therefore matter:

1003

1004

1005

1006

neuron.v = 0*mV
neuron.m = '1/(1 + betam/alpham)'

While this might appear trivial, it shows how the procedural aspect of models, i.e. the

order of operations, can be important. A purely descriptive approach, for example stating

initial values for all variables as part of the model equations, would not always be sufficient.b

1007

1008

1009

Some Python statements are translated into code that is run immediately, for example

initialising a variable or creating synapses. Others are translated into code that is run at a

later time. For example, the code to numerically integrate differential equations is not run at

the point where those equations are defined, but rather at the point when the simulation

is run via a call to the run() function. In this case, any named constants referred to in the
equations will use their value at the time that the run() function is called, and not the value
at the time the equations are defined. This allows for that value to change between multiple

calls to run(), which may be useful to switch between global behaviours. For example, a
typical use case is running with no external input current for a certain time to allow a neuron

to settle into its stationary state, and then running with the current switched on by just

changing the value of a constant from zero to some nonzero value between two consecutive

run() calls.

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

29 of 41

Manuscript submitted to eLife

Implementation level1022

Code generation1023

In order to combine the flexibility and ease-of-use of high-level descriptions with the exe-

cution speed of low-level programming languages such as C, we employ a code generation

approach (Goodman, 2010). This code generation consists of three steps. The textual model

description will first be transformed into a “code snippet”. The generation of such a code

snippet requires various transformations of the provided model description: some syntax

elements have to be translated (e.g. the use of the ** operator to denote the power opera-
tion to a call to the pow function for C/C++), variables that are specific to certain neurons or
synapses have to be properly indexed (e.g. a reset statement v = -70*mV has to be trans-
lated into a statement along the lines of v[neuron_index] = -70*mV), and finally sequences
of statements have to be expressed according to the target language syntax (e.g. by adding

a semicolon to the end of each statement for C/C++). In a second step, these code snippets

will then be embedded into a predefined target-code template, specific to the respective

computation performed by the code. For example, the user-provided description of an

integrate-and-fire neuron’s reset would be embedded into a loop that iterates over all the

neurons that emitted an action potential during the current time step. Finally, the code has

to be compiled and executed, giving it access to the memory location that the code has to

read and modify. For further details on this approach, see Goodman (2010); Stimberg et al.

(2014).

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

Code optimisation1042

Code resulting from the procedure described above will not necessarily perform compu-

tations in the most efficient way. Brian therefore uses additional techniques to further

optimise the code for performance. Consider for example the x variable—representing the
receptor activity—in Figure 7, described by the differential equation in l. 36. This equation

can be integrated analytically, and the above described code generation process would

therefore generate code like the following (here presented as “pseudo-code”):

1043

1044

1045

1046

1047

1048

for each neuron:1049

x_new = sound + exp(-dt / tau_ear) * (sound - x_old)1050

However, the expression that is calculated for every neuron contains exp(-dt / tau_ear)
which is not only identical for all neurons but also relatively costly to evaluate. Brian will

identify such constant expressions, and calculate them only once outside of the loop:

1051

1052

1053

c = exp(-dt / tau_ear)1054

for each neuron:1055

x_new = sound + c * (sound - x_old)1056

In addition to this type of optimisation, the Brian simulator will also simplify arithmetic

expressions, such as replacing 0 * x by 0, or x / x by 1. While all these optimizations could
in principle also be performed by the programming-language compiler (e.g. gcc), we have

found that performing these changes before handing over the code to the compiler led to

bigger and more reliable performance benefits.

1057

1058

1059

1060

1061

Code execution: runtime mode1062

After the code generation process, each model component has been transformed into one

or more “code objects”, each performing a specific computational task. For example, a

group of integrate-and-fire neurons would typically result in three code objects. The first

would be responsible for integrating the state variables over a single timestep, the second

for checking the threshold condition to determine which neurons emit an action potential,

30 of 41

Manuscript submitted to eLife

and the third for applying the reset statements to those neurons. By default, these code

objects will be executed in Brian’s “runtime mode”, meaning that the simulation loop will be

executed in Python and then call each of the code objects to perform the actual computation

(in the order defined by the scheduling as described in the previous section). Note that while

the code objects will typically be based on generated C++ code, they can be compiled and

executed from within Python using binding libraries such as weave (formerly part of scipy ;
Jones et al. 2001–) or Cython (Behnel et al., 2011).

