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Abstract During development, many mutations cause increased variation in phenotypic

outcomes, a phenomenon termed decanalization. Phenotypic discordance is often observed in the

absence of genetic and environmental variations, but the mechanisms underlying such inter-

individual phenotypic discordance remain elusive. Here, using the anterior-posterior (AP) patterning

of the Drosophila embryo, we identified embryonic geometry as a key factor predetermining

patterning outcomes under decanalizing mutations. With the wild-type AP patterning network, we

found that AP patterning is robust to variations in embryonic geometry; segmentation gene

expression remains reproducible even when the embryo aspect ratio is artificially reduced by more

than twofold. In contrast, embryonic geometry is highly predictive of individual patterning defects

under decanalized conditions of either increased bicoid (bcd) dosage or bcd knockout. We showed

that the phenotypic discordance can be traced back to variations in the gap gene expression,

which is rendered sensitive to the geometry of the embryo under mutations.

Introduction
The phenomenon of canalization describes the constancy in developmental outcomes between dif-

ferent individuals within a wild-type species growing in their native environments (Flatt, 2005;

Hallgrimsson et al., 2019; Waddington, 1942). To better understand how canalized a developmen-

tal process is, we need to quantitatively measure the molecular profiles of the developmental regula-

tory genes in multi-cellular organisms. In Drosophila, the highly reproducible body patterning in

adult flies originates from both the reproducible setup of the instructive morphogen gradients and

the precise downstream transcriptional readouts early in embryogenesis (Bollenbach et al., 2008;

Gregor et al., 2007a; Petkova et al., 2014). In particular, the inter-individual variation of the posi-

tional information conferred by gene expression can be less than the width of a single cell

(Dubuis et al., 2013; Gregor et al., 2007a); that is these processes are highly canalized. Given the

ubiquity of canalization in nature, such highly reproducible developmental processes are likely not

exclusive to insect development.

The developmental canalization that we see in contemporary species is the product of evolution,

either as the consequence of stabilizing selection (Gibson and Wagner, 2000) or the manifestation

of the intrinsic properties of the underlying complex gene regulatory networks (Siegal and Berg-

man, 2002). Canalization can break down in individuals subjected to aberrant genetic mutations or

extreme environmental conditions (Imasheva et al., 1997; Rutherford and Lindquist, 1998). Such

individuals in decanalized conditions become sensitive to variations in their genetic background and

Huang et al. eLife 2020;9:e47380. DOI: https://doi.org/10.7554/eLife.47380 1 of 21

RESEARCH ARTICLE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.47380
https://creativecommons.org/
https://creativecommons.org/
http://elifesciences.org/
http://elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


external environments, which are otherwise neutral to developmental outcomes. This leads to signifi-

cantly increased inter-individual variation in phenotypic outcomes.

It is important to characterize the sources of variation in order to understand what canalization is

actually buffering against. Interestingly, significant phenotypic variation remains in laboratory animals

with isogenic genomes, exposed to homogeneous environments (Gärtner, 1990). This indicates that

under decanalized conditions, other components besides genetic and environmental variation may

also cause phenotypic discordance. Previous work has proposed that stochastic expression of redun-

dant genes predicts the developmental outcome of the mutant individuals (Burga et al., 2011).

However, in many other cases, it remains elusive as to why mutation increases inter-individual pheno-

typic variation and what alternative components underlie such variation (Janssens et al., 2013;

Surkova et al., 2013).

To identify potential sources of variation that govern phenotypic discordance, we utilized the

highly canalized process of early Drosophila embryonic AP patterning. We proposed that the inter-

individual variation of the embryonic geometry is one of the factors that predetermine individual pat-

terning outcomes under decanalizing mutations. We found that the patterning system in genetically

intact embryos has a striking capacity to buffer against variations in embryonic geometry. When we

artificially reduced the aspect ratio of the embryos by more than twofold, the relative boundary posi-

tions of segmentation genes showed only a minor shift compared to that of the wild type. The pres-

ervation of the boundary positions can be, at least partially, attributed to changes in the Bcd

gradient profile due to the rounder embryonic shape in the shorter embryos. Importantly, the inter-

individual variations of boundary positions remained comparable to that of the wild type. In contrast,

when we introduced decanalizing mutations such as increased maternal bcd dosage or bcd knock-

out, the embryonic geometry becomes predictive of patterning outcomes of individuals. In both sce-

narios, the inter-individual phenotypic discordance can be traced back to variations in gap gene

expression patterns. This suggests that under decanalized conditions particular gene interactions are

preferentially affected by geometric constraints. Taken together, our study reveals embryo geome-

try, or more generally the physical domain in which patterning occurs, is a significant source of varia-

tion that can account for phenotypic discordance under decanalized conditions.

Results

Embryos with dramatically reduced embryonic length still proceed with
normal development
Scaling is one of the most astonishing features of embryonic patterning in dipteran insects. The

expression boundaries of the early patterning genes reside at conserved relative positions among

closely related dipteran species, although they differ dramatically in egg size (Gregor et al., 2005).

Such inter-species scaling can be attributed to the Bcd gradient of a conserved characteristic length

(Gregor et al., 2008). Within the Drosophila species, individual embryos of different size also exhibit

scaled pattern as a consequence of adapted Bcd production and degradation rate (Cheung et al.,

2011; Cheung et al., 2014). We propose here that another macroscopic variable that the patterning

system needs to adapt to in order to ensure scaling is the geometry, or shape of the egg. Given a

defined embryonic volume, the embryos can vary significantly in their aspect ratio (AR = embryonic

length/embryonic width, Figure 1A). Since Bcd molecules diffuse mainly at the cortical region of the

embryo (Gregor et al., 2007b), varying embryonic geometry affects the effective diffusion area, and

thus the length and time scales of the morphogen gradient formation (Grimm et al., 2010). There-

fore, we first examined how altering embryonic geometry affects embryonic patterning.

The geometry of each embryo is predetermined during oogenesis when the follicle cells sur-

rounding the egg chamber transform the developing egg from a sphere to an ellipse (Haigo and

Bilder, 2011; He et al., 2010b). This process is mediated by the planar cell polarity of the follicle

cells and the elliptical shape of the embryos remains unchanged throughout embryogenesis. Here,

we used maternal ShRNA to knockdown one of the planar cell polarity core components, atypical

cadherin Fat2 specifically in the follicle cells (Horne-Badovinac et al., 2012), and we henceforth refer

to these as fat2RNAi embryos. As Fat2 expression is only inhibited within the somatic cells of the

egg chamber using traffic jam (tj) >Gal4 driver, the fertilized eggs produced by this perturbation

remain genetically intact. This reduces the embryonic length from 510 ± 17 (s.d.) mm in wild type to

Huang et al. eLife 2020;9:e47380. DOI: https://doi.org/10.7554/eLife.47380 2 of 21

Research article Developmental Biology

https://doi.org/10.7554/eLife.47380


300 350 400 450 500 600550
embryonic length (µm)

0

5

10

15

20

25

30

fr
e
q
u
e
n
c
y
 (

%
)

WT

fat2RNAi

A

30

40

20

10

0

fr
e
q
u
e
n
c
y
 (

%
)

B

WT

fat2RNAi

170180190200210220230240
embryonic width (µm)

300 350 400 450 500 600550
embryonic length (µm)

1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2

a
s
p
e
c
t 
ra

ti
o

WT
fat2RNAi

C

D

300 350 400 450 500 600550
embryonic length (µm)

