The readily-releasable pool dynamically regulates multivesicular release

  1. Jada H Vaden
  2. Gokulakrishna Banumurthy
  3. Eugeny S Gusarevich
  4. Linda Overstreet-Wadiche  Is a corresponding author
  5. Jacques I Wadiche  Is a corresponding author
  1. University of Alabama at Birmingham, United States
  2. Northern (Arctic) Federal University named after M V Lomonosov, Russian Federation

Abstract

The number of neurotransmitter-filled vesicles released into the synaptic cleft with each action potential dictates the reliability of synaptic transmission. Variability of this fundamental property provides diversity of synaptic function across brain regions, but the source of this variability is unclear. The prevailing view is that release of a single (univesicular release, UVR) or multiple vesicles (multivesicular release, MVR) reflects variability in vesicle release probability, a notion that is well-supported by the calcium-dependence of release mode. However, using mouse brain slices, we now demonstrate that the number of vesicles released is regulated by the size of the readily-releasable pool, upstream of vesicle release probability. Our results point to a model wherein protein kinase A and its vesicle-associated target, synapsin, dynamically controls release site occupancy to dictate the number of vesicles released without altering release probability. Together these findings define molecular mechanisms that control MVR and functional diversity of synaptic signaling.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Mathematica files for the FD2 model have been deposited in ModelDB (senselab.med.yale.edu/modeldb/).

The following data sets were generated

Article and author information

Author details

  1. Jada H Vaden

    Department of Neurobiology, University of Alabama at Birmingham, Birmingham, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Gokulakrishna Banumurthy

    Department of Neurobiology, University of Alabama at Birmingham, Birmingham, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Eugeny S Gusarevich

    Department of Fundamental and Applied Physics, Northern (Arctic) Federal University named after M V Lomonosov, Arkhangelsk, Russian Federation
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8642-6293
  4. Linda Overstreet-Wadiche

    Department of Neurobiology, University of Alabama at Birmingham, Birmingham, United States
    For correspondence
    lwadiche@uab.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7367-5998
  5. Jacques I Wadiche

    Department of Neurobiology, University of Alabama at Birmingham, Birmingham, United States
    For correspondence
    jwadiche@uab.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8180-2061

Funding

National Institute of Neurological Disorders and Stroke (NS065920)

  • Jacques I Wadiche

National Institute of Neurological Disorders and Stroke (NS064025)

  • Linda Overstreet-Wadiche

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were conducted through protocols approved by the Institutional Animal Care and Use Committee of the University of Alabama at Birmingham under protocol #08767.

Copyright

© 2019, Vaden et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,359
    views
  • 540
    downloads
  • 45
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jada H Vaden
  2. Gokulakrishna Banumurthy
  3. Eugeny S Gusarevich
  4. Linda Overstreet-Wadiche
  5. Jacques I Wadiche
(2019)
The readily-releasable pool dynamically regulates multivesicular release
eLife 8:e47434.
https://doi.org/10.7554/eLife.47434

Share this article

https://doi.org/10.7554/eLife.47434

Further reading

    1. Neuroscience
    Simonas Griesius, Amy Richardson, Dimitri Michael Kullmann
    Research Article

    Non-linear summation of synaptic inputs to the dendrites of pyramidal neurons has been proposed to increase the computation capacity of neurons through coincidence detection, signal amplification, and additional logic operations such as XOR. Supralinear dendritic integration has been documented extensively in principal neurons, mediated by several voltage-dependent conductances. It has also been reported in parvalbumin-positive hippocampal basket cells, in dendrites innervated by feedback excitatory synapses. Whether other interneurons, which support feed-forward or feedback inhibition of principal neuron dendrites, also exhibit local non-linear integration of synaptic excitation is not known. Here, we use patch-clamp electrophysiology, and two-photon calcium imaging and glutamate uncaging, to show that supralinear dendritic integration of near-synchronous spatially clustered glutamate-receptor mediated depolarization occurs in NDNF-positive neurogliaform cells and oriens-lacunosum moleculare interneurons in the mouse hippocampus. Supralinear summation was detected via recordings of somatic depolarizations elicited by uncaging of glutamate on dendritic fragments, and, in neurogliaform cells, by concurrent imaging of dendritic calcium transients. Supralinearity was abolished by blocking NMDA receptors (NMDARs) but resisted blockade of voltage-gated sodium channels. Blocking L-type calcium channels abolished supralinear calcium signalling but only had a minor effect on voltage supralinearity. Dendritic boosting of spatially clustered synaptic signals argues for previously unappreciated computational complexity in dendrite-projecting inhibitory cells of the hippocampus.

    1. Neuroscience
    Jessica Royer, Valeria Kebets ... Boris C Bernhardt
    Research Article Updated

    Complex structural and functional changes occurring in typical and atypical development necessitate multidimensional approaches to better understand the risk of developing psychopathology. Here, we simultaneously examined structural and functional brain network patterns in relation to dimensions of psychopathology in the Adolescent Brain Cognitive Development (ABCD) dataset. Several components were identified, recapitulating the psychopathology hierarchy, with the general psychopathology (p) factor explaining most covariance with multimodal imaging features, while the internalizing, externalizing, and neurodevelopmental dimensions were each associated with distinct morphological and functional connectivity signatures. Connectivity signatures associated with the p factor and neurodevelopmental dimensions followed the sensory-to-transmodal axis of cortical organization, which is related to the emergence of complex cognition and risk for psychopathology. Results were consistent in two separate data subsamples and robust to variations in analytical parameters. Although model parameters yielded statistically significant brain–behavior associations in unseen data, generalizability of the model was rather limited for all three latent components (r change from within- to out-of-sample statistics: LC1within = 0.36, LC1out = 0.03; LC2within = 0.34, LC2out = 0.05; LC3within = 0.35, LC3out = 0.07). Our findings help in better understanding biological mechanisms underpinning dimensions of psychopathology, and could provide brain-based vulnerability markers.