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Abstract The human AdipoR1 and AdipoR2 proteins, as well as their C. elegans homolog PAQR-

2, protect against cell membrane rigidification by exogenous saturated fatty acids by regulating

phospholipid composition. Here, we show that mutations in the C. elegans gene acs-13 help to

suppress the phenotypes of paqr-2 mutant worms, including their characteristic membrane fluidity

defects. acs-13 encodes a homolog of the human acyl-CoA synthetase ACSL1, and localizes to the

mitochondrial membrane where it likely activates long chains fatty acids for import and

degradation. Using siRNA combined with lipidomics and membrane fluidity assays (FRAP and

Laurdan dye staining) we further show that the human ACSL1 potentiates lipotoxicity by the

saturated fatty acid palmitate: silencing ACSL1 protects against the membrane rigidifying effects of

palmitate and acts as a suppressor of AdipoR2 knockdown, thus echoing the C. elegans findings.

We conclude that acs-13 mutations in C. elegans and ACSL1 knockdown in human cells prevent

lipotoxicity by promoting increased levels of polyunsaturated fatty acid-containing phospholipids.

Introduction
Lipotoxicity occurs when fatty acids, especially saturated fatty acids such as palmitate, accumulate at

excessive levels in cells or plasma (Mota et al., 2016; Palomer et al., 2018; Schaffer, 2016). In par-

ticular, liver steatosis, beta cell failure and endothelial cell defects are caused by lipotoxicity and are

important health complications associated with obesity and diabetes. Various factors have been

implicated in palmitate-mediated cellular toxicity, including ceramides (Turpin et al., 2006), reactive

oxygen species (Gao et al., 2010), endoplasmic reticulum (ER) stress (Borradaile et al., 2006;

Wei et al., 2006), and small nucleolar RNAs (snoRNAs) (Michel et al., 2011). Additionally, recent

evidence suggests that a primary mechanism of lipotoxicity relates to membrane rigidification

caused by an excess of saturated fatty acids (SFAs) incorporation into membrane phospholipids. For

example, adipocytes must promote fatty acid desaturation in order to prevent membrane rigidifica-

tion and lipotoxity by palmitate (Collins et al., 2010). Also, two recent genome-wide gene silencing/

knockout screens identified regulators of SFA incorporation into phospholipids as key determinants

of palmitate toxicity in human cells (Piccolis et al., 2019; Zhu et al., 2019).
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Lipotoxicity via membrane rigidification appears evolutionarily conserved. In C. elegans, the gene

paqr-2 encodes a homolog of the mammalian AdipoR1 and AdipoR2 (seven transmembrane domain

proteins localized to the plasma membrane with their N-terminus within the cytosol and likely acting

as hydrolases; Holland et al., 2011; Pei et al., 2011; Tanaka et al., 1996; Tang et al., 2005;

Yamauchi et al., 2003) and acts together with its dedicated partner IGLR-2 (a single-pass plasma

membrane protein with a large extracellular domain containing one immunoglobulin domain and

several leucine-rich repeats) to sense and respond to membrane rigidification by promoting fatty

acid desaturation until membrane fluidity is restored to optimal levels (Svensson et al., 2011;

Svensk et al., 2013; Svensk et al., 2016a; Devkota et al., 2017; Bodhicharla et al., 2018). Wild-

type worms are unaffected by the presence of SFAs in their diet, but paqr-2(tm3410) or iglr-2(et34)

null mutants are extremely SFA-sensitive: inclusion of SFAs in the diet of the mutant rapidly leads to

excess SFAs in membrane phospholipids, membrane rigidification and death. Both proteins are inte-

gral plasma membrane proteins that are also essential for the ability of C. elegans to grow at low

temperatures such as 15˚C because they are required to sense cold-induced rigidification and pro-

mote fatty acid desaturation until membrane fluidity is restored (Svensk et al., 2013). The paqr-2

(tm3410) and iglr-2(et34) mutant phenotypes also include a withered appearance of the thin mem-

branous tail tip (Svensson et al., 2011; Svensk et al., 2016b) and all mutant phenotypes can be

attenuated or fully suppressed by secondary mutations in other genes that cause increased fatty

acid desaturation (Svensk et al., 2013) or increased incorporation of potently fluidizing long-chain

polyunsaturated fatty acids (LCPUFAs; fatty acids with 18 carbons or more and two or more double

bonds) into phospholipids (Ruiz et al., 2018); the paqr-2/iglr-2 epistatic interaction pathway is sum-

marized in Figure 1—figure supplement 1. Additionally, the paqr-2(tm3410) and iglr-2(et34) mutant

phenotypes can be partially suppressed by the inclusion of fluidizing concentrations of nonionic

detergents in the culture plate (Svensk et al., 2013).

It seems clear that upregulation of desaturases mitigates the membrane-rigidifying effects of

SFAs by converting them to more fluidizing monounsaturated fatty acids (MUFAs) and polyunsatu-

rated fatty acids (PUFAs). However, it is much less clear how phospholipid composition can be regu-

lated given a fatty acid pool comprising a mixture of SFAs, MUFAs and PUFAs. In an effort to

identify such regulators, we performed a screen in C. elegans to identify enhancers of mdt-15(et14),

a gain-of-function allele with increased expression of desaturases that partially suppresses the SFA

intolerance in paqr-2(tm3410) and iglr-2(et34) mutants (Svensk et al., 2013; Svensk et al., 2016a;

Devkota et al., 2017); mdt-15 is a homolog of the human mediator subunit MED15 that also regu-

lates genes involved in lipid metabolism (Yang et al., 2006). Through this screen, we identified a

loss-of-function mutation in acs-13, which encodes a long-chain fatty acyl-CoA synthetase, and show

that this enzyme localizes to mitochondria where it likely promotes LCFA activation and mitochon-

drial import. We found that mutation or inhibition of this class of acyl-CoA synthetases in C. elegans

or human cells protects from SFA lipotoxicity by increasing the relative abundance of LCPUFA-con-

taining phospholipids, which improves membrane fluidity.

Results

acs-13 mutations suppress paqr-2 mutant defects in an UFA-dependent
manner
paqr-2(tm3410) mdt-15(et14) double mutants were mutagenized using ethyl methanesulfonate and

their F2 progeny screened for the ability to grow into fertile adults within 72 hr when cultivated in

the presence of 20 mM glucose, which is converted to SFAs by the dietary bacteria and is therefore

an expedient way to provide an SFA-rich diet (Devkota et al., 2017). In total 50 000 haploid

genomes were screened and six independent mutants were isolated. Of these, four are previously

published loss-of-function alleles of the gene fld-1 (homolog of TLCD1/2 in human); these mutations

act independently of mdt-15(et14) and cause an increase in the LCPUFA content in phospholipids

hence restoring membrane fluidity in paqr-2 mutants, as previously described (Ruiz et al., 2018). A

fifth mutant has now been identified as a loss-of-function allele of acs-13, which encodes a C. ele-

gans sequence homolog of the human long-chain fatty acid acyl-CoA synthetases ACSL1, ACSL5

and ACSL6 that are primarily associated with endoplasmic reticulum (Young et al., 2018; Li et al.,

2006), mitochondria outer membrane (Young et al., 2018; Krammer et al., 2011; Lee et al., 2011;
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Lewin et al., 2001), and/or peroxisomes (Islinger et al., 2007; Islinger et al., 2010; Watkins and

Ellis, 2012). The acs-13(et54) allele carries a glycine-to-arginine amino acid substitution at position

125 (G125R), within the proposed N-terminal cytoplasmic domain of the ACS-13 protein, which also

contains two predicted transmembrane domains presumed by homology to be embedded in organ-

elles such a mitochondria or ER, and a large cytoplasmic C-terminal domain containing the catalytic

domain (see Figure 1A–B). That acs-13(et54) is a loss-of-function mutation was confirmed in several

ways. Firstly, the same G125R mutation and other loss-of-function alleles of acs-13 were created

using CRISPR/Cas9 and found to greatly improve the ability of paqr-2(tm3410) mdt-15(et14) double

mutants to grow on 20 mM glucose (Figure 1C–D; Figure 1—figure supplement 2). Secondly, the

acs-13(et54) and acs-13(ok2861), a deletion allele of acs-13 obtained from the C. elegans Genetics

Center, both greatly enhance the ability of mdt-15(et14) to suppress the glucose and cold intoler-

ance of the paqr-2 mutant (Figure 1E–F; Figure 1—figure supplement 3A–B). acs-13(et54) also

acts as an enhancer of cept-1(et10), which is another partial paqr-2(tm3410) suppressor that acts by

promoting fatty acid desaturation, but not as an enhancer of nhr-49(et8) which is already a very

potent paqr-2(tm3410) suppressor (Svensk et al., 2013; Svensk et al., 2016a), nor of hacd-1(et12)

which is a relatively poor paqr-2(tm3410) suppressor (Svensk et al., 2013; Svensk et al., 2016a) and

does not by itself suppress the glucose intolerance (Figure 1G). The ability of acs-13(et54) to

enhance the effects of both mdt-15(et14) and cept-1(et10) suggests that it requires the elevated

UFA levels characteristic of these mutants (Svensk et al., 2013) in order to carry out its paqr-2

(tm3410) suppressor function. Indeed, acs-13(et54) or acs-13(ok2861) are not by themselves effective

suppressors of the paqr-2 mutant glucose and cold intolerance nor of its characteristic withered tail

tip defect (Figure 1E–F; Figure 1—figure supplement 3A–C and E–F). On the other hand, acs-13

(et54) can by itself partially suppress the brood size defect of the paqr-2(tm3410) mutant, though

not as effectively as mdt-15(et14), and does not suppress the defecation rate or life span defects

(Figure 1—figure supplement 4A–C). Thus acs-13(et54) is by itself a weak paqr-2(tm3410) suppres-

sor but an enhancer of the UFA-producing mdt-15(et14) allele as a paqr-2(tm3410) suppressor. Addi-

tionally, acs-13(et54) enhances the protective effect of the PUFA linoleic acid (18:2) when paqr-2

(tm3410) mutant worms are challenged with 2 mM palmitate (a 16:0 SFA), which further indicates a

synergistic interaction between PUFA availability and acs-13(et54) (Figure 1—figure supplement

4D).