55

65
60

70
75
80
85

95
90

n
u
c
le

i 
in

 A
P

 a
x
is

fat2RNAi
WT

E

length

w
id

th

fa
t2
R
N
A
i

En::GFP

F

c
tr

l
fa
t2
R
N
A
i

EGFP::Bcd

0 100 200 300 400 600500
Embryonic length (µm)

G

0

6

5

4

3

2

1

ra
w

 n
u
c
le

a
r 

fl
u
o
re

s
c
e
n
t 
in

te
n
s
it
y x103

0 0.2 0.4 0.6 0.8 1
x/L

300

350

400

450

550

500

600Embryonic 

length (µm)

0

6

5

4

3

2

1

ra
w

 n
u
c
le

a
r 

fl
u
o
re

s
c
e
n
t 
in

te
n
s
it
y x103

0

1

N
o
rm

a
liz

e
d
 B

c
d
 n

u
c
le

a
r 

fl
u
o
re

s
c
e
n
t 
in

te
n
s
it
y

0 0.2 0.4 0.6 0.8 1

x/L

H

0.4 0.60.5
0.1

EL > 450 µm

I

ctrl exp
fat2RNAi exp
ctrl sim
fat2RNAi sim

0

2

1

Embryonic length (µm)

Nuclear cycle 4
WT

J
Nuclear cycle 11

K

N
o
rm

a
liz

e
d
 f
lu

o
re

s
c
e
n
t 
in

te
n
s
it
y

2

1

0 100

Nuclear cycle 11

200

Wild type
fat2RNAi

1

N
o
rm

a
liz

e
d
 B

c
d
 n

u
c
le

a
r 

fl
u
o
re

s
c
e
n
t 
in

te
n
s
it
y

0.3

0.5

fat2RNAi

0D
if
fe

re
n
c
e

0.0

0.2

x/L
0.2 0.4 0.6 0.8 1

0.4 Experiment

Theory

Figure 1. The Bcd gradient in embryos with differing geometry is consistent with the SDD model. (A) Distribution

of embryonic length in wild type (n = 239) and fat2RNAi (n = 364) embryos. (B) Distribution of embryonic width in

wild type (n = 239) and fat2RNAi (n = 364) embryos. (C) Aspect ratio (EL/EW) against embryonic length for each

embryo. Black dots denote expected aspect ratio if embryonic volume is conserved (assuming ellipsoidal

geometry). (D) Number of nuclei along the AP axis plotted against embryonic length in wild type and fat2RNAi

embryos. Line indicates linear regression of all data. (E) En expression in fat2RNAi embryos showing defective

dorsal closure (left) or normal morphogenesis (right). Arrows indicate locations of defects. Green dots indicate En

stripes. (F) Midsagittal plane of ctrl (top) and fat2RNAi (bottom) embryos expressing eGFP::Bcd in mid n.c. 14. (G)

eGFP::Bcd profiles of both ctrl and fat2RNAi embryos plotted as a function of absolute distance from the anterior

pole (left) or scaled AP position (right). Each dot represents the average concentration in a single nucleus.

Colormap indicates the absolute AP length of each individual. (H) Mean and standard deviation of nuclear

intensity within each 2% EL were computed for group of embryos longer (red, n = 27) and shorter (blue, n = 17)

than 450 mm. Inset is close-up of profile near embryo midpoint to show the intersection of the two curves. (I)

Representative fluorescent in situ hybridization (FISH) against bcd mRNA in wild type (top) and fat2RNAi (bottom)

in n.c. 11 embryos. Scale bar, 50 mm. (J) Fluorescent intensity profile of FISH assay along AP axis in n.c. 4 (top) and

n.c. 11 (bottom). Normalization to measured fluorescence signal in the region 120 mm from anterior. n = 5, 2 (n.c.

4) and n = 2,2 (n.c. 11) for wild type (red) and fat2RNAi (blue) respectively. Error bars show standard deviation. (K)

Fitting of SDD model to experimentally measured Bcd gradient. All parameters, as outlined in

Materials and methods, are kept constant, with only change being embryonic geometry. See

Figure 1 continued on next page
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432 ± 40 mm in fat2RNAi embryos (Figure 1A), with some embryos as short as 320 mm. Meanwhile,

the perturbed embryos show an increased embryonic width (EW) along the dorso-ventral (DV) axis

(Figure 1B, 196 ± 5 mm in wild type and 202 ± 11 mm in fat2RNAi). Together, these geometrical var-

iations lead to only a slight reduction of ~8% in the embryonic volume (assuming an ellipsoidal

geometry) compared to wild type embryos (Figure 1C; Figure 1—figure supplement 1A–C). The

round eggs are fertilizable and continue with proper embryogenesis (Figure 1—figure supplement

1D; Video 1).

We examined the nuclear distribution in the blastoderm embryos, as nuclei are the basic units

interpreting positional information, and an altered nuclear distribution may affect patterning out-

comes. We found that nuclear number along the AP axis decreases proportionally to embryonic

length, leaving the inter-nuclear distance unchanged (Figure 1D; Figure 1—figure supplement 1E).

In other words, the number of nuclei to interpret AP positional information reduces from 85 ± 4 in

wild type to 65 ± 5 in fat2RNAi embryos.

Despite the significant changes in embryonic geometry, the fat2RNAi embryos show invariably

eleven Engrailed (En) stripes, demarcating the posterior boundary of each body segment including

three thoracic (T1 ~T3) and eight abdominal segments (A1 ~A8; Figure 1E). We noticed that fat2R-

NAi embryos shorter than 400 mm developed morphological defects in late embryogenesis, where

abnormal dorsal closure leads to mismatch between the two lateral sides of the ectoderm

(Figure 1E, arrows; Figure 1—figure supple-

ment 1D). However, such local morphological

abnormality is likely due to defective tissue mor-

phogenesis as a consequence of limited physical

space, rather than patterning errors (Video 2).

Figure 1 continued

Materials and methods for details. Lower panel shows intensity difference in experimental measurements and

predicted profiles along the AP-axis.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Effects of perturbing embryonic geometry by fat2RNAi.

Video 1. Embryogenesis of different geometry. Wide

field movies of wild type (top) and fat2RNAi (bottom)

embryos from the onset of gastrulation until hatching.

https://elifesciences.org/articles/47380#video1

Video 2. Defective morphogenesis in late embryo

development due to extreme embryonic geometry.

Confocal movies of fat2RNAi embryos expressing

en >mCD8::GFP from germband retraction to dorsal

closure stages. Two embryos in the movie represent

individuals with EL shorter (top) and longer (bottom)

than 400 mm. The dashed box indicates mismatch

between opposing ectodermal tissue during dorsal

closure. The numbers indicate the EL of each embryo.

https://elifesciences.org/articles/47380#video2
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Developmental reproducibility is preserved with a minor impact on
scaling under geometrical perturbations
Before tackling the consequences of decanalization, we next ask how the AP patterning network,

from the initial morphogen gradient formation to gap gene readout, is altered under large geomet-

ric perturbations. First, we focus on Bcd, which provides AP positional information in the early

embryo. To compare the spatial Bcd concentration profile in different embryonic geometry, we live-

imaged eGFP-Bcd fusion protein in both control and fat2RNAi backgrounds, and measured the

nuclear Bcd intensity along the AP axis at mid nuclear cycle (n.c.) 14 (Figure 1F). We found that the

absolute Bcd concentration is lower in the anterior half of the embryo in fat2RNAi individuals com-

pared to that of control (Figure 1G and H) (p<10�3, two-sided t-test comparing intensity in region

5–15% EL). Further, Bcd profiles from different individuals intersect near the mid region of the

embryo, with shorter embryos showing higher Bcd concentration in the posterior region (Figure 1G

and H) (p<10�3, two-sided t-test comparing intensity in region 65–75% EL).