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

This “mixed” approach to model execution leaves the simulation control to the main

Python process while the actual computations are performed in compiled code, operating

on shared memory structures. This results in a considerable amount of flexibility: when-

ever Brian’s model description formalism is not expressive enough for a task at hand, the

researcher can interleave the execution of generated code with a hand-written function that

can potentially access and modify any aspect of the model. In particular, such a function

could intervene in the simulation process itself, e.g. by interrupting the simulation if certain

criteria are met. The jupyter notebook at https://github.com/brian-team/brian2_paper_

examples contains an the interactive version of case study 2 (Figure 3). In this example, the

aforementioned mechanism is used to allow the user to interactively control a running Brian

simulation, as well as for providing a graphical representation of the results that updates

continuously.

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

While having all these advantages, the back-and-forth between the main loop in Python

and the code objects also entails a performance overhead. This performance overhead

takes a constant amount of time per code object and time step and does therefore matter

less if the individual components perform long-running computations, such as for large

networks (Brette and Goodman, 2011, see also Figure 8). On the other hand, for simulations

of small or medium-sized networks, such as the network presented in case study 4 (Figure 6),

this overhead can be considerable and the alternative execution mode presented in the

following section might provide a better alternative.

1087

1088

1089

1090

1091

1092

1093

1094

Code execution: standalone mode1095

As an alternative to the mode of execution presented in the previous section, the Brian

simulator offers the so-called “standalone mode”, currently implemented for the C++ pro-

gramming language. In this mode, Brian generates code that performs the simulation loop

itself and executes the operations according to the schedule. Additionally, it creates code to

manages the memory for all state variables and other data structures such as the queuing

mechanism used for applying synaptic effects with delays. This code, along with the code of

the individual code objects, establishes a complete “standalone” version of the simulation

run. When the resulting binary file is executed, it will perform the simulation and write all

the results to disk. Since the generated code does not depend on any non-standard libraries,

it can be easily transferred to other machines or architectures (e.g. for robotics applications).

The generated code is free from any overhead related to Python or complex data structures

and therefore executes with high performance.

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

For many models, the use of this mode only requires the researcher to add a single line

to the simulation script (declaring set_device('cpp_standalone')), all aspects of the model
descriptions, including assignments to state variables and the order of operations will be

faithfully conserved in the generated code. The Python script will transparently compile and

execute the standalone code, and then read the results back from disk so that the researcher

does not have to adapt their analysis routines.

1108

1109

1110

1111

1112

1113

However, in contrast to the runtime execution mode presented earlier, it is not possible

to interact with the simulation during its execution from within the Python script. In addition,

certain programming logic is no longer possible, since all actions such as synapse generation

31 of 41

https://github.com/brian-team/brian2_paper_examples
https://github.com/brian-team/brian2_paper_examples

Manuscript submitted to eLife

or variable assignments are not executed when they are stated, but only as part of the

simulation run.

1114

1115

1116

1117

1118

In this execution mode, simulations of moderate size and complexity can be run in

real-time (Figure 8), enabling studies such as the one presented in case study 4 (Figure 6).

Importantly, this mode does not require the researcher to be actively involved in any details

of the compilation, execution of the simulation or the retrieval of the results.

1119

1120

1121

1122

aBrian also offers an alternative system where global constants and functions are explicitly provided via a Python
dictionary instead of being deduced from values defined in the execution environment, but this system will not be

further discussed here.bHowever, in this specific case, setting v to 0mV is unnecessary, since Brian automatically assigns the value 0 to all
uninitialised variables.

32 of 41

Manuscript submitted to eLife

Appendix 21123

Simulation scheduling1124

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time (ms)

thresholds before synapses
synapses before thresholds

(b)
1 from brian2 import *
2

3 tau = 1*ms
4 spikes = SpikeGeneratorGroup(1, [0], [1]*ms)
5 target = NeuronGroup(1, 'dv/dt = -v/tau : 1')
6 synapses = Synapses(spikes, target,
7 on_pre='v += 1')
8 synapses.connect()
9 mon = StateMonitor(target, 'v', record=True)

(c)
10 # thresholds before synapses (default)
11 magic_network.schedule = ['start',
12 'groups',
13 'thresholds',
14 'synapses',
15 'resets',
16 'end']
17 run(3*ms)

synapses before thresholds
magic_network.schedule = ['start',

'groups',
'synapses',
'thresholds',
'resets',
'end']

run(3*ms)

(d)
object part of Clock dt when order active

mon (StateMonitor) mon (StateMonitor) 100. us (every step) start 0 yes
target_stateupdater (StateUpdater) target (NeuronGroup) 100. us (every step) groups 0 yes
spikes (SpikeGeneratorGroup) spikes (SpikeGeneratorGroup) 100. us (every step) thresholds 0 yes
synapses_pre (SynapticPathway) synapses (Synapses) 100. us (every step) synapses -1 yes