ACS-13 is localized to mitochondria of intestinal and hypodermal cells
Three isoforms of ACS-13 exist that differ at their N-terminus; all three isoforms are affected by the

G125R acs-13(et54) mutation. Restoring expression of wild-type ACS-13 isoform ‘a’ using a cDNA

transgene driven from the acs-13 promoter restores glucose intolerance (glucose is here again used

as an expedient way to provide an SFA-rich diet since it is converted to SFAs by the dietary E. coli;

Devkota et al., 2017) in paqr-2(tm3410) mdt-15(et14); acs-13(et54) triple mutants, which confirms

the functionality of the isoform ‘a’ used in this study (Figure 2A–C). The same construct modified to

carry GFP fused at the C-terminal end of the ACS-13 protein exhibits GFP-localization specifically on

the mitochondria of intestinal and hypodermal cells and co-localizes with Mitotracker Deep Red

(Figure 2D), but not with the endoplasmic reticulum (ER) marker mCherry::SP12 (Figure 2—figure

supplement 1A). Detection of ACS-13 protein using Western blotting of cytosol, microsome and

mitochondria-enriched subcellular fractions is also consistent with the mitochondrial localization of

the ACS-13::GFP protein (Figure 2—figure supplement 1B). Expression of acs-13 was determined

by qPCR and found to be unaltered in paqr-2 mutants but decreased in worms carrying the gain-of-

function mdt-15(et14) allele (Figure 2—figure supplement 1C), suggesting that it may be a nega-

tively regulated downstream target of activated MDT-15. Additionally, the morphology of the mito-

chondria was often visibly abnormal in acs-13(et54) mutants (Figure 2—figure supplement 1D–E),

and an acs-13 promoter-driven transcriptional reporter shows strong expression in the intestine and

hypodermis (Figure 2E). We conclude that ACS-13 is localized to mitochondria in intestine and

hypodermis, that its expression is influenced by MDT-15 and that it contributes to maintenance of

mitochondria morphology.
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Other Acyl-CoA synthetases can act as mdt-15(et14) enhancers
There exist more than twenty acyl-CoA synthetases in C. elegans that can activate free fatty acids

into acyl-CoAs in preparation for downstream processes such as conjugation into glycerolipids (e.g.

phosphatidylcholines [PCs], phosphatidylethanolamines [PEs] or triacylglycerides [TAGs]) or energy-

Figure 1. acs-13 mutations enhance the ability of mdt-15(et14) or cept-1(et10) to suppress the glucose intolerance

of the paqr-2 mutant. (A) Cartoon representation of the ACS-13 protein, with the two transmembrane domains

indicated in blue and the nature of the amino acid substitution mutant alleles et54 and the deletion mutant allele

ok2861 indicated in red; the Phyre2 web portal was used for protein modelling and definition of the

transmembrane domains (Kelley et al., 2015). (B) Tentative orientation of ACS-13 inserted in an outer

mitochondrial membrane, where the human homolog ACSL1 has been detected (Lee et al., 2011; Lewin et al.,

2001). (C–G) Photographs and length measurements of worms with the indicated genotypes placed as L1s on the

indicated media (control NGM or 20 mM glucose) then grown for 72 hr (n = 20). The dashed lines in D-G indicate

the approximate length of L1s at the start of the experiments. Only the statistical significances of interest are

indicated, where ***: p<0.001.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Overview of the likely epigenetic interactions in the paqr-2 pathway based on published

work prior to the present study.

Figure supplement 2. Additional CRISPR-generated acs-13 mutants also enhance the ability of mdt-15(et14) to

suppress the glucose intolerance in paqr-2 mutants.

Figure supplement 3. acs-13 mutations enhance the ability of mdt-15(et14) to suppress the cold sensitivity of the

paqr-2 mutant.

Figure supplement 4. The acs-13 mutation suppresses the brood size defect in paqr-2 mutants and enhances the

effects of exogenous linoleic acid (18:2 n-6).
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producing degradation by mitochondria and peroxisomes. We used E. coli clones from the Ahringer

RNAi library (Kamath et al., 2003) to test whether inhibition of 16 different acyl-CoA synthetases

(available in the RNAi library) could enhance the ability of mdt-15(et14) to suppress the paqr-2

(tm3410) mutant glucose intolerance. The most potent mdt-15(et14) enhancers were the ACSL1/5/6

Figure 2. The ACS-13 protein localizes to mitochondria and is expressed in intestine and hypodermis. (A) Cartoon

representation of the acs-13 constructs created for this study. (B) Bright field photographs of worms with the

indicated genotypes cultivated on control plates (NGM) or plates containing 20 mM glucose (top two rows), and

epifluorescence images of two independent lines of transgenic paqr-2 mdt-15(et14) worms carrying the myo-2::

GFP marker as well as the wild-type acs-13(+) rescue construct and cultivated either on NGM or 20 mM glucose

plates (bottom two rows; several worms are outlined with dashed lines). Note how presence of the acs-13(+)

construct in both transgenic lines abolishes the glucose resistance of paqr-2 mdt-15(et14); acs-13(et54) double

mutants (examples indicated by arrowheads). (C) Length measurements of worms cultivated as in B (n = 20). Only

the statistical significances of interest are indicated, where ***: p<0.001. (D) Confocal image of the anterior portion

of an N2 worms at the L1 stage stained with Mitotracker Deep Red (red) and carrying the Pacs-13::ACS-13 isoform

a::GFP translational reporter (green). Co-localization is indicated by yellow hues in the merged and zoomed

panels. Note the strong colocalization on the periphery of mitochondria, indicating that ACS-13 localizes to the

mitochondrial membrane. R is the Pearson correlation coefficient between the two fluorophores. (E) Confocal

image of N2 worms of the L1 stage and carrying the Pacs-13::GFP transcriptional reporter expressed in

hypodermis and intestine.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. ACS-13 is enriched on mitochondria and important for their morphology.
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homologs acs-5 and acs-15, followed by the ACSF2 homolog acs-16 (Figure 3A). Being homologous

to ACSL1/5/6, acs-5 and acs-15 may be expected to have preference for LCFA substrates, many of

which are PUFAs, and promote their import into mitochondria and/or peroxisomes (Young et al.,

2018; Krammer et al., 2011; Lee et al., 2011; Lewin et al., 2001; Islinger et al., 2007;

Watkins and Ellis, 2012; Soupene and Kuypers, 2008). We obtained the loss-of-function acs-5

(ok2668) allele from the C. elegans Genetics Center and found that it is indeed an enhancer of mdt-

15(et14) (Figure 3B–C). Like acs-13(et54), acs-5(ok2668) did not by itself act as a paqr-2(tm3410)

suppressor (Figure 1—figure supplement 3A,D and G) and is not as potent an mdt-15(et14)

enhancer as acs-13(et54) in suppressing the glucose intolerance (Figure 3B–C), which likely explains

why only the latter was isolated in our forward genetics screen for mdt-15(et14) enhancers.

The acs-13(et54) allele requires desaturase activity but does not cause
their upregulation
The fact that acs-13(et54) is an enhancer of mdt-15(et14) suggests that these two mutations act in

separate yet complementary pathways to suppress paqr-2 mutant phenotypes. Specifically, we

hypothesized that acs-13(et54) does not act by promoting the expression of fatty acid desaturases,

which is the mechanism of action for mdt-15(et14). This is indeed the case: expression of a GFP

translational reporter for the D9 desaturase FAT-7 is markedly increased in the presence of the mdt-

15(et14) allele but unaffected by the acs-13(et54) allele either by itself or in the paqr-2(tm3410) or

Figure 3. Knockdown of several Acyl Co-A synthetases can enhance the ability of mdt-15(et14) to suppress the

glucose sensitivity of the paqr-2 mutant. (A) Percentage of L1 larvae that grew into adults within 96 hr on plates

containing 20 mM glucose (n = 100) and seeded with the indicated RNAi E. coli clone (suggested human homolog

as per WormBase is indicated in parenthesis; L4440 is the empty vector control). Statistical significances between

the empty vector control and RNAi are indicated, where *: p<0.05, **: p<0.01 and ***: p<0.001. (B–C) Photographs

and length measurements of worms placed as L1s on the indicated media (control NGM or 20 mM glucose) then

grown for 72 hr (n = 20). The dashed lines in C indicate the approximate length of L1s at the start of the

experiments. Only the statistical significances of interest is indicated, where ***: p<0.001.
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Figure 4. The acs-13 mutation causes elevated LCPUFAs in phospholipids. (A–B) mdt-15(et14) but not acs-13(et54)

cause upregulation of the pfat-7::GFP reporter (n = 20) on NGM plates. (C) RNAi against the D9 desaturases fat-5,

fat-6 and fat-7 reduces the ability of mdt-15(et14) and of mdt-15(et14) together with acs-13(et54) to suppress the

cold sensitivity of paqr-2 mutants (n = 20). (D) The paqr-2 mutant has decreased PUFA levels among PEs on

control plates (NGM) or plates containing 20 mM glucose, while the acs-13(et54) and mdt-15(et14) mutations

cause increased PUFA levels among PEs in wild-type worms grown on NGM and together restore normal PUFA

levels in paqr-2 mutants cultivated on NGM plates or 20 mM glucose. (E–F) Heat maps showing the relative

abundance of specific FA species among the PEs of worms with the indicated genotype and grown on NGM

plates. Note the increased abundance of LCPUFAs in genotypes carrying the acs-13(et54) mutation. Statistical

significances of interest are indicated, where *: p<0.05, **: p<0.01 and ***: p<0.001 for FAs with increased levels in

the acs-13(et54) mutants (#, ## and ### are used when acs-13(et54) mutants have reduced levels of a FA).