The formation of the Bcd gradient depends on the amount and the spatial distribution of bcd

mRNA molecules (Little et al., 2011; Cheung et al., 2014). To examine bcd mRNA distribution

under geometrical perturbations, we performed fluorescent in situ hybridization (FISH) against bcd

mRNA in both wild type and fat2RNAi embryos (Figure 1I; Figure 1—figure supplement 1F). We

found that at all stages prior to n.c. 12, the majority of the bcd mRNA is localized within the anterior

50 mm of the embryo, regardless of the embryonic geometry (Figure 1J). Due to the difficulty in

quantifying FISH data, we note that we cannot discount possible variation in the bcd mRNA amount

between wild type and fat2RNAi embryos. However, such variations are likely small and do not sub-

stantially alter the overall distribution of bcd mRNA. These results are consistent with previous work

(Cheung et al., 2011), which suggested that embryo volume was a key determinant of bcd mRNA

levels; in the fat2RNAi embryos, volume does not substantially change. Importantly, the geometrical

alterations induced in fat2RNAi embryos does not change the bcd mRNA distribution on an absolute

scale.

Given that the bcd mRNA distribution does not appear substantially different between the wild

type and fat2RNAi embryos, what is the cause of the spatial shift in the Bcd profile? We used theo-

retical modeling to test whether the geometrical changes alone (Umulis and Othmer, 2012) are suf-

ficient to explain the altered Bcd profile. The synthesis , diffusion , degradation (SDD) model of Bcd

gradient formation provides an excellent description of the Bcd gradient (Gregor et al., 2007b;

Durrieu et al., 2018; Little et al., 2011). A one-dimensional description generally works well for

modelling the Bcd gradient (Gregor et al., 2007b; Durrieu et al., 2018). However, the full three-

dimensional geometry of the embryo can be important (Mogilner and Odde, 2011), such as in inter-

preting FRAP (Castle et al., 2011) measurements and explaining differences in the gradient

between dorsal and ventral sides of the embryo (He et al., 2010a; Hengenius et al., 2011). Here,

we perform our modeling in three-dimensions as our experimental perturbation affects the three-

dimension geometry of embryos.

Considering the Bcd concentration [Bcd], Bcd diffusion (D), Bcd degradation rate (m) and Bcd pro-

duction rate (J), the SDD model is described by

qt Bcd½ � ¼Dr2 Bcd½ ��� Bcd½ �þ Jf xð Þ

We use Bcd dynamic parameters D = 4 mm2s�1 and m = 0.0005 s�1 consistent with the most

recent estimates for Bcd dynamics (Durrieu et al., 2018). Note these parameters are based on an

one-dimensional SDD model, as such models are typically a reasonable approximation to the forma-

tion of the Bcd gradient (Little et al., 2011). f(x) is defined such that little Bcd production occurs

greater than 50 mm from the anterior pole (Materials and methods). We solve for [Bcd] on the sur-

face of an ellipsoid, as Bcd transport through the yolk appears to be limited (Gregor et al., 2007b).

For each simulation, we keep all dynamic parameters fixed and only change the embryo geometry.

In particular, we assume that the Bcd production rate is unchanged in fat2RNAi embryos. Since the

embryo volume does not markedly change, this means that the total amount of Bcd is similar in the

model for both wild-type and fat2RNAi embryos. We change the width to maintain the experimen-

tally measured aspect ratios (Figure 1C) and account for eGFP folding time (~50 min) (Liu et al.,

2013). See Materials and methods for detailed description.
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The SDD model can fit the observed Bcd gradient profiles in different embryonic geometries

without requiring any change to the Bcd dynamics or production (Figure 1K). As a consequence, we

can explain the above observations. First, the lower Bcd intensity near the anterior pole in fat2RNAi

embryos is because of dilution due to the larger DV extent in rounder embryos. If the total Bcd mol-

ecule number is similar at a particular AP position, the measured Bcd nuclear concentration (which

depends on both total protein number and the local volume) at that position is lower in fat2RNAi

embryos. Second, since the diffusion coefficient appears to remain unchanged, there is greater accu-

mulation of Bcd in the posterior region of fat2RNAi embryos as the total travel distance is reduced

in the rounder, shorter embryos, even when accounting for the higher curvature in fat2RNAi

embryos. The ability of the SDD model to explain these differences in the Bcd profile simply by

accounting for embryo geometry provides further support to the SDD model being an excellent bio-

physical description of the process of Bcd gradient formation. It is worth noting that the nuclei

respond to the local concentration of mature Bcd protein regardless of the folding state of the

tagged eGFP. Although we cannot infer the precise profile of mature Bcd from our experimentally

measured eGFP profile as the Bcd protein folding rate is unknown, our model can test the effects of

different protein folding time on the functional gradient in different geometries. From the model

shown in Figure 1K, we can infer the total Bcd concentration, where we assume Bcd folds at a much

faster rate than eGFP (Figure 1—figure supplement 1G). The predicted total Bcd concentration dis-

plays qualitatively similar behavior in varying embryonic geometries to our experiments; that is our

results are unlikely an artefact of protein folding time differences between Bcd and eGFP.

Does the change of the Bcd concentration profile in fat2RNAi embryos impact on the scaling of

downstream patterning genes? To address this question, we measured Hunchback (Hb) expression

in mid n.c. 14 using live imaging of hb >LlamaTag (Bothma et al., 2018), (Figure 2A). In control

embryos, the Hb expression boundary locates at 49.0% EL with variation of 1.3% EL, consistent with

previous reports (Houchmandzadeh et al., 2002). Comparatively, the Hb boundary shows a posteri-

zation in fat2RNAi embryos (52.9% EL). Further, we found an increased variation of 2.3% EL in the

Hb boundary position (Figure 2B). However, considering the absolute length of fat2RNAi embryos,

the variation of Hb boundary positions (~8 mm) between different individuals is still less than the

average distance between neighboring nuclei.

Using immunofluorescence, we next investigated the impact of geometrical perturbations on the

expression domains of other gap genes. In agreement with our results for Hb, the boundary posi-

tions of all four gap genes displayed slight shifts in the posterior direction in fat2RNAi embryos

(Figure 2C–F). However, the inter-individual variation remains comparable to that of the wild type

(Figure 2C–F, bottom row). We conclude that when we manipulate the embryonic geometry to an

extent beyond that naturally observed, the reproducibility of the patterning outcomes is preserved.

Therefore, the intact early embryonic patterning network is highly robust to variations in embryonic

geometry.

Embryonic length predetermines patterning outcomes in decanalized
conditions of increased bcd dosage
We have demonstrated that fat2RNAi embryos provide an excellent system for testing the role of

geometry on patterning networks. Taking advantage of the availability of genetic manipulations in

Drosophila, we now use this tool to explore the role of geometric constraints in determining pheno-

typic outcomes in decanalized conditions: first, in embryos with increased maternal bcd gene dos-

age; and second in embryos with depleted maternal bcd.