1125

Appendix 2 Figure 1. Demonstration of the effect of scheduling simulation elements. (a) Timing of

synaptic effects on the post-synaptic cell for the two simulation schedules defined in (c). (b) Basic

simulation code for the simulation results shown in (a). (c) Definition of a simulation schedule where

threshold crossings trigger spikes and – assuming the absence of synaptic delays – their effect is

applied directly within the same simulation time step (left; see blue line in (a)), and a schedule where

synaptic effects are applied in the time step following a threshold crossing (right; see orange line in (a)).

(d) Summary of the scheduling of the simulation elements following the default schedule (left code in

(c)), as provided by Brian’s scheduling_summary function. Note that for increased readibility, the objects
from (b) have been explicitly named to match the variable names. Without this change, the code in (b)

leads to the use of standard names for the objects (spikegeneratorgroup, neurongroup, synapses, and
statemonitor).

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

11361137

33 of 41

Manuscript submitted to eLife

Appendix 31138

Model definitions in other simulation software1139

(a)

0 20 40 60 80 100
time (ms)

60

50

40

v
(m

V)

pre-synaptic

0 20 40 60 80 100
time (ms)

post-synaptic

(b) Brian code:
eqs_slow = '''
I_slow_post = g_slow*m_slow*(v_post-E_syn) : amp (summed)
dm_slow/dt = k_1*(1-m_slow)/(1+exp(s_slow*(V_slow-v_pre)))

- k_2*m_slow : 1 (clock-driven)
'''
slow_synapses = Synapses(circuit, circuit, model=eqs_slow, method='exact')
slow_synapses.connect('label_pre == ABPD and label_post != ABPD')

(c) C++ code:
double get_ABLPsyn_G(double deltaT){

m_ABLPsyn_inf=lookupsigmoid((V_ABLPsyn_thresh-V_mem[0])/V_ABLPsyn_slope);
tau_ABLPsyn=(1.0-m_ABLPsyn_inf)*tau_ABLPsyn_diss;
m_ABLPsyn=m_ABLPsyn+(m_ABLPsyn_inf-m_ABLPsyn)*deltaT/tau_ABLPsyn;
return G_ABLPsyn_max*m_ABLPsyn;

}
//...
void update_model_neurons(double update_T)
{
//...
G_ABLPsyn_now=get_ABLPsyn_G(update_T);
V_ABLPsyn_inf=G_ABLPsyn_now*E_ABLPsyn;
//...
}1140

Appendix 3 Figure 1. Graded synapse model. (a) Demonstration of the effect of the graded synapse

model used in case study 1 (Figure 1, Figure 2). On the left, the membrane potential excursion of a

pre-synaptic neuron is modeled by a squared sinusoidal function of time with varying amplitudes from

5mV to 20mV. The plot on the right shows the post-synaptic membrane potential of a cell receiving

graded synaptic input from the pre-synaptic cell via the graded synapse model from case study 1 (slow

cholinergic synapse, cf. Golowasch et al., 1999). The post-synaptic cell is modeled here as a simple

leaky integrator with a single synaptic input current. (b) Code excerpt showing the Brian 2 definition of

the graded synapse model used in (a), taken from the code used in case study 1 (Figure 2). (c) Code

excerpt defining a graded synapse model in C++ as part of “The Pyloric Network Model Simulator“

(http://www.biology.emory.edu/research/Prinz/database-sensors/, Günay and Prinz, 2010). The

complete code is 3,510 lines.

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

11511152

34 of 41

http://www.biology.emory.edu/research/Prinz/database-sensors/

Manuscript submitted to eLife

(d) NeuroML2:
<gradedSynapse id="gs" conductance="5pS" delta="5mV" Vth="-55mV"
k="0.025per_ms" erev="0mV"/>

LEMS:
<ComponentType name="gradedSynapse" extends="baseGradedSynapse">

<Property name="weight" dimension="none" defaultValue="1"/>
<Parameter name="conductance" dimension="conductance"/>
<Parameter name="delta" dimension="voltage">
<Parameter name="k" dimension="per_time">
<Parameter name="Vth" dimension="voltage">
<Parameter name="erev" dimension="voltage">
<Exposure name="i" dimension="current"/>
<Exposure name="inf" dimension="none"/>
<Exposure name="tau" dimension="time"/>
<Requirement name="v" dimension="voltage"/>
<InstanceRequirement name="peer" type="baseGradedSynapse"/>
<Dynamics>