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Lipidomics data for panel D.

Source data 2. Lipidomics data for panel E.

Figure supplement 1. Enlarged view of pfat-7::GFP expression from Figure 4A.

Figure supplement 2. Lipidomics heat map for FAs among PCs from worms grown on NGM plates or PEs from

worms grown on 20 mM glucose.

Figure supplement 2—source data 1. Lipidomics data for panel A.

Figure supplement 2—source data 2. Lipidomics data for panel B.

Figure supplement 2—source data 3. Lipidomics data for panel C.

Figure supplement 2—source data 4. Lipidomics data for panel D.

Figure supplement 2—source data 5. Lipidomics data for panel E.

Figure supplement 2—source data 6. Lipidomics data for panel F.

Figure 4 continued on next page
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paqr-2(et54) mdt-15(et14) mutant backgrounds (Figure 4A–B; a larger version of Figure 4A is pre-

sented in Figure 4—figure supplement 1). However, the ability of acs-13(et54) to act as an

enhancer of mdt-15(et14) is dependent on the activity of desaturases since their inhibition by RNAi

significantly impairs the 15˚C growth of paqr-2 mdt-15(et14); acs-13(et54) triple mutants, with fat-6

and fat-7 being particularly important (Figure 4C).

The acs-13(et54) mutation causes increased PUFA-containing
phospholipids
The human homologs of acs-13, such as ACSL1, can activate LCFAs prior to their import into mito-

chondria (Soupene and Kuypers, 2008; Grevengoed et al., 2015a; Coleman, 2019). A plausible

hypothesis regarding the mechanism of action of acs-13(et54) is therefore that fewer/different LCFAs

(many of which are PUFAs) are being channelled into the mitochondria in mutant worms, and that

their accumulation in the cytoplasm leads to their increased activation by other acyl-CoA synthetases

that can channel incorporation into phospholipids, resulting in increased membrane fluidity and sup-

pression of paqr-2(tm3410) mutant phenotypes. We tested this hypothesis by analysing the fatty

acid composition of PEs and PCs in worms carrying different combinations of the paqr-2(tm3410),

mdt-15(et14) and acs-13(et54) alleles. Compared to control N2 worms, we found that the acs-13

(et54) single mutant has significantly increased levels of PUFAs in the PEs, which are the most abun-

dant membrane phospholipids in C. elegans, when worms are grown on NGM (Figure 4D). The

mdt-15(et14) single mutant had increased PUFAs in PEs when grown on NGM plates or plates con-

taining 20 mM glucose (which is converted to SFAs by the dietary E. coli [Devkota et al., 2017]), as

previously described (Figure 4D; Svensk et al., 2016a; Devkota et al., 2017). paqr-2(tm3410)

mutants had low levels of PUFAs in PEs when cultivated on NGM and much lower levels of PUFAs

than control N2 worms when grown in 20 mM glucose, also as previously described (Figure 4D;

Svensk et al., 2016a; Devkota et al., 2017). Importantly, acs-13(et54) and mdt-15(et14) were

together better at completely suppressing the low PUFA defects of the paqr-2 mutant both on

NGM and glucose-containing plates (Figure 4D). Examining more specifically each type of fatty acid

in PEs, we found that presence of the acs-13(et54) allele by itself or in the paqr-2 mdt-15(et14) back-

ground caused a marked increase in LCPUFAs (e.g. 20:3, 20:4 and 20:5) at the expense of shorter

SFAs or MUFAs (e.g. 15:0, 16:0 and 16:1) on NGM plates (Figure 4E). Similar findings were made

with the less abundant PCs and also to a lesser degree on glucose-containing plates (Figure 4—fig-

ure supplements 2 and 3). We conclude that acs-13(et54) acts as a paqr-2(tm3410) suppressor

because it promotes an increased abundance of PUFA-containing membrane phospholipids, which is

a mechanism by which to restore membrane fluidity in the paqr-2 mutant (Ruiz et al., 2018).

ACSL1 knockdown promotes membrane fluidity in the presence of
palmitate in human cells
Sequence comparisons identify the long-chain fatty acyl-CoA synthetases ACSL1, ACSL5 and ACSL6

as the human proteins most similar to the worm acs-13(et54). Based on qPCR, ACSL1 is at least 20-

fold more highly expressed than ACSL5 and ACSL6 in HEK293 cells, and all three genes can be suc-

cessfully knocked down using siRNA (Figure 5A–B). The C. elegans studies of acs-13(et54) point to

an important role for this gene in regulating phospholipid composition that ought to impact mem-

brane fluidity. We tested this directly in human cells using the Fluorescence Recovery After Photo-

bleaching (FRAP) method, which relies on the lateral mobility of a membrane associated dye to

diffuse laterally and repopulate an area bleached by a laser; the rate of fluorescence recovery in the

Figure 4 continued

Figure supplement 3. The acs-13 mutation enhances the effect of mdt-15(et14) on phospholipid FA composition

in the paqr-2 mutant.

Figure supplement 3—source data 7. Lipidomics data for panel A.

Figure supplement 3—source data 8. Lipidomics data for panel B.

Figure supplement 3—source data 9. Lipidomics data for panel C.

Figure supplement 3—source data 10. Lipidomics data for panel D.

Figure supplement 3—source data 11. Lipidomics data for panel E.

Ruiz et al. eLife 2019;8:e47733. DOI: https://doi.org/10.7554/eLife.47733 8 of 31

Research article Cell Biology

https://doi.org/10.7554/eLife.47733


Figure 5. Knockdown of ACSL1 protects human HEK293 cells against the membrane-rigidifying effects of palmitate/AdipoR2 knockdown. (A) Relative

expression levels of ACSL1, ACSL5 and ACSL6 in HEK293 cells as determined using qPCR. (B) Efficiency of ACSL1, ACSL5 and ACSL6 knockdown using

siRNA relative to a non-target (NT) siRNA treatment in HEK293 cells. (C) FRAP analysis showing that siRNA against ACSL1 does not cause a change in

membrane fluidity of HEK293 cells under basal conditions compared to NT siRNA treatment. (D) Thalf values from FRAP experiments with cells treated

with the indicated siRNA and cultivated under basal conditions. None of the ACSL siRNA treatments differed significantly from the control NT siRNA;

n � 6. (E–F) As in C-D but in the presence of 400 mM palmitate (PA). Note that ACSL1 siRNA prevented membrane rigidification by palmitate, as

evidenced by the significantly lowered Thalf; n � 10 in F. (G) Pseudocolor images showing Laurdan dye global polarization (GP) index at each pixel

position in HEK293 cells treated with NT or ACSL1 siRNA and cultivated in the presence of 400 mM palmitate (PA) for 24 hr. (H) Average GP index from

several images as in G; n = 15. (I) Distribution of GP index values in representative images for each treatment under basal condition. (J) Efficiency of

AdipoR2 knockdown using siRNA relative to a control NT siRNA treatment in HEK293 cells. (K) FRAP analysis showing that AdipoR2 siRNA causes

membrane rigidification in HEK293 cells cultivated in the presence of 200 mM PA and that ACSL1 siRNA prevents this rigidification. (L) Thalf values from

FRAP experiments as in K; n � 13. Statistically significant differences from control are indicated, where **: p<0.01 and ***: p<0.001.

Figure 5 continued on next page
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bleached area reflects membrane fluidity. Under basal conditions, silencing of ACSL1, �5 or �6 has

no effect on membrane fluidity (Figure 5C–D and Figure 5—figure supplement 1A). However,

silencing ACSL1 prevents membrane rigidification in HEK293 cells challenged with 400 mM palmitate

(Figure 5E–F); silencing ACSL5 or ACSL6 had no such effect (Figure 5F and Figure 5—figure sup-

plement 1B). Using the Laurdan dye method, which reports on water penetration into the mem-

brane that usually correlates with membrane packing and fluidity (Owen et al., 2012; Ruiz et al.,

2019), confirms the FRAP results: HEK293 cells challenged with palmitate have improved fluidity

across the entire cell (hence also in organellar membranes) when ACSL1 is knocked down

(Figure 5G–I); there was no difference in basal media where membrane homeostasis is not chal-

lenged (Figure 5—figure supplement 1C–E).