Phenotypic discordance has been observed previously as a consequence of artificially altered

maternal bcd dosage. Gradual increase of the maternal bcd gene copies leads to a larger proportion

of individuals showing defective patterning (Namba et al., 1997). We wanted to test our hypothesis

that the embryonic geometry predetermines patterning outcomes of these individuals. To efficiently

increase the Bcd gradient amplitude, we generated a tandem bcd construct, where two copies of

the bcd gene are linked by the P2A self-cleaving peptide (Figure 3A). Two transgenic fly lines with

two and four genomic insertions of this construct deposit bcd mRNA into embryos at ~3 (6x bcd)

and ~5 (10x bcd) fold wild-type amounts, respectively (Figure 3B; Figure 3—figure supplement

1A–C). As Bcd protein counts scale linearly with that of its mRNA, the corresponding amplitude of

the Bcd gradient are expected to show the same fold changes (Petkova et al., 2014), as manifested

by the posterior displacement of cephalic furrow position (Figure 3B).
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The ~5 fold bcd overexpression compromises viability to adulthood (Figure 1—figure supple-

ment 1D) and the non-hatched embryos displayed a plethora of defective patterning phenotypes

(Figure 3C; Figure 3—figure supplement 1D). Individuals with mild defects frequently displayed

missing or fused denticle belts in the fourth abdominal (A4) segment (Figure 3C–D), a positional

bias that has been reported previously (Namba et al., 1997). More severe phenotypes showed

defects in a spreading region centered about the A4 segment. Meanwhile, embryos show high rate

of mouth defects as a consequence of significantly increased local Bcd concentration in the most

anterior region (Figure 3C–D; Figure 3—figure supplement 1D). Patterning defects were rarely

seen in 3-fold bcd over-expression embryos unless fat2RNAi knockdown is further introduced into

this genetic background (Figure 3C–D; Figure 3—figure supplement 1E). A large percentage of

these individuals showed abdominal patterning defects, with A4 showing the highest defective fre-

quency (Figure 3C–D). Interestingly, a similar distribution of defective abdominal segments is also

seen in the small proportion of non-hatched fat2RNAi individuals (Figure 3C–D).

To understand if embryonic geometry predetermines the severity of phenotypic defects in indi-

viduals, we characterized the patterning outcomes using En expression in embryos with various bcd

copy number and embryonic length. Individuals with 2-fold bcd overexpression (single insertion of

tandem bcd), within the natural range of embryonic geometry, showed intact En expression. How-

ever, shorter embryos (<450 mm) frequently presented patterning defects, most commonly in the

6th En stripe (Figure 3E, top panel). Interestingly, this position corresponds to the A4 segment in

the cuticle pattern. Comparatively, patterning defects become more pervasive in 3-fold bcd over-

expression individuals when embryonic length reduced below 470 mm. The range of defective
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Figure 2. Embryonic patterning is robust to perturbation of embryonic geometry. (A) Max projection of ctrl (top) and fat2RNAi (bottom) embryos

expressing maternally loaded eGFP and hb >LlamaTag. (B) Scaled Hb boundary positions plotted against EL in two genotypes. (C–F) Comparison of
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100 mm.
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segments gradually expands from the 6th En stripe to both anterior and posterior regions with

decreasing embryonic length (Figure 3E, middle panel and 3F). Further, increasing bcd dosage 5-

fold renders patterning processes exceedingly susceptible to reduced embryonic length. Defects are

observed in comparatively shorter individuals within the natural range and recurringly the 6th En

stripe is the most frequent breaking point in the patterning (Figure 3E, bottom panel).

The A4 segment is a weak point in the gap gene network due to
repression of eve stripe five in short embryos
The defective abdominal patterning that we observe here is an intuitive result, as both the posteriza-

tion of gap gene boundaries due to increased bcd dosage and reduced embryonic length lead to

reduced number of nuclei along the AP axis in the trunk region. When the number of nuclei falls

short of the minimal requirement to fulfill all the different cell identities along the AP axis, certain

cell fates become lost. It is surprising, however, that this defect originates at and expands from the

same position in all defective embryos, the A4 segment. This positional bias is also reflected in the

segmentation gene pattern at the blastoderm stages. While the gap gene boundaries remain

roughly at the same scaled positions across different geometries (Figure 4A), the absolute distance

between neighboring gap gene expression peaks decreases in response to reduced embryonic

length (Figure 4B). This in turn changes the combinatorial inputs to activate downstream pair-rule

genes, for example even-skipped (eve). The expression peaks of Kni and Gt are brought into proxim-

ity with gradually reducing embryonic length (Figure 4B–C). As Kni and Gt confine the boundaries

of eve stripe 5 (Fujioka et al., 1999), the expression of this eve stripe is over-repressed (Figure 4C,

asterisk). This results in the loss of correct cell fate at this position, corresponding to the future A4
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Figure 3. Defects due to decanalization by Bcd over-expression are length-dependent. (A) Schematic illustration of tandem bcd construct. (B) Embryos
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The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Embryonic patterning with maternal bcd overexpression.
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segment. With further reduced embryonic length, a larger percentage of individuals fail to activate

Kni and Gt in the trunk region (Figure 4B, green crosses; Figure 4C, arrowhead), leading to defects

across a broader range.

AP patterning of bcd mutants correlates with embryonic length
We have shown that embryonic geometry predicts individual patterning outcomes under increased

bcd dosage. To understand if embryonic geometry is a general factor underlying phenotypic discor-

dance in decanalized conditions, we asked how geometrical perturbation influences phenotypic out-

puts in the absence of Bcd inputs. This question is motivated by the significant phenotypic variation

observed among embryos derived from females carrying the same bcd null allele (Frohnhöfer and

Nüsslein-Volhard, 1986; Frohnhofer and Nusslein-Volhard, 1987). For example, the individuals

derived from bcdE1 homozygous females show highly variable pattern in the perspective A1 to A5

segments, manifesting in either fusion or depletion of various number of denticle belts.

To systematically understand the inter-individual phenotypic variation among bcd mutants, we

utilized an allele generated by the CRISPR-MiMIC method (Huang et al., 2017; Venken et al.,

2011). The MiMIC transposon carrying stop codons in all three reading frames is targeted by CRISPR

to insert into the first intron of the endogenous bcd gene. Therefore, no functional Bcd protein is

produced by this knockout allele (annotated bcdKO). Moreover, the MiMIC construct contains an

eGFP marker, which facilitates further genetic manipulation, such as recombination, carried out in

this study.

The cuticular pattern of the bcdKO allele qualitatively recapitulates that of bcdE1 (Figure 5—fig-

ure supplement 1A–C). While the anterior embryonic patterning is entirely defective, the patterning

defects in posterior regions are more variable. The number of normal abdominal denticle belts in

each embryo ranges from three (A6 - A8) to seven (A2 - A8), with four intact abdominal segments

(A5 –A8) being the most frequently observed phenotype (Figure 5A). Structures indicating partially
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Figure 4. Embryonic patterning breaks down at A4 segment with bcd overexpression. (A–B) Embryonic length of

6xbcd individuals plotted against the scaled (A) or absolute (B) AP position of four gap gene boundaries (Hb, blue;

Gt, magenta; Kr, red and Kni, green). Data from every 30 mm EL interval were binned to compute mean and s.d.
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posterior boundary of individuals; green and magenta crosses overlapping the dashed line indicate individuals

with corresponding EL not expressing Kni and Gt, respectively. (C) Representative segmentation gene expression

in 6xbcd embryos with different EL. Asterisk indicates repressed Eve stripe five and arrowhead indicates failed

activation of Kni. Scale bar, 100 mm.
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differentiated abdominal segments can be observed in the anterior regions of the bcdKO embryos.