<StateVariable name="s" dimension="none"/>
<DerivedVariable name="vpeer" dimension="voltage" select="peer/v"/>
<DerivedVariable name="inf" dimension="none"

value="1/(1 + exp((Vth - vpeer)/delta))" exposure="inf"/>
<DerivedVariable name="tau" dimension="time"

value="(1-inf)/k" exposure="tau"/>
<DerivedVariable name="i" exposure="i"

value="weight * conductance * s * (erev-v)"/>
<TimeDerivative variable="s" value="s_rate" />

</Dynamics>
</ComponentType>

(e) NEURON (NMODL):
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
NEURON {

POINT_PROCESS int1_lgsyn
POINTER vpre
RANGE gmax, g, e, i
NONSPECIFIC_CURRENT i

}
UNITS {

(nA) = (nanoamp)
(mV) = (millivolt)
(umho) = (micromho)

}
PARAMETER {

gmax=0 (umho)
e=0 (mV)
v (mV)

}
STATE { synon synoff}
ASSIGNED {

i (nA)
g (umho)
vpre (mV)

}

BREAKPOINT {
SOLVE syn METHOD sparse
g = gmax *synon
i = g*(v - e)

}
KINETIC syn {

~ synoff <-> synon (syninf(vpre)/tausyn(vpre),
(1-syninf(vpre))/tausyn(vpre))

}
INITIAL {

synon = 0.0
synoff = 1.0

}
FUNCTION syninf(v){

syninf = 1/(1+exp(-0.5*(v+49)))
}
FUNCTION tausyn(v){

tausyn = 2+98/(1+exp(-0.5*(v+49)))
}

1153

Appendix 3 Figure 2. Graded synapse model (cont.). (d) Definition of a graded synapse model in

NeuroML2/LEMS. The graded synapse model as described in Prinz et al. (2004) has been added as a

“core type” to the (not yet finalized) NeuroML2 standard and can therefore be accessed under the name

gradedSynapse (top). It is fully defined via the LEMS definition partially reproduced here. (e) A definition
of a graded synapse in the stomatogastric system, written in the NMODL language for the NEURON

simulator. This model has been implemented in Nadim et al. (1998), see

https://senselab.med.yale.edu/ModelDB/showmodel.cshtml?model=3511.

1154

1155

1156

1157

1158

1159

11601161

35 of 41

https://senselab.med.yale.edu/ModelDB/showmodel.cshtml?model=3511

Manuscript submitted to eLife

Appendix 41162

Additional Brian examples1163

Multi-compartmental models1164

(a)

0 100 200 300 400
time (ms)

80

60

40

20

0

20

v
(m

V)

100 m

(b)

1 # Constants
2 El = -76.5*mV; E_Na = 50*mV; E_K = -100*mV
3 # ...
4 eqs = Equations('''
5 Im = gl*(El-v) - I_Na - I_K - I_T: amp/meter**2
6 I_inj : amp (point current)
7

8 # HH-type currents for spike initiation
9 g_Na : siemens/meter**2

10 I_Na = g_Na * m**3 * h * (v-E_Na) : amp/meter**2
11 v2 = v - VT : volt # shifted membrane potential (Traub convention)
12 dm/dt = (0.32*(mV**-1)*(13.*mV-v2)/
13 (exp((13.*mV-v2)/(4.*mV))-1.)*(1-m)-0.28*(mV**-1)*(v2-40.*mV)/
14 (exp((v2-40.*mV)/(5.*mV))-1.)*m) / ms * tadj_HH: 1
15 # ...
16 ''')
17 # Load morphology from SWC file
18 morpho = Morphology.from_file('tc200.CNG.swc')
19 neuron = SpatialNeuron(morpho, eqs, Cm=0.88*uF/cm**2, Ri=173*ohm*cm,
20 method='exponential_euler')
21 # Only the soma has Na/K channels
22 neuron.main.g_Na = 100*msiemens/cm**2
23 neuron.main.g_K = 100*msiemens/cm**2
24 neuron.P_Ca = 1.7e-5*cm/second
25 # Distal dendrites
26 neuron.P_Ca['(distance + length/2) > 11*um'] = 8.5e-5*cm/second
27 neuron.v = -74*mV
28 neuron.m_T = 'm_T_inf'
29 neuron.h_T = 'h_T_inf'
30 mon = StateMonitor(neuron, ['v'], record=morpho[0]) # Record at soma

1165

36 of 41

Manuscript submitted to eLife

Appendix 4 Figure 1. A multi-compartment model of a thalamic relay cell. (a) Simulation of a thamalic

relay cell with increased T-current in distal dendrites (partially reproducing Figure 9C from Destexhe

et al., 1998). The plot shows the somatic membrane potential for a current injection of 75 pA during the

period marked by the black line. The model consists of a total of 1291 compartments and is based on

the morphology available on NeuroMorpho.Org (Ascoli et al., 2007) under the ID NMO_00881, displayed
on the right. This morphology is a reconstruction of a cell in the rat’s ventrobasal complex, originally

described in Huguenard and Prince (1992). (b) Selected lines from the simulation code implementing

the model shown in (a), focussing on the differences to single-compartmental models (as shown in case

studies 1–4).