AdipoR2 silencing increases the sensitivity of HEK293 cells to the rigidifying effects of palmitate

(Devkota et al., 2017; Bodhicharla et al., 2018; Ruiz et al., 2018; Ruiz et al., 2019), which is analo-

gous to the SFA-sensitivity in C. elegans mutants lacking paqr-2, that is a worm AdipoR2 homolog

(Devkota et al., 2017; Bodhicharla et al., 2018; Ruiz et al., 2018). Here, we found that silencing

ACSL1 abrogates the increased palmitate sensitivity of AdipoR2 siRNA-treated HEK293 cells. Specif-

ically, 200 mM palmitate causes membrane rigidification in HEK293 cells where AdipoR2 is silenced

but not when both AdipoR2 and ACSL1 are simultaneously silenced (Figure 5J–L). In other words,

ACSL1 knockdown acts as a suppressor of AdipoR2 knockdown, just as the acs-13(et54) loss-of-func-

tion allele acts as a paqr-2(tm3410) suppressor in C. elegans.

The unfolded protein response (UPR) is induced in conditions of membrane homeostasis defects,

including excess lipid saturation that cause membrane thickening and activate the UPR regulator

Ire1 (Halbleib et al., 2017; Promlek et al., 2011; Volmer et al., 2013). Using qPCR to monitor the

expression of UPR response genes, we found that silencing ACSL1 in HEK293 cells lowers their UPR

activation when challenged with 400 mM palmitate, though there was no difference in cell viability

(Figure 5—figure supplement 2A–B). This observation is consistent with ACSL1 silencing resulting

in improved membrane fluidity in the palmitate treated cells such that viability is retained without

engaging the UPR response. Mechanistically, ACSL1 silencing could lead to compensatory changes

in the expression of other ACSLs, possibly resulting in altered channelling of FAs to different down-

stream pathways and hence affect membrane composition. However, no obvious changes in expres-

sion of other ACSLs were observed when ACSL1 is silenced in HEK293 cells challenged with

palmitate, though their relative abundance vis-à-vis ACSL1 have strongly increased (Figure 5—fig-

ure supplement 2C–E). Additionally, it is interesting to note that ACSL1 expression itself was not

changed when silencing AdipoR2 or TLCD1/TLCD2 (Figure 5—figure supplement 2F); TLCD1/2 are

human homologs of C. elegans fld-1 and have been described as suppressors of the rigidity defect

in AdipoR2 knockdown cells (Ruiz et al., 2018); this suggests that expression of ACSL1 is not regu-

lated by AdipoR2 or the TLCDs.

ACSL1 silencing causes changes in lipid composition and mitochondria
homeostasis
Lipidomics analysis shows that, as in C. elegans, silencing of ACSL1 leads to a dramatic increase in

PUFA-containing membrane phospholipids, with strong increases in the abundance of 20:4, 22:5

and 22:6 in both PCs and PEs of HEK293 cells challenged with palmitate (Figure 6A), and also

slightly increased PUFA levels in lysophosphatidylcholines (Figure 6B). The relative abundance of

several types of sphingolipid classes, namely ceramides, dihydroceramides and glucosylceramide,

were also decreased by ACSL1 siRNA; levels of sphingomyelins and lactosylceramides were unaf-

fected (Figure 6—figure supplement 1A–E). No changes in the PUFA levels within TAGs, in PC/PE

and cholesterol/PC ratios or in the actual abundance of several phospholipid classes (PCs, diacyl

PEs, alkenyl PEs, phosphatidylinositols and phosphatidylserines) were observed in ACSL1 knock-

down cells (Figure 6C–E and Figure 6—figure supplement 1F). Altogether, these results suggest

Figure 5 continued

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Silencing either ACSL5 or ACSL6 has no effect on the membrane fluidity of HEK293 cells.

Figure supplement 2. Effect of ACSL1 silencing on UPR activation, viability, and expression of other ACSLs.
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that silencing ACSL1 in palmitate-challenged cells leads to a specific increase in the levels of PUFAs

in several membrane phospholipid classes (PCs and PEs) while leading to a depletion of some sphin-

golipid classes and no changes in non-membrane lipids (e.g. TAGs). ACSL1 silencing had similar

though weaker effects on the lipid composition of cells cultured in basal media (Figure 6—figure

supplement 2).

Figure 6. ACSL1 siRNA alters specifically membrane phospholipid composition in HEK293 cells challenged with

palmitate. (A) Heat maps showing the relative abundance of specific FA species among the PCs and PEs of

HEK293 cells treated with non-target (NT) or ACSL1 siRNA and cultivated for 24 hr in 400 mM palmitate (PA). Note

the increased abundance of PUFA species in the ACSL1 siRNA-treated cells. (B–C) Abundance of PUFAs among

lysophosphatidylcholines (LPC) and TAGs of HEK293 cells treated with NT or ACSL1 siRNA. Note the increased

PUFA levels in the LPCs but not TAGs of the ACSL1 siRNA-treated cells. (D–E) PC/PE ratio and abundance of free

cholesterol relative to PCs in HEK293 cells treated with NT or ACSL1 siRNA. Statistical significances of interest are

indicated, where *: p<0.05, **: p<0.01 and ***: p<0.001 for FAs with increased levels in the ACSL1 siRNA-treated

cells (#, ## and ### are used when ACSL1 siRNA-treated cells have reduced levels of a FA).

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Lipidomics data for panels A and D.

Source data 2. Lipidomics data for panel B.

Source data 3. Lipidomics data for panel C.

Source data 4. Lipidomics data for panel E.

Figure supplement 1. ACSL1 siRNA alters the levels of some sphingolipids in HEK293 cells challenged with

palmitate.

Figure supplement 1—source data 1. Lipidomics data for panels A to E.

Figure supplement 1—source data 2. Lipidomics data for panel F.

Figure supplement 2. Effect of ACSL1 siRNA on the lipid composition of HEK293 cells cultivated under basal

conditions.

Figure supplement 2—source data 3. Lipidomics data for panels A, B and E.

Figure supplement 2—source data 4. Lipidomics data for panel C.

Figure supplement 2—source data 5. Lipidomics data for panel D.

Figure supplement 2—source data 6. Lipidomics data for panel F.

Figure supplement 2—source data 7. Lipidomics data for panel G to K.

Ruiz et al. eLife 2019;8:e47733. DOI: https://doi.org/10.7554/eLife.47733 11 of 31

Research article Cell Biology

https://doi.org/10.7554/eLife.47733


The subcellular localization of ACSL1 may vary between cell types (Soupene and Kuypers, 2008).

ACSL1 has been found in the mitochondria of brown adipocytes (Ellis et al., 2010) and cardiac myo-

cytes (Grevengoed et al., 2015a), while in hepatocytes it is found on the outer mitochondrial mem-

brane, where it is part of a fatty acid import complex containing also carnitine palmitoyltransferase

1, as well as in the ER and mitochondria associated membranes (Lee et al., 2011; Lewin et al.,

2001). Importantly, ACSL1 can influence the selectivity during LCFA import into mitochondria given

its preference for 18:2 and other LCPUFAs (Grevengoed et al., 2015a; Kuwata et al., 2014). Using

subcellular fractionation and Western blotting, we found that ACSL1 is strongly enriched in the mito-

chondria of HEK293 cells (about 20x enrichment compared to whole lysate; Figure 7A–B), just as

the ACS-13 protein is associated with mitochondria in C. elegans. Some ACSL1 is associated with

the ER in HEK293 cells though this appears to be a small minority of the protein (only 3x enrichment

in the microsomal fraction; Figure 7—figure supplement 1A–B). The predominant association of

ACSL1 with mitochondria could be important for channelling LCFAs into that organelle either for

beta-oxidation or for mitochondria membrane homeostasis. If that is the case, then ACSL1 knock-

down should result in changes in mitochondria composition and/or activity. Consistently, we found a

pronounced excess of palmitoylcarnitine in the mitochondria of ACSL1 siRNA-treated cells accompa-

nied by a dramatic reduction in the high-performance liquid chromatography (HPLC) peak contain-

ing cardiolipins, which also contained slightly but significantly more 16:0 and 18:2 FA chains and

significantly less 18:1 FA chains in the ACSL1 siRNA-treated cells (Figure 7C–F and Figure 7—figure

supplement 1C). Expression of several genes implicated in CL synthesis (CRLS1) and remodelling

(Tafazzin and LCLATA1), was reduced in cells treated with ACSL1 siRNA (Figure 7G); the downregu-

lation of Tafazzin is in agreement with a previously published study of a mouse ACSL1 knockout

model (Grevengoed et al., 2015a). The mitochondria lipid composition defect in HEK293 cells

treated with ACSL1 siRNA echoes the mitochondria morphology defects observed in C. elegans, as

one would expect given the important roles played by cardiolipins in regulating mitochondria mor-

phology (Choi et al., 2006; Claypool et al., 2008; Kawasaki et al., 1999; Steenbergen et al.,

2005). Interestingly, mitochondrial respiration, measured using a pyruvate/glucose rich media to

support the citric acid cycle, was not detectably different in HEK293 cells challenged with palmitate

and treated with either control or ACSL1 siRNA (Figure 7H–I and Figure 7—figure supplement

1D–H).