However, these structures do not recapitulate any of the wild-type denticle belts (Figure 5—figure

supplement 1B). Further, we observed and classified the variable phenotypes of the duplicated pos-

terior spiracles according to the completeness of the organ morphogenesis (Figure 5B; Figure 5—

figure supplement 1D). Interestingly, the fully developed ectopic spiracle organ (Figure 5—figure

supplement 1D (i)) is only observed in embryos showing less than six intact abdominal segments,

while most frequently observed in individuals with three intact abdominal segments (Figure 5A,
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Figure 5. bcd mutant phenotypes correlate with embryonic length. (A) Phenotypic frequency showing different number of normal abdominal segments

in bcdKO mutant individuals (n = 202). Dashed area indicates proportion of embryos showing fully developed ectopic spiracles (see Figure 5—figure

supplement 1D(i)). (B) Phenotypic frequency of different ectopic spiracle morphology as shown in Figure 5—figure supplement 1D (n = 168). (C)

Variation of gap gene boundary positions in wild type vs. bcdKO embryos. Error bars are computed by bootstrapping with data shown in Figure 5—

figure supplement 1E–H. (D) Representative cuticle patterns of fat2RNAi, bcdKO embryos within different ranges of embryonic length, from left to
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plotted against EL range of each individual. (F) En expression in wild type embryo. Green dots indicate En stripes. (G) Representative images of
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The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Characterization of bcd mutant phenotypes.

Figure supplement 2. Variations of bcd mutant phenotypes.

Figure supplement 3. Bcd mutant phenotypes correlate with embryo length.
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dashed bar area). This indicates correlation between the patterning outcomes of the abdominal

regions and the ectopic spiracles.

The wide spectrum of bcdKO phenotypes can be attributed to variations in patterning gene

expression during the blastoderm stage. By the end of the blastoderm stage, the relative boundary

positions of all gap gene expression domains show significant anterior shift compared to those in

the wild-type embryos (Figure 5—figure supplement 1E–H). Importantly, the absence of Bcd activ-

ity results in significantly increased variation in gap gene boundary positions (Figure 5C, p<0.01 for

all measured boundaries to have increased error randomly). Occasionally we detected no Krüppel

(Kr) nuclear intensity in the presumed expression region in bcdKO individuals (2 out of 15 individuals),

indicating the failure of Kr gene activation in these embryos (Figure 5—figure supplement 2A). The

anterior Gt domain shows similar inter-individual variation, with the majority of the embryos failing

to properly activate anterior Gt expression (8 out of 10 individuals). Instead only a thin stripe of

diminished cytoplasmic signal can be detected (Figure 5—figure supplement 1H, asterisk; Fig-

ure 5—figure supplement 2B). It is noteworthy that embryos derived from a single pair of bcdKO

parents raised in constant environmental conditions show equivalent phenotypic variation (Figure 5—

figure supplement 2C–D), suggesting that the inter-individual variation observed cannot be attrib-

uted to differences in either environment or genetic background.

Next, we introduced the fat2RNAi knockdown into a bcdKO background to see how embryonic

patterning is affected. The cuticle pattern of embryos derived from fat2RNAi, bcdKO females resem-

bles that of bcdKO alone, but the number of properly patterned abdominal denticle belts reduces

with decreasing embryonic length. Moreover, novel phenotypes showing only one or two abdominal

segments were observed when the embryonic length drops beyond the natural range (Figure 5D

and E). All of the fat2RNAi, bcdKO embryos showed duplicated spiracles with fully developed mor-

phology (see Figure 5—figure supplement 1D (i)), consistent with our previous result that such spi-

racles prevail in embryos with shorter AP length. We observed similar behavior in the pattern of En

expression. In contrast to invariable eleven En stripes in control embryos (Figure 5F), the number of

En stripes shows positive linear correlation with embryonic length in bcdKO embryos, both in individ-

uals with natural embryonic geometry (Figure 5—figure supplement 3; Video 3) and fat2RNAi

knockdown (Figure 5G and H).

Embryonic length dictates gap gene expression patterns in the absence
of bcd
What underlies the correlation between embryonic length and phenotypes of bcdKO embryos? We

next focus on variation in gap gene expression patterns in bcdKO embryos of varying geometry.

Figure 6A shows representative expression patterns of four gap genes in bcdKO and bcdKO, fat2R-

NAi mutants. The gene network shows qualitative differences in behavior within different ranges of

embryonic length. Without the long-range gradient of Bcd, zygotic hb transcription is activated by

the termini system mediated by the terminal gap gene, tailless (Margolis et al., 1995; Figure 6—fig-

ure supplement 1A). As a result, two Hb stripes

form near the anterior and posterior poles of the

embryo, spanning a width of ~10 and 15 nuclei,

respectively. In embryos with extremely large

aspect ratio (range 1, EL within 330–360 mm), the

two Hb expression domains are in close proxim-

ity. This inhibits the expression of Kni, which is

strongly repressed by Hb, in the central region of

the embryo (Hülskamp et al., 1990). Meanwhile,

Gt is activated by uniformly distributed maternal

Cad protein, and in turn inhibits Kr expression

(Kraut and Levine, 1991; Rivera-Pomar et al.,

1995; Figure 6A–C, range 1).

In individuals with moderately increased

embryonic length (range 2, EL within 390–420

mm), Hb stripes in the terminal regions separate

further apart, permitting Kni expression in the

middle region (Figure 6A–C, range 2). This Kni

Video 3. Engrailed expression in bcdKO mutant

individuals. Live imaging of bcdKO embryogenesis from

onset of gastrulation to the end of dorsal closure.

Embryos express H2Av::mCh (red) and en>mCD8::GFP

(green). Dots indicate En stripes and the numbers on

top of the embryos indicate the AP length of each

individual.

https://elifesciences.org/articles/47380#video3
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stripe is sandwiched by two Gt expression domains, a thin anterior stripe and a wider posterior one.

The anterior Gt stripe in bcd mutants has been observed before (Staller et al., 2015) but its regula-

tory interactions remain elusive. Potentially it is activated by the remnant anterior determinants such

as the maternal Hb, distributed in the anterior half of the embryo (Irish et al., 1989). Comparatively

shorter embryos show phenotypically higher degree of symmetry in both cuticle and gene expres-

sion patterns, conceivably due to stronger repression of maternal Hb in shorter individuals (Fig-

ure 6—figure supplement 1B–D; Figure 6—figure supplement 2).

Looking more closely at individuals within the natural range of embryonic geometry (range 3, EL

within 510–540 mm), the sufficient physical space between two Hb stripes permits the expression of

Kr, Kni and Gt, arranged in spatial order that is conserved as in wild-type embryos (Figure 6A–C,

range 3). In summary, as a consequence of gradually increasing embryonic length, a continuously

increasing variety of gap gene expression domains are activated along the AP axis, which is in turn,

translated into increased number of body segments, as manifested by the pair-rule gene expression

pattern (Figure 6—figure supplement 1E).