1166

1167

1168

1169

1170

1171

1172

1173

11741175

37 of 41

http://neuromorpho.org/

Manuscript submitted to eLife

Parameter exploration1176

(a)

10.0 39.8 69.9 100.0
gNa (mS/cm²)

0.0

6.6

13.3

20.0

I (
pA

)
Brian2GeNN (GPU)
2.4s

Brian 2 (12 threads)
11.8s

Brian 2 (single thread)
109.8s

Simulation time0 2 4 6 8 10 12 14 16 18
number of spikes

(b)
1 from brian2 import *
2 import brian2genn
3 set_device('genn')
4 # HH model with injected current
5 area = 20000*umetre**2; Cm = (1*ufarad*cm**-2) * area;
6 gl = (5e-5*siemens*cm**-2) * area; El = -60*mV; EK = -90*mV; ENa = 50*mV;
7 g_kd = (30*msiemens*cm**-2) * area; VT = -63*mV
8 eqs = Equations('''
9 dv/dt = (gl*(El-v)- g_na*(m*m*m)*h*(v-ENa)- g_kd*(n*n*n*n)*(v-EK) + I)/Cm : volt

10 dm/dt = alpha_m*(1-m)-beta_m*m : 1
11 dn/dt = alpha_n*(1-n)-beta_n*n : 1
12 dh/dt = alpha_h*(1-h)-beta_h*h : 1
13 alpha_m = 0.32*(mV**-1)*(13*mV-v+VT)/ (exp((13*mV-v+VT)/(4*mV))-1.)/ms : Hz
14 beta_m = 0.28*(mV**-1)*(v-VT-40*mV)/ (exp((v-VT-40*mV)/(5*mV))-1)/ms : Hz
15 alpha_h = 0.128*exp((17*mV-v+VT)/(18*mV))/ms : Hz
16 beta_h = 4./(1+exp((40*mV-v+VT)/(5*mV)))/ms : Hz
17 alpha_n = 0.032*(mV**-1)*(15*mV-v+VT)/ (exp((15*mV-v+VT)/(5*mV))-1.)/ms : Hz
18 beta_n = .5*exp((10*mV-v+VT)/(40*mV))/ms : Hz
19 I : amp (constant)
20 g_na : siemens (constant)
21 ''')
22 # Explore 300 * 300 values
23 g_na_values, I_values = np.linspace(10, 100, num=300), np.linspace(0, 20, num=300)
24 neuron = NeuronGroup(len(g_na_values)*len(I_values), eqs, method='exponential_euler',
25 threshold='v>-20*mV', refractory='v>-20*mV')
26 neuron.v = El
27 spike_mon = SpikeMonitor(neuron)
28 all_g_na_values, all_I_values = np.meshgrid(g_na_values, I_values)
29 all_g_na_values, all_I_values = all_g_na_values.flat[:], all_I_values.flat[:]
30 neuron.g_na, neuron.I = all_g_na_values*msiemens*cm**-2 * area, all_I_values*pA
31

32 run(1*second)1177

Appendix 4 Figure 2. Parameter exploration over two parameters. (a) In a single-compartment neuron

model of the Hodgkin-Huxley type (following Traub and Miles, 1991), we record the number of spikes

over 1 s while varying the strength of a constant input current I , and the density of the sodium
conductance gNa for a total of 300 × 300 values. The bars on the right show the simulation time on the
same machine used for Figure 8 when using Brian 2’s C++ standalone mode with a single thread (top),

with 12 threads (middle), or when simulating it on a NVIDIA GeForce RTX 2080 Ti graphics card via the

Brian2GeNN (Stimberg et al., 2018) interface to the GeNN (Yavuz et al., 2016) simulator (bottom). (b)

Code for the simulation shown in (a), here configured to run on the GPU via the Brian2GeNN interface

(l.2–3).