ACSL1 silencing protects primary human cells against palmitate-induced
rigidification
Cancer cell such as HEK293 are characterized by severe abnormalities in many aspects of their

metabolism, including lipid metabolism (Baenke et al., 2013; Peck and Schulze, 2016;

Vriens et al., 2019). We therefore wished to determine if ACSL1 can also influence membrane fluid-

ity in normal primary human cells. We found that ACSL1 can be effectively silenced using siRNA in

human umbilical cord vein endothelial cells (HUVEC) (Figure 8A). Using the previously described

Laurdan dye method to monitor membrane fluidity (Owen et al., 2012; Ruiz et al., 2019), we found

that silencing of ACSL1 did not affect membrane fluidity in basal conditions (i.e. in the absence of

any challenge to membrane homeostasis) but did prevent membrane rigidification in HUVEC cells

challenged with 400 mM palmitate (Figure 8B–G). ACSL1 knockdown by itself does not overwhelm

membrane homeostasis under basal conditions but does protect against the membrane rigidifying

effects of palmitate both in HEK293 cells and in human primary endothelial cells.

Discussion
The present work adds to the mounting evidence that lipotoxicity by SFAs is due to their membrane

rigidifying effects: acs-13 mutations in C. elegans and ACSL1 knockdown in human cells prevent SFA

toxicity by promoting increased levels of PUFA-containing phospholipids that contribute to maintain-

ing membrane fluidity. Our findings reinforce those of Zhu et al. who performed a CRISPR/Cas9

genome-wide screen to identify modifiers of palmitate toxicity in human cells (Zhu et al., 2019).

Their top hit for decreasing palmitate toxicity was ACSL3, which acts by activating SFAs such as

exogenously provided palmitate; mutating ACSL3 therefore decreases the incorporation rate of

SFAs into phospholipids, hence helping to maintain membrane fluidity. Conversely, their top hit for

increasing palmitate toxicity was ACSL4, which acts by activating UFAs such that they can be
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incorporated into phospholipids; mutating ACSL4 therefore decreases the incorporation rate of

UFAs into phospholipids, and thus exacerbates the membrane-rigidifying effects of palmitate. Our

work suggests a third mechanism by which ACSLs influence palmitate toxicity: ACS-13 (in C. elegans)

or ACSL1 (in human) act by activating LCFAs on mitochondrial membranes and promote their import

into that organelle where they are utilized for mitochondrial membrane homeostasis or degraded.

Mutating or inhibiting ACS-13 or ACSL1 results in more PUFAs available for incorporation into phos-

pholipids, which improves membrane fluidity (see model in Figure 9). Other mutations that increase

PUFA levels, such as the mdt-15(et14) mutation in C. elegans, synergize with acs-13 loss-of-function

mutation since they lead to even more PUFAs accumulating and available for incorporation into

phospholipids.

Figure 7. ACSL1 is enriched on mitochondria and its deficiency alters acyl-carnitine and cardiolipin levels. (A)

Western blot showing that ACSL1 is enriched in the mitochondrial fraction purified from HEK293 cells. The VDAC,

GAPDH and Calnexin proteins were also detected as markers of mitochondria, cytosol and ER, respectively. (B)

Quantification of the blot in A. (C) Levels of palmitoylcarnitine (AC16:0) relative to total PCs in HEK293 cells

treated with non-target (NT) or ACSL1 siRNA and challenged with 400 mM palmitate (PA) for 24 hr. (D) HPLC

chromatogram for HEK293 cells treated with NT or ACSL1 siRNA. Note that the HPLC peak containing cardiolipins

(CLs) is dramatically reduced in the ACSL1 siRNA-treated cells challenged with PA. (E) Quantification of the CL

and PE peaks from triplicate experiments as in (D). (F) Mass spectrum confirming that CLs are the dominant

species depleted in the peak labelled as ‘CL’ in ACSL1 siRNA-treated cells in (D); levels of phosphatidylglycerols

(PGs) were unchanged. (G) Changes in the expression of the indicated CL synthesis/remodelling genes in ACSL1

siRNA-treated HEK293 cells challenged with PA. (H) Example of a Seahorse analysis measuring oxygen

consumption rates in in HEK293 cells treated with NT or ACSL1 siRNA and cultivated in the presence of PA. (I)

Basal respiration in HEK293 cells pre-treated with the indicated conditions prior to the Seahorse analysis. All PA

treatments used 400 mM for 24 hr. Statistically significant differences from control are indicated, where *:p<0.05;

**: p<0.01 and ***: p<0.001.

The online version of this article includes the following source data and figure supplement(s) for figure 7:

Source data 1. Lipidomics data for panel C.

Figure supplement 1. Some ACSL1 is enriched in the microsomal fraction and evidence that mitochondria

respiration is still functional when ACSL1 is silenced.

Figure supplement 1—source data 1. Lipidomics data for panel C.
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There are 26 acyl-CoA synthetases in human classified into six families based on sequence homol-

ogy and fatty acid chain length preferences: the ACS short-chain family, ACS medium-chain family,

ACS long-chain family, ACS very long-chain family, ACS bubblegum family and the ACSF family)

(Watkins et al., 2007). Nearly all pathways of fatty acid metabolism require the acyl-CoA synthe-

tase-mediated conversion of free fatty acids to acyl-CoAs. There are five ACSLs (ACSL1 and ACSL3-

6) that activate preferentially long-chain fatty acids, and these are intrinsic membrane proteins whose

active sites face the cytosol to produce acyl-CoAs that can partition in the proximate membrane

monolayer or be transported to different organelles by cytosolic acyl-CoA binding proteins. The sub-

cellular location of each ACSL partly explains how they each direct, or ‘channel’, their acyl-CoA prod-

ucts to specific downstream pathways (Coleman, 2019). For example, ACSL1 is strongly expressed

in adipocytes where it has been localized to mitochondria (Forner et al., 2009; Gargiulo et al.,

1999), though subcellular fractionation studies with different cell types have also localized it to the

plasma membrane and ER (Gargiulo et al., 1999), vesicles (Sleeman et al., 1998) and lipid droplets

(Brasaemle et al., 2004). Adipocyte-specific ACSL1 knockout mice exhibit a severe defect in mito-

chondria-based long-chain FA degradation, indicating that channeling LCFAs for degradation in

mitochondria is an important function of ACSL1 in these cells (Ellis et al., 2010). Our present work

shows that the C. elegans homolog of ACSL1, namely ACS-13, is also localized to mitochondria, sug-

gesting that this may be the ancestral and evolutionarily conserved site of action for this acyl-CoA

synthetase. Furthermore, the increased PUFA levels in the phospholipids of the acs-13 mutant

worms are consistent with ACS-13 being required for LCFA utilization in C. elegans mitochondria

(either for homeostasis of mitochondrial structural lipids or as fuel), just as ACSL1 is required for

LCFA degradation in mouse adipocytes.

We identified two major changes in lipid composition when ACSL1 was silenced in HEK293 cells:

1) Increased PUFA levels among PCs and PEs, which make up the bulk of membrane phospholipids

in mammalian cells; and 2) dramatic changes in the levels of cardiolipins and palmitoylcarnitine,

Figure 8. Knockdown of ACSL1 protects human primary endothelial cells against palmitate toxicity. (A) Efficiency

of ACSL1 knockdown using siRNA relative to a non-target (NT) siRNA treatment in HUVEC. (B) Pseudocolor

images showing Laurdan dye global polarization (GP) index at each pixel position in HUVEC cells treated with NT

or ACSL1 siRNA under basal conditions. (C) Average GP index from several images as in A; n = 10. (D) Distribution

of GP index values in representative images for each treatment under basal condition. (E–G) As in A-C but with

HUVEC cells cultivated in the presence of 400 mM palmitate (PA); n = 15 in E. Statistically significant differences

from control are indicated, where **: p<0.01 and ***:p<0.001.
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which are both mitochondria-specific lipid classes. We speculate that absence of ACSL1 alters the

import of LCFAs into mitochondria and that this explains both findings. Grevengoed and co-workers

previously drew similar conclusions from a separate study: they found that mouse cardiac myocytes

lacking ACSL1 have decreased PUFA levels among mitochondrial phospholipids, including cardioli-

pins, accompanied by excess PUFAs in PCs and PEs (Grevengoed et al., 2015a). To quote a brief

passage from their work: “. . . it is surprising that the linoleate content of PC and PE was also greater

in the absence of ACSL1. A likely explanation is that when ACSL1 is absent, linoleate increases within

the cell and becomes available for activation by other ACSL isoforms that are present on the endo-

plasmic reticulum where the excess linoleoyl-CoA would be used during the synthesis of PC and PE’

(Grevengoed et al., 2015a). This is very much in line with the interpretation of our results. Note also

that in spite of the mitochondria morphology or lipid composition defects, we observed no growth/

brood size phenotypes in the C. elegans acs-13 mutant nor respiration defects in HEK293 cells

treated with ACSL1 siRNA. While there is no doubt that cardiolipins are important for mitochondria

morphology and respiration (Grevengoed et al., 2015a; Dudek et al., 2013; Li et al., 2010;

Nguyen et al., 2016; Kameoka et al., 2018), they are not strictly essential, as evidenced by sus-

tained respiration in yeast mutants lacking cardiolipins (Koshkin and Greenberg, 2000). Similarly,

Barth syndrome patients have severe cardiolipin deficiencies but are viable with cells capable of effi-

cient respiration in spite of their abnormal mitochondria morphology (Gonzalvez et al., 2013).