Discussion
Individuals of the same species often display a certain level of morphological and behavioral differ-

ences, such as in animal color patterns and human facial features (Beldade et al., 2002;

Sheehan and Nachman, 2014). This reflects inter-individual variation in genetic composition and

life-history environmental exposure (Dall et al., 2012). Such intraspecific individuality may have
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Figure 6. Phenotypic discordance can be traced back to variations in gap gene expression in bcdKO individuals. (A) Representative gap gene

expression patterns within different range of EL. Range1, 330–360 mm; range2, 390–420 mm; and range3, 510–540 mm. (B) Embryonic length of bcdKO
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of positional information transfer from maternal systems to gap gene expression in bcdKO embryos within different range of embryonic length. Scale

bar, 100 mm.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Positional information transfer in the absence of maternal bcd.

Figure supplement 2. Strong correlation between gap gene boundary positions and embryonic length in the absence of maternal bcd.
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significant ecological and social impacts on the population (Forsman and Wennersten, 2016).

Equally, these same genetic and environmental variations pose challenges to fundamental develop-

mental processes as they try to generate invariant developmental outcomes. Multiple lines of evi-

dence suggest that organisms have evolved canalization mechanisms that render developmental

processes insensitive to such sources of variation (Félix and Barkoulas, 2015; Flatt, 2005). Early

Drosophila embryonic patterning provides an excellent example of a canalized developmental pro-

cess – the boundaries of segmentation gene expression remain highly reproducible amongst individ-

uals in the face of heterozygous mutations (Lehmann and Nüsslein-Volhard, 1987;

Wieschaus et al., 1984), genetic variations (Lott et al., 2007) and temperature perturbations

(Houchmandzadeh et al., 2002; Lucchetta et al., 2005). These studies suggest that mechanisms

including epistasis, genotype-environment interactions and canalizing gene regulatory networks

(Manu et al., 2009) work together to ensure precise patterning outputs.

In this study, we have identified embryonic geometry as an additional source of variation that pat-

terning processes have evolved to buffer against. The geometry, or in other words, the aspect ratio

of each ellipsoid-shaped embryo is determined during oogenesis, and this parameter varies

by ±10% in the population of the wild-type strain OreR. The variable geometry in turn increases the

variation in embryonic length given the natural range of embryonic geometry. Previous studies have

shown that patterning outcomes are highly reproducible and remain scaled to embryonic length

(Antonetti et al., 2018; Lott et al., 2007). What roles do Bcd and the gap gene interactions have in

this scaling (Wu et al., 2015)? Combining results from fat2RNAi embryos with theoretical modeling

may reveal exciting new insights into the underlying scaling mechanisms (Bieler et al., 2011;

Jaeger et al., 2004). Correspondingly, we found that under decanalized conditions, either by

depleting maternal bcd inputs or artificially increasing the bcd dosage, the patterning process loses

its capacity to buffer embryonic length variations. Consequently, the length of an individual embryo

predetermines its patterning outcomes. The predictive power becomes stronger when we artificially

increase the variation of the embryonic geometry. The aspect ratio of the fat2RNAi embryos differs

by ±30% while the average embryonic volume is only slightly reduced by ~8%. These results further

support embryonic geometry as a major source of variation that accounts for inter-individual pheno-

typic variation under decanalized conditions.

Both embryonic volume and embryonic length are inheritable traits and therefore adaptive to arti-

ficial selection or environmental changes (Azevedo et al., 1997; Fox and Czesak, 2000; Lott et al.,

2007; Miles et al., 2011). It will be interesting to understand if the aspect ratio of the embryo shape

is also a genetically variable trait so that the population can be selected to produce progenies with a

biased geometry. If this is the case, embryonic geometry may be involved in the complex interplay

between environment, genetic components and developmental processes during the course of evo-

lution. When a population confronts selection towards a new phenotypic optimum, for example,

larger egg volume due to decreasing temperature (Azevedo et al., 1997), such directional selection

may result in decanalizing effects on the patterning processes (Miles et al., 2011; Wagner et al.,

1997). Meanwhile, the naturally variable embryonic geometry - together with other sources of varia-

tion - generates a spectrum of patterning outcomes in different individuals. As a result, a different

range of embryonic geometry will be favored and selected as they maintain the patterning outcomes

of the parental lines. Conceivably, this may be one of the reasons why eggs of closely related Dip-

teran species differ not only in size (Gregor et al., 2008; Markow et al., 2009) but also in geometry,

and such geometrical differences can also be observed in different laboratory lines carrying different

genetic background.

Our quantitative analysis of segmentation gene expression demonstrates how embryonic geome-

try affects individual patterning outcomes under two decanalizing conditions. In the case of the

maternal bcd null mutant, we have shown that the signaling centers located at both poles of the

embryo initiate the hierarchical gene expression along the AP axis in a non-scaled manner. This

explains, mechanistically, how patterning processes incorporate information of the embryonic geom-

etry to account for the final outputs. It remains unclear, however, in the case of increased bcd dos-

age, what determines the breaking point (the fourth abdominal segment) of the final pattern. One

possibility is that the susceptibility of this position reflects the strength of the regulatory interactions

between the segmentation genes (Jaeger, 2011). Systematic comparisons among different Dro-

sophila species have shown that the regulatory sequences of the segmentation genes are rapidly

evolving and thus substantially diverged (Ludwig et al., 2000). Interestingly, the spatio-temporal
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dynamics of the segmentation gene expression patterns are highly conserved between species, sug-

gesting that the co-evolution of modular transcription binding sites compensate for each other to

keep the patterning outcomes unchanged (Gregor et al., 2005; Ludwig et al., 2005; Ludwig et al.,

2000). Such an inter-species canalization phenomenon is also observed among more distally related

species within the sub-taxon Cyclorrhapha, which involved more dramatic rewiring of the regulatory

network (Crombach et al., 2016; Wotton et al., 2015). If the breaking point of patterning processes

under decanalized conditions truly depends on the system parameters of the underlying network

(Jaeger and Crombach, 2012), we expect to see different susceptible points in different network

structures. This can be tested by characterizing decanalizing phenotypes in related species.

A longstanding question in patterning is how do gene regulatory networks downstream of

morphogens incorporate information about the macroscopic geometrical parameters of each indi-

vidual to give rise to scaled patterning outputs? While our results do not provide mechanistic insight

into the scaling mechanisms of the gap gene network, they define the physical boundaries where

such scaling breaks down. The emergence of scaled expression boundaries is closely linked to

embryo geometry, and future models will hopefully more rigorously test the role of geometry in the

scaling. Further, our results directly show that the Bcd gradient shape depends on the embryo

geometry; in our case, by roughly conserving embryo volume but reducing the aspect ratio, the Bcd

gradient extends further into the posterior, resulting in a posterior shift in gap gene expression

boundaries.

In conclusion, embryonic geometry was identified as a source of variation in addition to environ-

mental and genetic factors that predetermines phenotypic outcomes in mutant conditions. We think

that embryonic or more generally, tissue geometry may play an important role in other decanalizing

conditions by affecting patterning outputs, such as other segmentation gene mutants

(Janssens et al., 2013; Surkova et al., 2013), or in vitro induction of patterning systems

(Lancaster and Knoblich, 2014; Simunovic and Brivanlou, 2017), both of which show significant

inter-individual phenotypic variations. Our work highlights that care must be taken when taking a

system out of its native environment – for example organoids – as the system boundaries affect the

operation of signaling networks. Characterizing the influence of the geometrical parameters will help

us to have a more complete understanding of decanalization, and in turn, canalizing phenomenon.