1178

1179

1180

1181

1182

1183

1184

1185

11861187

38 of 41

Manuscript submitted to eLife

Appendix 51188

Comparison of Brian 1 and 21189

Brian 2 was rewritten from scratch, however it was designed to match the syntax of Brian 1

as closely as possible, breaking compatibility only when essential. Upgrading scripts from

Brian 1 to Brian 2 is therefore usually straightforward. A detailed guide is available in the

online documentation at https://brian2.readthedocs.io/en/stable/introduction/brian1_to_2/

index.html.

1190

1191

1192

1193

1194

New features1195

Code generation. The major change from Brian 1 to Brian 2 is that all simulation objects

are now based around code generation with behaviour determined by user-specified

strings in standard mathematical notation. From these strings, C++ code is generated,

compiled and run automatically. Brian 2 can be used in runtime mode (similar to Brian

1 but with individual objects accelerated using code generation), or standalone mode

(in which a complete C++ source tree is generated which can be used independently

of Brian and Python). Third party packages can extend this support to generate code

for different devices, such as GPUs (e.g. Stimberg et al. 2018). New features have

been added to make it easier to write code that can make use of and extend this

code generation system, including extending functions by providing their definitions

in a target language, and the run_regularly() method that covers much of what
was previously done with the (still existing) @network_operation but allowing for code
generation.

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

Equations. Brian always allowed users to write equations and differential equations in

standard mathematical notation. Stochastic differential equations are now handled

in a general way. In Brian 1, only additive noise was allowed and integrated with an

Euler scheme. Brian 2 additionally supports multiplicative noise with the Heun and

Milstein integration schemes. Numerical integration schemes can be added by the

user using a general syntax. Variable time step integration using the GNU Scientific

Library was added. Flags can now be added to equations to modify their behaviour

(e.g. deactivating specific equations while the neuron is refractory, declaring values to

be constant over a time step or run to enable optimisations).

1209

1210

1211

1212

1213

1214

1215

1216

1217

Neurons. In addition to the new equations features above, the threshold, reset and refrac-

toriness properties of neurons have now been greatly expanded. In Brian 1, these were

handled by custom Python classes and could not easily be combined in complex ways.

In Brian 2, each is defined by a string written in standard mathematical notation, deter-

mining a condition to evaluate (for threshold or refractoriness) or series of operations

to be executed (for reset). Whether or not a neuron is refractory is stored in the (user

accessible) not_refractory variable that is used alongside the unless refractory flag
of the differential equations to switch off dynamics for user selected variables of re-

fractory neurons. This structure allows for much greater flexibility and can be used

with code generation.

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

Multi-compartmental modelling. Brian 1 had very basic support for modelling of neurons

with a small number of compartments. Brian 2 adds support for detailed morphologies

and specific integration schemes, see Appendix 4.

1228

1229

1230

Synapses. In the first release of Brian, synaptic connectivity was defined by the Connection
class, which only allowed a single weight variable which was added to a target neuron

variable when a pre-synaptic neuron fired. Later, a more general Synapses class was
added which greatly expanded the flexibility, but was inefficient due to the lack of

39 of 41

https://brian2.readthedocs.io/en/stable/introduction/brian1_to_2/index.html
https://brian2.readthedocs.io/en/stable/introduction/brian1_to_2/index.html

Manuscript submitted to eLife

comprehensive support for code generation in Brian 1. This Synapses class is now
the only mechanism in Brian 2, generalises the version from Brian 1 and adds code

generation support. Synapses allows for a user-specified set of differential equations
and parameters (exactly the same as for neurons) along with a specification of what

operations should be calculated on the event of a pre- or post-synaptic spike. Multiple

pathways with different delays are supported. Synapses can modify pre- or post-

synaptic neurons in a discrete or continuous manner (to allow for more complex

synapse models or rate-based models). Synapses can also target other synapses

(for models of astrocytes for example, Stimberg et al. 2019c). Multiple synapses per

neuron pair are now supported. Brian 1’s Connection supported defining connectivity
by an explicit array, or by specifying full, random, or one-to-one connectivity. Brian

2’s Synapses generalises these with string-based arguments, and adds support for
conditional connectivity (a string based expression determining which pairs to connect)

and a generator-based syntax that allows you to write code similar to a for loop but

that gets converted into efficient low-level code.

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

Events. In Brian 1, there was only one type of event. A neuron created a spike event if

a variable crossed a threshold, and this spike event triggered a reset on the source

neuron, as well as synaptic activity. In Brian 2, these events remain but the user can

also specify arbitrary events and triggered operations.

1250

1251

1252

1253

Monitors. Brian 1 had a large collection of monitors to record different types of activity.