These studies therefore suggest that mitochondria are robust and can tolerate the types of defects

observed in C. elegans acs-13 mutants and HEK293 cells where ACSL1 has been silenced. Note also

that the mitochondria morphology defects in the C. elegans acs-13 mutant could reflect either a

direct failure in membrane homeostasis due to poor LCFA import, or some indirect consequence

Figure 9. Model explaining the membrane-fluidizing effect of decreased/loss of ACSL1/ACS-13. The normal

function of ADIPOR2 (PAQR-2 in C. elegans) is to monitor and maintain membrane fluidity: it is activated by

membrane rigidification and thereby signals to promote fatty acid desaturation and insertion of fluidizing UFAs in

phospholipids. When ADIPOR2 is absent, exogenous SFAs become incorporated into the plasma membrane and

cause rigidification. When present in mitochondria ACSL1 (ACS-13 in C. elegans) help channel LCFAs (including

UFAs and PUFAs) into mitochondria. When ACSL1 is absent, fewer/different LCFAs are channelled into

mitochondria. This results in mitochondria defects but also increased availability of LCFAs (including UFAs and

PUFAs) to be channelled towards other processes, such as phospholipid remodelling that results in improved

membrane fluidity.

The online version of this article includes the following figure supplement(s) for figure 9:

Figure supplement 1. Revised model of the likely epigenetic interactions in the paqr-2 pathway based on

previously published work and the present study.
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such as impaired autophagy, as has been previously proposed for mouse cardiac myocytes lacking

ACSL1 (Grevengoed et al., 2015b).

Alternative explanations for some of our observations remain possible. In particular, association

of ACSL1 to mitochondria can help tether lipid droplets to the mitochondrial outer membrane,

hence facilitating uptake of TAG-released FAs (Young et al., 2018; Coleman, 2019). Though we did

not observe changes in TAG composition when ACSL1 was silenced in HEK293 cells, it is possible

that FAs released from lipid droplets were diverted to different fates, including phospholipid remod-

eling, in these cells. Also, the possible roles of peroxisomes, with which ACSL1 can associate

(Islinger et al., 2007; Islinger et al., 2010; Watkins and Ellis, 2012), has not been explored in our

study; deficient channeling of LCFAs into peroxisomes in ACSL1-deficient cells could also explain

many of our observations.

The present results allow us to re-evaluate the epistatic interactions important for membrane

homeostasis in C. elegans. Tolerance to dietary SFAs and cold adaptation in C. elegans both require

the plasma membrane PAQR-2/IGLR-2 complex, which likely acts as a sensor of membrane rigidifica-

tion that can signal to promote adaptive changes in membrane composition to restore fluidity

(Svensson et al., 2011; Svensk et al., 2013; Svensk et al., 2016a; Devkota et al., 2017). Several

paqr-2(tm3410) suppressor mutants have now been identified and fall into two broad classes. The

first class of paqr-2(tm3410) suppressors are mutations that promote the production of UFAs, such

as gain-of-function mutations in mdt-15 or nhr-49, that are homologous to mediator subunit MED15

and the nuclear hormone receptors PPARa/HNF4 respectively, and act as transcriptional activators

for the D9 desaturases (Svensk et al., 2013; Yang et al., 2006; Ratnappan et al., 2014;

Taubert et al., 2006; Lee et al., 2015), or loss-of-function mutations in enzymes of the PC synthesis

pathway, such as pcyt-1 (homologous to human PCYT1A that regulates the rate-limiting step during

PC synthesis) or cept-1 (a homolog of human choline/ethanolamine phosphotransferase, i.e. CEPT1),

that result in SBP-1 (homologous to human SREBPs) activation hence increased transcription of D9

desaturases (Smulan et al., 2016; Walker et al., 2011). The second class of paqr-2 suppressors are

mutations that promote increased incorporation of LCPUFAs in phospholipids, such as mutations in

fld-1 (homologs of TLCD1/2 in humans), which encodes a multi-pass plasma membrane protein that

limits the incorporation rate of LCPUFAs into phospholipids and may be a regulator of the Lands

cycle (Ruiz et al., 2018), and acs-13, which is the subject of the present study. Suppressor mutations

from either class by themselves are not sufficient to fully suppress the paqr-2(tm3410) mutant pheno-

types, especially with respect to growth in the presence of dietary SFAs which is a particularly severe

challenge for this mutant. However, combining suppressors of both classes provides excellent paqr-

2(tm3410) suppression, as illustrated by the powerful suppression of the paqr-2(tm3410) SFA intoler-

ance when combining the mdt-15(et14) and acs-13(et54) mutations. This suggests that the complete

paqr-2 downstream program likely includes both the induction of desaturases as well as suppression

of processes that tend to deplete LCFAs, such as their oxidation in mitochondria. A revised model

of epistatic interactions implicated in membrane fluidity homeostasis is presented in Figure 9—fig-

ure supplement 1. It will be interesting in the future to leverage protein-protein interaction studies

(e.g. co-immunoprecipitation) or transcriptome studies (e.g. RNAseq) to try and identify the precise

nature of the paqr-2 downstream effectors.

In conclusion, we showed that suppressing the activity of ACS-13 (in C. elegans) or its homolog

ACSL1 (in human cells) prevents SFA-induced membrane rigidification and lipotoxicity by increasing

the abundance of LCPUFA-containing phospholipids. Exploiting the differences among the ACSLs

may allow the targeting of specific acyl-CoA synthetases, such as ACSL1, with small-molecule inhibi-

tors and thus open new therapeutic avenues against lipotoxicity in clinical contexts such as dyslipide-

mia or liver steatosis.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Strain,
strain
background
(C. elegans)

N2 C. elegans
Genetics Center
(CGC)

Strain,
strain
background
(C. elegans)

HA1842 [rtIs30(pfat-7::GFP)] Gift from Amy Walker;
PMID: 22035958

Strain,
strain
background
(C. elegans)

PD4251 (ccIs4251 [(pSAK2) myo-
3p::GFP::LacZ::NLS + (pSAK4) myo-
3p::mitochondrial GFP + dpy-20(+)] I)

C. elegans Genetics Center
(CGC);
PMID: 9486653

Strain,
strain
background
(C. elegans)

Strain,
strain
background
(C. elegans)

Genetic
reagent
(C. elegans)

paqr-2(tm3410)
mdt-15(et14)

C. elegans
Genetics Center (CGC);
PMID: 24068966

QC127

Genetic
reagent
(C. elegans)

acs-13(et54) This paper Will be
deposited
at CGC.

Genetic
reagent
(C. elegans)

acs-13(ok2861) C. elegans
Genetics Center (CGC);
PMID: 23173093

RB2147

Genetic
reagent
(C. elegans)

cept-1(et10) C. elegans
Genetics Center (CGC);
PMID: 24068966

QC123

Genetic
reagent
(C. elegans)

paqr-2(tm3410) C. elegans
Genetics Center (CGC);
PMID: 21712952

QC129

Genetic
reagent
(C. elegans)

nhr-49(et8) C. elegans
Genetics Center (CGC);
PMID: 24068966

QC121

Genetic
reagent
(C. elegans)

hacd-1(et12) C. elegans
Genetics Center (CGC);
PMID: 24068966

QC125

Genetic
reagent
(C. elegans)

svIs136 [pVB641OB
(Pvha-6::mCh::SP12)]

Gift from Gautam Kao
(Univ Gothenburg)

Genetic
reagent
(E. coli strain HT115)

L4440; acs-1; acs-2; acs-4; acs-5; acs-7;
acs-9; acs-11; acs-12; acs-15; acs-16; acs-
17; acs-18; acs-19; acs-20; acs-21; acs-22

PMID: 12529635 The RNAi clones are
available within
the ‘C. elegans RNAi
collection (Ahringer)’
distributed by Source
Bioscience Limited.