Materials and methods

Fly stocks and genetics
The bcd knockout allele (bcdKO) used in this study was generated by CRISPR-mediated insertion of a

MiMIC cassette into the first intron of the bcd gene (Huang et al., 2017; Venken et al., 2011) The

cuticle phenotype of bcdKO was compared to that of the classic bcdE1 allele (Frohnhöfer and Nüs-

slein-Volhard, 1986) To generate embryos with artificially reduced aspect ratio, we expressed RNA

interference against the fat2 gene using a maternal traffic jam (tj) >Gal4 driver (Barlan et al., 2017)

Both UAS > fat2 RNAi and tj >Gal4 were either crossed to or recombined with the bcdKO allele, so

that the females carrying all three alleles produce bcd null embryos with wide range of aspect ratio.

The tandem bcd construct was generated by replacing the eGFP sequence in the pCaSpeR4-

egfp-bcd vector (Gregor et al., 2007b) by bcd protein coding sequence. First, the vector was

digested with NheI and SphI to remove the eGFP. Next the bcd coding sequence was amplified by

PCR from the vector using primer pairs

5’-cggagtgtttggggctagcaaagatggcgcaaccgccg-3’ and
5’-gttagtagctccgcttccattgaagcagtaggcaaactgcgagtt-3’.

Further the P2A self-cleaving peptide with the GSG linker was synthesized as oligo pairs

5’-tttgcctactgcttcaatggaagcggagctactaacttcagcctgctgaagcaggctggagacgtggaggagaaccct
ggacctgcatgcatggcgcaaccgc-3’ and
5’ggcggttgcgccagcatgcaggtccagggttctcctccacgtctccagcctgcttcagcaggctgaagttagtagctccgcttc-
cattgaagcagtaggcaaa-3’.

These two fragments and the digested vector were then assembled using Gibson Assembly strat-

egy (NEB). The final construct was injected (BestGene Inc) and two insertions on 2nd (tdBcd(II)) and

3rd (tdBcd(III)) chromosome, respectively, were established and used for this study. Consequently,
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hetero- or homo-zygous tdBcd(III) females produce embryos with 4x and 6x of maternally loaded

Bcd protein, respectively (compared to 2xbcd in the wild-type); and homozygous tdBcd(II);tdBcd(III)

females generate 10xbcd embryos. Finally, females homozygous for tdBcd(III) which also carry

tj >Gal4 and UAS >fat2 RNAi generate 6xbcd embryos with reduced aspect ratio.

Other fly lines used in this study include a laboratory OreR strain raised in 25˚C (the wild-type con-

trol); en >mCD8 GFP (to visualize dynamic en expression pattern); egfp-bcd line (for quantification

of Bcd gradient profile); mat >eGFP; hb >LlamaTag (gift from Hernan Garcia’s lab); Df(3R)tllg

(BL#2599).

Measurement of embryonic geometry
To compare the geometrical parameters between OreR, bcdKO and fat2RNAi populations, embryos

were dechorionated and aligned laterally on an agar plate and imaged under a stereoscope (Nikon

SMZ18). Images were then segmented to extract the embryo contour and fitted to elliptic shapes.

The long and short axes of fitted ellipses were taken as the measurement of embryonic length and

width, respectively. The approximate embryonic volume is calculated using the measured length and

width, assuming embryos are ellipsoids in shape. For each strain, more than 200 individuals were

measured.

For confocal live imaging, embryonic length was measured as the longest distance between the

anterior and posterior poles. The immunostaining procedures result in an isotropic shrinkage of

embryonic volume. To measure the geometrical parameters of the fixed embryos, we first carried

out a linear fit between aspect ratio and embryonic length using stereoscope data. Further we mea-

sured the aspect ratio of each fixed embryo and estimate its embryonic length and width using the

same linear fit equation.

We checked our assumption of isotropic shrinkage upon fixation (Figure 1C and Figure 1—figure

supplement 1A). Comparing embryos from live imaging and fixed embryos, we did not observe sig-

nificant anisotropy in the embryo geometry (Figure 1—figure supplement 1B–C).

Immunostaining
Embryos at desired stages were dechorionated by household bleach and fixed in heptane saturated

by 37% paraformaldehyde (PFA) for 1 hr. The vitelline membrane was subsequently manually

removed. Prior to incubation with primary antibodies, embryos were blocked with 10% BSA in PBS.

Antibodies used were guinea pig anti-Hb (1:2000), rabbit anti-Gt (1:800), guinea pig anti-Kr (1:800),

guinea pig anti-Kni (1:800), guinea pig anti-Eve (1:800). Primary antibodies were detected with Alexa

Fluor-labelled secondary antibodies (1:500; LifeTech). Embryos were co-stained with Phalloidin con-

jugated with Alexa Fluor for staging purpose or visualizing cephalic furrow position. Short incubation

of Dapi dye was carried out during the last wash prior to mounting to visualize presyncytial nuclei.

Embryos were mounted in AquaMount (PolySciences, Inc) and imaged on a Zeiss LSM710 micro-

scope with a C-Apochromat 40x/1.2 NA water-immersion objective. Hb, Gt, Kr, Kni and Eve antibod-

ies were gifts from Johannes Jaeger.

Cuticle preparation
Embryos of various genotypes were collected during the blastoderm stages and allowed to develop

at 25˚C until the end of embryogenesis. The embryos were then dechorionated, fixed, devitellinized

and incubated into a mixture of Hoyer’s medium and Lactic acid in a 1:1 ratio at 65˚C between an

imaging slide and a cover slip. For an exhaustive description of the method used see

Alexandre (2008).

Measurement of bcd profile
For measurement of Bcd gradient profile, we followed the protocols detailed in Gregor et al.

(2007a). Embryos expressing eGFP-Bcd either with or without fat2RNAi were dechorionated and

mounted laterally on a confocal microscope (Zeiss LSM710). The images were acquired at the mid-

sagittal plane of embryos at early n.c. 14. Data acquired in Figure 1F–H for different individuals

(including eGFP:Bcd and eGFP:Bcd; tj >Gal4,UAS > fat2 RNAi) were co-mounted on the same glass-

bottom dish and taken with identical microscope settings. For each image, nuclear centers along the

dorsal edge of the embryo were manually selected and the corresponding circular area was used to
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compute the average fluorescent intensity. Nuclear intensity was then plotted against either abso-

lute distance from the anterior or scaled AP position. To compare average profiles between control

and fat2RNAi embryos, all nuclei from embryos either longer or shorter than 450 mm are binned in

50 bins along the scaled AP axis over which the mean and standard deviation were computed.

Fluorescence in situ hybridization
Probe synthesis
A 471 bp region of bcd transcript was amplified from early embryo cDNA using primer pairs:

5’-cccggatccCTCAAATAGCAGAGCTGGAGC-3’ and 5’-cccggtaccGCTGCTGCTGGAAGAACTG-

3’ and subcloned into the pSP18 vector. Further, the vector was linearized by BamHI restriction

digestion and DIG-labeled ‘anti-sense’ RNA was synthesized with T7 RNA polymerase using DIG

RNA Labeling Kit [Roche-11175025910]. Synthesized RNA probes were then precipitated by adding

75 ml pre-chilled ethanol, 1.3 ml LiCl (7.5 M) and 1 ml yeast tRNA (25 mg/ml) to the labeling reaction.

Precipitation takes overnight at �20˚C. After centrifuging at 4˚C full speed for 30 min, the precipi-

tated RNA probes were washed with 70% ethanol (in DEPC water) and re-suspended in 100 ml

Hyb-A buffer (50% formamide, 5XSSC buffer, 100 mg/ml salmon DNA [BDL F012], 50 mg/ml heparin

[Sigma-Aldrich H4784], 0.1% tween-20 in DEPC water). The synthesized RNA probes were stored in

�20˚C.