These have been replaced by just three generalised versions that record discrete,

continuous or population activity.

1254

1255

1256

Store/restore. Brian 2 has a new store() and restore()mechanism that saves and loads
the entire simulation state.

1257

1258

String-based indexing and evaluation. Brian 2 allows variables to be indexed by strings

as well as numerical indices. For example, writing G.z['x>0'] = 'sin(y)' would set
the value of variable z to sin(y) (where y can be a single value or neuron variable), but
only for those neurons where the variable x > 0.

1259

1260

1261

1262

Units. In Brian 1, only scalar values could have physical dimensions. Now arrays can also

have units. In addition, consistency of dimensions is now used everywhere.

1263

1264

Safety. A number of changes were made to minimise the chance that the user would write

code that behaved differently from what was expected. This includes raising an error

or warning whenever there is any ambiguity.

1265

1266

1267

Python 3. Brian 1 was written only for Python 2. Brian 2 is available for Python 2 and 3.1268

Continuous integration. Brian 2 has a large test suite that is automatically run on multiple

versions of Python, operating systems (Linux, Max, Windows), and architectures (32/64

bit). Installation has been improved to make it easier to install, and to ensure that C++

compiler tools are installed to make sure that the most high performance generated

code can be used.

1269

1270

1271

1272

1273

Removed or replaced features1274

Packages. The aim of Brian 2 was to have a simpler, more flexible core package, and

allow separate packages to provide extra functionality. The brian.tools package
which provided some general purpose tools was therefore removed. The brian.hears
package has been updated to brian2hears provided separately. An updated and
generalised version of the brian.modelfitting (Rossant et al., 2010) package is in
progress.

1275

1276

1277

1278

1279

1280

Library. Brian 1 featured a “library” of models that could be used instead of writing equa-

tions explicitly. In line with the design philosophy of Brian 2 described in this paper,

this feature was removed. All the equations are listed in the documentation and so

40 of 41

Manuscript submitted to eLife

Brian 1 models using these features can easily be updated.

1281

1282

1283

1284

STDP. Brian 1 had specific classes for STDP models. These are now obsolete as the Synapses
class in Brian 2 covers everything they could do and more. Examples are given in the

documentation of how to update code.

1285

1286

1287

Connection class. The Connection class of Brian 1 has been removed in favour of the new
Synapses class (see above).

1288

1289

41 of 41

Manuscript submitted to eLife

Manuscript submitted to eLife

1 from brian2 import *
2

3 defaultclock.dt = 0.01*ms
4 E_L = -68*mV; E_Na = 20*mV; E_K = -80*mV; E_Ca = 120*mV; E_proc = -10*mV
5 C_s = 0.2*nF; C_a = 0.02*nF; g_E = 10*nS; g_La = 7.5*nS; g_Na = 300*nS;
6 g_Kd = 4*uS; G_Ca = 0.2*uS; G_K = 16*uS; tau_h_Ca = 150*ms; tau_m_A = 0.1*ms;
7 tau_h_A = 50*ms; tau_m_proc = 6*ms; tau_m_Na = 0.025*ms; tau_z = 5*second
8