Cell line
(Homo sapiens)

HEK293 ATCC CRL-1573

Biological
sample
(Homo sapiens)

HUVEC Gibco C-015–5C Human umbilical
vein endothelial cells

Continued on next page

Ruiz et al. eLife 2019;8:e47733. DOI: https://doi.org/10.7554/eLife.47733 17 of 31

Research article Cell Biology

https://www.ncbi.nlm.nih.gov/pubmed/22035958
https://www.ncbi.nlm.nih.gov/pubmed/9486653
https://www.ncbi.nlm.nih.gov/pubmed/24068966
https://www.ncbi.nlm.nih.gov/pubmed/23173093
https://www.ncbi.nlm.nih.gov/pubmed/24068966
https://www.ncbi.nlm.nih.gov/pubmed/21712952
https://www.ncbi.nlm.nih.gov/pubmed/24068966
https://www.ncbi.nlm.nih.gov/pubmed/24068966
https://www.ncbi.nlm.nih.gov/pubmed/12529635
https://doi.org/10.7554/eLife.47733


Continued

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Antibody Mouse
anti-GFP
monoclonal
antibody
(GF28R)

Invitrogen MA5-15256

Antibody Mouse
anti-tubulin
monoclonal
antibody

Sigma T5168

Antibody Goat
HRP-conjugated
anti-mouse
IgG antibody

Dako P0447

Antibody rabbit
anti-ACSL1
monoclonal
antibody

Cell Signaling D2H5

Antibody rabbit
anti-Calnexin
monoclonal
antibody

Cell Signaling C5C9

Antibody rabbit
anti-GAPDH
monoclonal
antibody

Cell Signaling 14C10

Antibody rabbit
anti-VDAC
monoclonal
antibody

Cell Signaling D73D12

Antibody HRP-conjugated
anti-rabbit
IgG
antibody

Dako P0399

Recombinant
DNA
reagent

pPD118.33 Gift
from
Andre
Fire

RRID:Addgene_1596

Recombinant
DNA
reagent

pPD95.77 Gift
from
Andre
Fire

RRID:Addgene_1495

Recombinant
DNA
reagent

Pacs-13::acs-13 This
paper

Recombinant
DNA
reagent

Pacs-13::ACS-
13 isoform a::GFP

This
paper

Recombinant
DNA
reagent

Pacs-13::GFP This
paper

Recombinant
DNA
reagent

pRF4
[rol-6(su1006)]

PMID: 1935914

Sequence-based
reagent

AdipoR2
siRNA

Dharmacon J-007801–10

Sequence-based
reagent

NT
siRNA

Dharmacon D-001810–10 Non-target
control

Sequence-based reagent ACSL1
siRNA

Dharmacon J-011654–06

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Sequence-based
reagent

ACSL5
siRNA

Dharmacon J-006327–09

Sequence-
based reagent

ACSL6
siRNA

Dharmacon J-007748–05

Peptide,
recombinant
protein

Recombinant
Cas9
protein

Dharmacon CAS11200

Peptide,
recombinant
protein

Bovine
Serum
Albumin
(fatty acid free)

Sigma A8806

Peptide,
recombinant
protein

Bovine
Serum
Albumin

Sigma A7906

Commercial
assay or kit

RNeasy
Plus Kit

Qiagen 74134

Commercial
assay or kit

Qproteome
mitochondria
isolation
kit

Qiagen 37612

Commercial
assay or kit

Pierce BCA
Protein Assay
Kit

ThermoScientific 23227

Commercial
assay or kit

RevertAid H
Minus First
Strand cDNA
Synthesis Kit

ThermoScientific K1631

Commercial
assay or kit

HOT
FIREPol
EvaGreen
qPCR
Supermix

Solis
Biodyne

08-36-00001

Commercial
assay or kit

Viromer
Blue

Lipocalyx VB-01LB-01

Commercial
assay or kit

Gibson
assembly
cloning kit

NEB E5510S

Commercial
assay or kit

Enhanced
chemiluminescence
detection kit

Millipore WBKLS0100

Commercial
assay or kit

Lipofectamine
RNAiMAX

Invitrogen 13778100

Chemical
compound,
drug

BODIPT 500
/510 C1, C12

Invitrogen D3823

Chemical
compound,
drug

Laurdan ThermoFisher D2350

Chemical
compound,
drug

Palmitic
acid

Sigma-Aldrich P0500

Chemical
compound,
drug

Linoleic acid
acid

Sigma-Aldrich L1376

Chemical
compound,
drug

Viromer
Blue

Lipocalyx

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Chemical
compound, drug

Mitotracker
Deep Red FM

Invitrogen M22426

Software,
algorithm

ImageJ script:
nprot.2011.419-S1

PMID: 22157973

Software,
algorithm

LipidView
software

Sciex

Software,
algorithm

MassHunter
software

Agilent
Technologies

Software,
algorithm

ZEN
software

Zeiss

C. elegans strains and cultivation
The wild-type C. elegans reference strain N2 and the mutant alleles studied (except for the novel

acs-13 created in the present study) are available from the C. elegans Genetics Center (CGC; MN;

USA). The pfat-7::GFP (rtIs30) carrying strain HA1842 was a kind gift from Amy Walker

(Walker et al., 2011), and its quantification was performed as previously described (Svensk et al.,

2013). The C. elegans strains maintenance and experiments were performed at 20˚C using the E.

coli strain OP50 as food source, which was maintained on LB plates kept at 4˚C (re-streaked every 6–

8 weeks) and single colonies were picked for overnight cultivation at 37˚C in LB medium then used

to seed NGM plates (Sulston and Hodgkin, 1988); new LB plates were streaked every 3–4 months

from OP50 stocks kept frozen at �80˚C. NGM plates containing 20 mM glucose were prepared

using stock solution of 1 M glucose that was filter sterilized then added to cooled NGM after

autoclaving.

Screen for suppressors of SFA intolerance and whole genome
sequencing
paqr-2(tm3410) mdt-15(et14) double mutant worms were mutagenized for 4 hr by incubation in the

presence of 0.05 M ethyl methane sulfonate according to the standard protocol (Sulston and Hodg-

kin, 1988). The worms were then washed and placed on a culture dish. Two hours later, vigorous

hermaphrodite L4 animals were transferred to new culture plates. Five days later, F1 progeny were

bleached, washed and their eggs allowed to hatch overnight in M9 (22 mM KH2PO4, 42 mM

Na2HPO4, 85.5 mM NaCl and 1 mM MgSO4). The resulting L1 larvae were transferred to new plates

containing 20 mM glucose then screened 72 hr later for fertile adults, which were picked to new

plates for further analysis.

The isolated suppressor alleles were outcrossed 4-to-6 times prior to whole genome sequencing

(see below), and 10 times prior to their phenotypic characterization or use in the experiments pre-

sented here. The genomes of suppressor mutants were sequenced to a depth of 25-40x as previ-

ously described (Sarin et al., 2008). Differences between the reference N2 genome and that of the

mutants were sorted by criteria such as non-coding substitutions, termination mutations, splice-site

mutations, etc. (Bigelow et al., 2009). For each suppressor mutant, one or two hot spots, that is

small genomic area containing several mutations, were identified, which is in accordance to previous

reports (Zuryn et al., 2010). Mutations in the hot spot that were still retained after 10 outcrosses

were considered candidate suppressors and tested experimentally as described in the text.

Growth, tail tip scoring and other C. elegans assays
For length measurement studies, synchronized L1s were plated onto test plates seeded with E. coli,

and worms were mounted then photographed 72 hr, 96 or 144 hr later (as indicated). The length

of >20 worms was measured using ImageJ (Schneider et al., 2012). Quantification of the withered

tail tip phenotype was done on synchronous 1 day old adult populations, that is 72 hr post L1

(n � 100) (Svensk et al., 2013). Other assays starting with 1 day old adults have also previously

been described in details: total brood size (n = 5) (Svensson et al., 2011); lifespan (n = 100)
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(Svensson et al., 2011); defecation period (n = 5; average interval between five defecation was

determined for each worm) (Liu and Thomas, 1994).

CRISPR-Cas9 genome editing in C. elegans
Guide RNA (gRNA) was designed for acs-13 as a published protocol (Paix et al., 2017). Single guide

RNA (sgRNA) was conceived to be amplified using forward and reverse primers containing T7 pro-

moter, Guide RNA and tracrRNA sequences as follows: T7 promoter (5’-taatacgactcactataggg- 3’),

Guide RNA (5’-ctctaccagggtgttcgccg- 3’) and tracrRNA sequence (5’-gttttagagctagaaatagcaagt-

taaaataaggctagtccgttatcaacttgaaaaagtggca ccgagtcggtgctttt- 3’). The forward primer was designed

using all 20 nucleotides (nt) of T7 promoter sequence, 20 nt of Guide RNA sequence and the first 20

nt of the tracrRNA sequence. The reverse primer was designed using the last 20 nt of the tracrRNA.

Using the forward and reverse primers, sgRNA was amplified using the PUC57-sgRNA expression

vector as template (Shen et al., 2014). The amplified DNA was then used as template for in vitro

transcription (MEGAshortscript T7 high yield transcription kit AM1354 from Promega) to produce

the sgRNA (5’-taatacgactcactatagggctctaccagggtgttcgccggttttagagctagaaata gcaagttaaaataaggc-

tagtccgttatcaacttgaaaaagtggcaccgagtcggtgctttt-3’). The extracted RNA was purified using MEGA-

clear RNA purification kit AM1908 (Promega). Finally, the repair template was designed by

introducing the acs-13(et54) mutation and 50 nt homology arms on both sides of the mutation (5’-

aggctttcctgttcgaagacgcgcgcaccctctaccagggtgttcgccgcAgagcccgtctctc gaacaacgggccgatgctcg-

gacgtcgagtcaaaca-3’; the G-to-A mutation is indicated in underlined uppercase).

A sgRNA and repair template for dpy-10 were included in the microinjection mix to identify suc-

cessful CRISPR/Cas9 events, as per a published protocol (Paix et al., 2017). The final microinjection

mix consisted of the following: 3 ml of Cas9 protein (3.2 mg/ml; Dharmacon), 0.5 ml KCl (1M), 0.75 ml

HEPES pH 7.4 (1M), 7 ml sgRNA acs-13, 1 ml acs-13(et54) repair template (10 mM), 7 ml sgRNA dpy-

10, 1 ml dpy-10 repair template (10 mM). The injection mix was incubated at 37˚C for 15 mins before

loading into an injection needle prior to injection into worm gonads. 50 individual Rollers were

picked to separate from among the progeny of microinjected worms and allowed to lay eggs. The

acs-13 locus of the F2 progeny was amplified by PCR and sequenced to identify successful acs-13

gene editing events.