Pre-hybridization
Embryos at stages within 2 hr after fertilization were collected, dechorionated and fixed in 1:1 solu-

tion of heptane and 4% formaldehyde in PBS for 20 min. After that, lower phase of the solution was

replaced by methanol with the same volume. The solution was vortexed for 20 s to remove the vitel-

line membrane, and the embryos at the bottom of the lower phase were collected and rinsed three

times with methanol. Embryos were then rehydrated by washing them in sequentially increasing per-

centage of PBT (PBS+0.1%Tween-20) in methanol. Next, embryos were post-fixed in 4% formalde-

hyde in PBT for 20 min and washed 5 times in PBT. Embryos were then washed in Hyb-B buffer (50%

formamide, 5XSSC in DEPC water). Finally, pre-hybridization was carried out by placing the embryos

in Hyb-A buffer at 65˚C for 3.5 hr.

Hybridization
5 ml of RNA probes was diluted in 250 ml Hyb-A buffer. The probe mix was heated at 80˚C for 10

min and placed on ice for 5 min. The probe mix was added to the embryos and hybridization was

carried out at 65˚C for 18 hr. The embryos were washed at 65˚C in Hyb-B buffer for 6 times, 30 min

each wash. After, the embryos were washed sequentially in the following solution at room tempera-

ture: 4:1 Hyb-B:PBT, 1:1 Hyb-B:PBT, 1:4 Hyb-B:PBT and PBT, 5 min each wash. Embryos were incu-

bated with blocking solution (4:1 PBT:Western blocking reagent (Roche- 11921673001)) for 1 hr. For

primary staining against DIG-labeled RNA probes, embryos were incubated with sheep anti-DIG

[Sigma-Aldrich 11333089001] with 1:400 dilution in the blocking solution at 4˚C overnight. After

washing in PBT for 6 times with 20 min each wash, embryos were stained with the secondary anti-

body donkey anti-sheep Alexa 555 [Thermo Fisher Scientific A21436] with 1:500 dilution in PBT for 1

hr at room temperature. Finally, after washing in PBT for 6 times, embryos were mounted on micros-

copy slides with Aqua-Poly/Mount [Polysciences, Inc- 18606].

Microscopy imaging and image analysis
Slides were imaged on a Zeiss confocal LSM880 using 40X water immersion lens. For each embryo,

Z-stack images were taken covering the region from surface to the midsagittal plane, and the neigh-

bouring planes were separated by 3 mm. Following that, a projected maximum intensity image was

generated. The outside of the embryo was segmented using thresholding in Matlab after using roll-

ing ball background subtraction. A 10mm-thick mask was defined around the embryo perimeter in

order to avoid effects from yolk autofluorescence. Finally, the average signal intensity at each posi-

tion along the AP axis was taken from the mask. The signal from each embryo varies significantly,

making a rigorous quantitative comparison challenging. The signal from each embryo was normal-

ized by the intensity around 200 mm from the anterior pole.
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Simulation of SDD (Synthesis, Diffusion, Degradation) model
We use COMSOL Multiphysics 5.3 to simulate diffusion along the surface of prolate ellipsoids of

varying sizes to account for the geometries of wild type and fat2RNAi embryos.

We consider steady state equations for the concentration of Bcd in the unfolded (U) and folded

(F) states. These take the form:

qt U½ � ¼ Dr2 U½ � � �þ að Þ U½ � þ Jf xð Þ.

qt F½ � ¼Dr2 F½ �þa U½ ��� F½ �;

where: r2 represents the Laplacian on the ellipsoid surface; a is the GFP folding rate; m is the

decay rate of Bcd in both the unfolded and folded forms; and Jf(x) corresponds to a production rate

of unfolded Bicoid, which we suppose to depend only on the distance to anterior (x-axis corresponds

to AP direction). We consider a step-like production function:

f xð Þ ¼ 1� tanh
x�lð Þ

d

� �

;

where l is the AP-axis extension of a region of approximatively constant production; d is a

smoothing parameter. We have checked that the simulations weakly depend on the value of d as

long as d<< l.

Physical parameters were fixed based on previous literature, see Table below. Quantitative fits

were obtained by using a L2-measure with a window-type weight function for data-points within the

rescaled length range x/L2[0.2,0.8].

The solution for folded Bcd is not flat is the vicinity of z = 0 (i.e. near the head); this is due to the

projection into the Cartesian coordinates, leading to a singular integration measure near its extremal

value z = 0. Similarly, we disregard the experimentally measured values of Bcd intensity within the

first microns form the anterior pole as these are prone to large errors.

Parameter Values Reference

D Diffusion coefficient of folded and unfolded bcd 4 mm2s�1 Durrieu et al., 2018

l Production region 50 mm in situ data in
this study and Little et al., 2011

d Width of decay of the production region 5 mm in situ data in this study

m Protein decay rate 1/ (35*60) s Durrieu et al., 2018

a Folding rate 1/ (50*60) s Durrieu et al., 2018 and
Liu et al., 2013

aWT WT type length, dorso-ventral axis 100 mm See Figure 1

cWT WT type length, anterio-posterior axis 250 mm See Figure 1

afat2 fat2RNAi type length, dorso-ventral axis 115 mm See Figure 1

cfat2 fat2RNAi type length, anterio-posterior axis 175 mm See Figure 1

As the equations are solved on a closed surface, there are no explicit boundary conditions.

Gap gene boundary quantification
Confocal Z-stack images were Z-projected (maximum intensity) in Fiji (RRID:SCR_002285) for further

analysis. The images of laterally oriented embryos were rotated so that the anterior is to the left and

dorsal to the up. A line with the width of 100 pixels crossing the center of the embryo was drawn to

extract average intensity along the AP axis. The intensity profile was shown as a function of percent

embryonic length (%EL). We determined the background intensity Imin and maximum intensity Imax

of each embryo; Imin was subtracted from the intensity profile and the resulting curve was rescaled

by 1/(Imax-Imin). The boundary position is defined where rescaled intensity profile equals to 0.5.

To estimate the variation of boundary position, we performed bootstrapping using the Matlab

function bootstrp. We performed 1000 simulation runs to infer the variability on the boundary preci-

sion. In each run, a random data set was generated by sampling from the known experimental data.

In this procedure, each data point can be included multiple times within each random sample. As
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the number of samples per boundary was small, we did not test for significant changes in the preci-

sion of boundary specification for a single boundary between wild-type and bcdKO embryos. How-

ever, pooling the data from the different boundaries, we observe that precision in all the measured

boundaries decreases (i.e. the error increases) in bcdKO embryos. We calculated the p-value using

the paired sample t-test across all boundaries.

Quantification of maternal bcd transcripts
To compare the relative amount of maternally loaded bcd transcripts in different genotypes, we

extracted total mRNA from presyncytial embryos (within 1 hr after egg deposition) generated by

OreR, fat2RNAi, tdBcd(III) or tdBcd(II);tdBcd(III) females and reverse transcribed to cDNA. We per-

formed qRT-PCR with bcd-specific primer pair using SYBR Green (Thermo Fisher) protocol and the

housekeeping gene rpl32 was used as internal reference. The relative bcd mRNA amount was nor-

malized to that of OreR. Three independent measurements were carried out over which the mean

and standard deviation was calculated.
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