9 eqs = '''# somatic compartment
10 dV_s/dt = (-I_syn - I_L - I_Ca - I_K - I_A - I_proc - g_E*(V_s - V_a))/C_s : volt
11 I_L = g_Ls*(V_s - E_L) : amp
12 I_K = g_K*m_K**4*(V_s - E_K) : amp
13 I_A = g_A*m_A**3*h_A*(V_s - E_K) : amp
14 I_proc = g_proc*m_proc*(V_s - E_proc) : amp
15 I_syn = I_fast + I_slow: amp
16 I_fast : amp
17 I_slow : amp
18 I_Ca = g_Ca*m_Ca**3*h_Ca*(V_s - E_Ca) : amp
19 dm_Ca/dt = (m_Ca_inf - m_Ca)/tau_m_Ca : 1
20 m_Ca_inf = 1/(1 + exp(0.205/mV*(-61.2*mV - V_s))): 1
21 tau_m_Ca = 30*ms -5*ms/(1 + exp(0.2/mV*(-65*mV - V_s))) : second
22 dh_Ca/dt = (h_Ca_inf - h_Ca)/tau_h_Ca : 1
23 h_Ca_inf = 1/(1 + exp(-0.15/mV*(-75*mV - V_s))) : 1
24 dm_K/dt = (m_K_inf - m_K)/tau_m_K : 1
25 m_K_inf = 1/(1 + exp(0.1/mV*(-35*mV - V_s))) : 1
26 tau_m_K = 2*ms + 55*ms/(1 + exp(-0.125/mV*(-54*mV - V_s))) : second
27 dm_A/dt = (m_A_inf - m_A)/tau_m_A : 1
28 m_A_inf = 1/(1 + exp(0.2/mV*(-60*mV - V_s))) : 1
29 dh_A/dt = (h_A_inf - h_A)/tau_h_A : 1
30 h_A_inf = 1/(1 + exp(-0.18/mV*(-68*mV - V_s))) : 1
31 dm_proc/dt = (m_proc_inf - m_proc)/tau_m_proc : 1
32 m_proc_inf = 1/(1 + exp(0.2/mV*(-55*mV - V_s))) : 1
33 # axonal compartment
34 dV_a/dt = (-g_La*(V_a - E_L) - g_Na*m_Na**3*h_Na*(V_a - E_Na)
35 -g_Kd*m_Kd**4*(V_a - E_K) - g_E*(V_a - V_s))/C_a : volt
36 dm_Na/dt = (m_Na_inf - m_Na)/tau_m_Na : 1
37 m_Na_inf = 1/(1 + exp(0.1/mV*(-42.5*mV - V_a))) : 1
38 dh_Na/dt = (h_Na_inf - h_Na)/tau_h_Na : 1
39 h_Na_inf = 1/(1 + exp(-0.13/mV*(-50*mV - V_a))) : 1
40 tau_h_Na = 10*ms/(1 + exp(0.12/mV*(-77*mV - V_a))) : second
41 dm_Kd/dt = (m_Kd_inf - m_Kd)/tau_m_Kd : 1
42 m_Kd_inf = 1/(1 + exp(0.2/mV*(-41*mV - V_a))) : 1
43 tau_m_Kd = 12.2*ms + 10.5*ms/(1 + exp(-0.05/mV*(58*mV - V_a))) : second
44 # class-specific fixed maximal conductances
45 g_Ls : siemens (constant)
46 g_A : siemens (constant)
47 g_proc : siemens (constant)
48 # Adaptive conductances
49 g_Ca = G_Ca/2*(1 + tanh(z)) : siemens
50 g_K = G_K/2*(1 - tanh(z)) : siemens
51 I_diff = (I_target + I_Ca) : amp
52 dz/dt = tanh(I_diff/nA)/tau_z : 1
53 I_target : amp (constant)
54 # Neuron class
55 label : integer (constant)'''
56 circuit = NeuronGroup(3, eqs, method='rk2',
57 threshold='m_Na > 0.5', refractory='m_Na > 0.5')
58 ABPD, LP, PY = 0, 1, 2
59 # class-specific constants
60 circuit.label = [ABPD, LP, PY]
61 circuit.I_target = [0.4, 0.3, 0.5]*nA; circuit.g_Ls = [30, 25, 15]*nS
62 circuit.g_A = [450, 100, 250]*nS; circuit.g_proc = [6, 8, 0]*nS
63 # Initial conditions
64 circuit.V_s = E_L; circuit.V_a = E_L
65 circuit.m_Ca = 'm_Ca_inf'; circuit.h_Ca = 'h_Ca_inf'; circuit.m_K = 'm_K_inf';
66 circuit.m_A = 'm_A_inf'; circuit.h_A = 'h_A_inf'; circuit.m_proc = 'm_proc_inf'
67 circuit.m_Na = 'm_Na_inf'; circuit.h_Na = 'h_Na_inf'; circuit.m_Kd = 'm_Kd_inf'

Figure 2–Figure supplement 1. Simulation code for the more biologically detailed model of the

circuit shown in Figure 1a (based on Golowasch et al., 1999). The code for the synaptic model and

connections is identical to the code shown in Figure 2, except for acting on Vs instead of v in the
target cell.

1290

	Introduction
	Methods
	Design and Implementation
	Mathematical level
	Computational experiment level
	Implementation level

	Discussion
	Comparison to other approaches
	Performance
	Limitations of Brian

	Development and availability

	Acknowledgements
	Design details
	Mathematical level
	Physical units
	Model dynamics
	Initialisation
	Synaptic connections

	Computational experiment level
	Simulation flow
	Model component scheduling
	Name resolution

	Implementation level
	Code generation
	Code optimisation
	Code execution: runtime mode
	Code execution: standalone mode

	Simulation scheduling
	Model definitions in other simulation software
	Additional Brian examples
	Multi-compartmental models
	Parameter exploration

	Comparison of Brian 1 and 2
	New features
	Removed or replaced features

