The readily-releasable pool dynamically regulates multivesicular release

  1. Jada H Vaden
  2. Gokulakrishna Banumurthy
  3. Eugeny S Gusarevich
  4. Linda Overstreet-Wadiche  Is a corresponding author
  5. Jacques I Wadiche  Is a corresponding author
  1. University of Alabama at Birmingham, United States
  2. Northern (Arctic) Federal University named after M V Lomonosov, Russian Federation

Abstract

The number of neurotransmitter-filled vesicles released into the synaptic cleft with each action potential dictates the reliability of synaptic transmission. Variability of this fundamental property provides diversity of synaptic function across brain regions, but the source of this variability is unclear. The prevailing view is that release of a single (univesicular release, UVR) or multiple vesicles (multivesicular release, MVR) reflects variability in vesicle release probability, a notion that is well-supported by the calcium-dependence of release mode. However, using mouse brain slices, we now demonstrate that the number of vesicles released is regulated by the size of the readily-releasable pool, upstream of vesicle release probability. Our results point to a model wherein protein kinase A and its vesicle-associated target, synapsin, dynamically controls release site occupancy to dictate the number of vesicles released without altering release probability. Together these findings define molecular mechanisms that control MVR and functional diversity of synaptic signaling.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Mathematica files for the FD2 model have been deposited in ModelDB (senselab.med.yale.edu/modeldb/).

The following data sets were generated

Article and author information

Author details

  1. Jada H Vaden

    Department of Neurobiology, University of Alabama at Birmingham, Birmingham, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Gokulakrishna Banumurthy

    Department of Neurobiology, University of Alabama at Birmingham, Birmingham, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Eugeny S Gusarevich

    Department of Fundamental and Applied Physics, Northern (Arctic) Federal University named after M V Lomonosov, Arkhangelsk, Russian Federation
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8642-6293
  4. Linda Overstreet-Wadiche

    Department of Neurobiology, University of Alabama at Birmingham, Birmingham, United States
    For correspondence
    lwadiche@uab.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7367-5998
  5. Jacques I Wadiche

    Department of Neurobiology, University of Alabama at Birmingham, Birmingham, United States
    For correspondence
    jwadiche@uab.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8180-2061

Funding

National Institute of Neurological Disorders and Stroke (NS065920)

  • Jacques I Wadiche

National Institute of Neurological Disorders and Stroke (NS064025)

  • Linda Overstreet-Wadiche

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Reinhard Jahn, Max Planck Institute for Biophysical Chemistry, Germany

Ethics

Animal experimentation: All experiments were conducted through protocols approved by the Institutional Animal Care and Use Committee of the University of Alabama at Birmingham under protocol #08767.

Version history

  1. Received: May 15, 2019
  2. Accepted: July 30, 2019
  3. Accepted Manuscript published: July 31, 2019 (version 1)
  4. Version of Record published: August 30, 2019 (version 2)

Copyright

© 2019, Vaden et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,116
    views
  • 510
    downloads
  • 31
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jada H Vaden
  2. Gokulakrishna Banumurthy
  3. Eugeny S Gusarevich
  4. Linda Overstreet-Wadiche
  5. Jacques I Wadiche
(2019)
The readily-releasable pool dynamically regulates multivesicular release
eLife 8:e47434.
https://doi.org/10.7554/eLife.47434

Share this article

https://doi.org/10.7554/eLife.47434

Further reading

    1. Neuroscience
    Vezha Boboeva, Alberto Pezzotta ... Athena Akrami
    Research Article

    The central tendency bias, or contraction bias, is a phenomenon where the judgment of the magnitude of items held in working memory appears to be biased toward the average of past observations. It is assumed to be an optimal strategy by the brain and commonly thought of as an expression of the brain’s ability to learn the statistical structure of sensory input. On the other hand, recency biases such as serial dependence are also commonly observed and are thought to reflect the content of working memory. Recent results from an auditory delayed comparison task in rats suggest that both biases may be more related than previously thought: when the posterior parietal cortex (PPC) was silenced, both short-term and contraction biases were reduced. By proposing a model of the circuit that may be involved in generating the behavior, we show that a volatile working memory content susceptible to shifting to the past sensory experience – producing short-term sensory history biases – naturally leads to contraction bias. The errors, occurring at the level of individual trials, are sampled from the full distribution of the stimuli and are not due to a gradual shift of the memory toward the sensory distribution’s mean. Our results are consistent with a broad set of behavioral findings and provide predictions of performance across different stimulus distributions and timings, delay intervals, as well as neuronal dynamics in putative working memory areas. Finally, we validate our model by performing a set of human psychophysics experiments of an auditory parametric working memory task.

    1. Neuroscience
    Michael Berger, Michèle Fraatz ... Henrike Scholz
    Research Article

    The brain regulates food intake in response to internal energy demands and food availability. However, can internal energy storage influence the type of memory that is formed? We show that the duration of starvation determines whether Drosophila melanogaster forms appetitive short-term or longer-lasting intermediate memories. The internal glycogen storage in the muscles and adipose tissue influences how intensely sucrose-associated information is stored. Insulin-like signaling in octopaminergic reward neurons integrates internal energy storage into memory formation. Octopamine, in turn, suppresses the formation of long-term memory. Octopamine is not required for short-term memory because octopamine-deficient mutants can form appetitive short-term memory for sucrose and to other nutrients depending on the internal energy status. The reduced positive reinforcing effect of sucrose at high internal glycogen levels, combined with the increased stability of food-related memories due to prolonged periods of starvation, could lead to increased food intake.