Construction of plasmids
acs-13 rescue construct
The Pacs-13::acs-13 rescue construct was generated with a Gibson assembly cloning kit (NEB) using

the following four DNA fragments: (1) 2 kb upstream regulatory sequence (promoter) of acs-13 iso-

form a (amplified using the following primers: 5’-gtgtgtgtgagtgtgtgtttttgctccctccgttttccgt-3’ and 5’-

gccgtgtctgtgataaccattctgtgtgtttctgtgttta-3’); (2) isoform a cDNA (amplified using the following pri-

mers: 5’-taaacacagaaacacacagaatggttatcacagacacggc-3’ and 5’-atcggggggaacggaatctatggaagtttc-

gaatacatcg-3’); (3) acs-13 3’UTR (amplified using the following primers: 5’-

cgatgtattcgaaacttccatagattccgttccccccgat-3’ and 5’-tctattcttttgatttataaggctcaactgacacttttcc-3’); and

(4) ampicillin resistance vector pPD95.77 (amplified using the following primers: 5’-ggaaaagtgtcagtt-

gagccttataaatcaaaagaataga-3’ and 5’-acggaaaacggagggagcaaaaacacacactcacacacac-3’). The assem-

bled plasmid was injected into paqr-2(tm3410) mdt-15(et14); acs-13(et54) worms at 20 ng/ml

together with 3 ng/ml pPD118.33 (Pmyo-2:GFP; Davis et al., 2008), which was used as phenotypic

marker used to identify transgenic worms.

acs-13 translational GFP reporter
The Pacs-13::ACS-13 isoform a::GFP translational GFP reporter was generated with a Gibson assem-

bly cloning kit (NEB) using the following two DNA fragments: (1) The acs-13 promoter with acs-13

coding sequence was amplified from Pacs-13::acs-13 (amplified using the following primers: 5’-

tggatgaactatacaaatagattccgttccccccgattca-3’ and 5’-agttcttctcctttactcattggaagtttcgaatacatcg-3’); (2)

GFP was amplified from the plasmid Pfld-1::fld-1::GFP (Ruiz et al., 2018) (amplified using the follow-

ing primers: 5’-cgatgtattcgaaacttccaatgagtaaaggagaagaact-3’ and 5’-tgaatcggggggaacggaatc-

tatttgtatagttcatcca-3’). The Pacs-13::ACS-13 isoform a::GFP plasmid was injected into N2 worms at

20 ng/ml together with 30 ng/ml pRF4, which carries the dominant rol-6(su1006) marker used to iden-

tify transgenic worms (Mello et al., 1991).
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acs-13 transcriptional GFP reporter
The Pacs-13::GFP transcriptional reporter was generated by deleting the acs-13 gene from Pacs-13::

ACS-13 isoform a::GFP using PCR-based mutagenesis (Q5- site directed mutagenesis kit, Biolabs)

with the following primers: 5’-atgagtaaaggagaagaacttttca-3’ and 5’-tctgtgtgtttctgtgtttaagtgg-3’.

The Pacs-13::GFP plasmid was injected into N2 worms at 20 ng/ml together with 30 ng/ml pRF4,

which carries the dominant rol-6(su1006) marker used to identify transgenic worms (Mello et al.,

1991).

Pre-loading of E. coli with palmitate or linoleic acid
Linoleic acid (0.324 M stock in ethanol) was diluted in LB media to a final concentration of 0.5 or

0.25 mM. Palmitate (0.1 M stock in ethanol) was diluted in LB media to a final concentration of 2

mM. LB containing fatty acids was then inoculated with OP50 bacteria and shaken overnight at 37˚C.

The bacteria were then concentrated 10X by centrifugation, and seeded onto NGM plates lacking

peptone (200 ml/plate). Synchronized L1 larvae were added to such plates the following day.

Mitotracker staining and co-localization quantification
Mitotracker Deep Red FM (Invitrogen) was suspended in anhydrous dimethylsulfoxide (DMSO) to a

stock solution of 10 mM, which was diluted further in M9 to a working solution of 10 mM. Mitotracker

deep red was loaded by incubating the worms for 2 hr with 10 mM of the dye in M9 buffer. These

worms were washed several times with M9 buffer and mounted on agarose pads, and then observed

and photographed using Zeiss LSM880 confocal microscope. Mitotracker Deep Red FM was excited

at 644 nm, and the fluorescence emitted between 657 and 765 nm was collected. The quantification

of co-localization was done using ImageJ.

RNAi in C. elegans
All strains were grown on control L4440 RNAi bacteria for one generation at 20˚C, then synchronized

and L1s placed onto assay RNAi, incubated at 15˚C and scored on day 6. Feeding RNAi clones were

from the Ahringer RNAi library and were sequenced to confirm their identity, and used as previously

described (Fraser et al., 2000).

Imaging and scoring of mitochondria morphology in C. elegans
Mitochondrial morphology was analysed in N2 and acs-13 worms using the strain PD4251 (ccIs4251

[(pSAK2) myo-3p::GFP::LacZ::NLS + (pSAK4) myo-3p::mitochondrial GFP + dpy-20(+)] I) which car-

ries a nuclear and mitochondrial marker transgenes (Fire et al., 1998). Synchronized L1 larvae of

myo-3::GFP and acs-13; myo-3:GFP worms were spotted on control plates and incubated at 20˚oC.

After 72 hr of incubation at 20˚C, they were washed off the plate and mounted on agarose pads

then observed with a Zeiss LSM880 confocal microscope. Worms were scored based for the pres-

ence of clearly abnormal mitochondrial morphology in at least one muscle cell (n � 100 worms). The

svIs136 [pVB641OB (Pvha-6::mCh::SP12)] was used as an ER marker in some experiments (gift from

Gautam Kao; Billing, 2014).

C. elegans and HEK293 Shotgun Lipidomics
For worm lipidomics, samples were composed of synchronized L4 larvae (one 9 cm diameter plate/

sample; each treatment/genotype was prepared in five independently grown replicates) grown over-

night on OP50-seeded NGM or NGM containing 20 mM glucose. Worms were washed three times

with M9, pelleted and stored at �80˚C until analysis. For HEK293 lipidomics, cells (prepared in at

least three independent replicates) were cultivated in the presence of 400 mM palmitate for 24 hr

prior to harvesting using TrypLE Express (Gibco). For lipid extraction, the pellet was sonicated for 10

min in methanol and then extracted according to published methods (Löfgren et al., 2016). Internal

standards were added during the extraction. Lipid extracts were evaporated and reconstituted in

chloroform:methanol [1:2] with 5 mM ammonium acetate. This solution was infused directly (shotgun

approach) into a QTRAP 5500 mass spectrometer (Sciex, Toronto, Canada) equipped with a with a

TriVersa NanoMate (Advion Bioscience, Ithaca, NY) as described previously (Jung et al., 2011).

Phospholipids were measured using precursor ion scanning (Ejsing et al., 2009; Ekroos et al.,

2003) and TAGs were measured using neutral loss scanning (Murphy et al., 2007). Sphingolipids
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from HEK293 cells were measured using ultra performance liquid chromatography coupled to tan-

dem mass spectrometry according to previous publication (Amrutkar et al., 2015). Free cholesterol

from HEK293 cells was quantified using straight phase HPLC coupled to ELS detection according to

previous publication (Homan and Anderson, 1998). The data were evaluated using the LipidView

software (Sciex, Toronto, Canada). The complete lipid composition data are provided as source data

accompanying each lipidomics figure.

Cardiolipin analysis
Cellular lipids were extracted using the Folch procedure. The total extract was reconstituted in hep-

tane:isopropanol [9:1] and injected onto a 4.6 � 100 mm silica column (Spherisorb, Waters, Milford,

MA). Separation was performed according to previous publication (Homan and Anderson, 1998).

During the analysis, 20% of the sample went for detection using the ELS detector while 80% was

fraction collected. The cardiolipin fraction was then evaporated and reconstituted in chloroform:

methanol [1:2] with 5 mM ammonium acetate and analyzed using mass spectrometry for determina-

tion of cardiolipin species composition. The analysis was made using a QTRAP 5500 mass spectrom-

eter (Sciex, Concord, Canada) equipped with a robotic nanoflow ion source, TriVersa NanoMate

(Advion BioSciences, Ithaca, NJ). The detection of cardiolipin species (as [M-2H]2- ions) were made

by multiple precursor ion scanning according to previous publication (Ejsing et al., 2006).

ESI-MS/MS of acylcarnitine (AC) and phospholipids
Cellular lipids were extracted according to Bligh and Dyer (1959) and dissolved in chloroform/meth-

anol 1:1 (by vol). Immediately before mass spectrometry methanol was added to the samples to give

a solution of 1:2 chloroform/methanol, and thereafter 2% NH4OH was added along with an internal

lipid standard mixture containing AC12:0 (Sigma-Aldrich) and representatives for all phospholipid

classes analyzed. Samples were injected into the electrospray source of a triple quadrupole mass

spectrometer (Agilent 6410 Triple Quadrupole; Agilent Technologies) at a flow rate of 10 ml/min,

and spectra were recorded using both positive and negative ionization mode. AC was analyzed by

MS/MS precursor-ion scanning mode as m/z 85 (P85), and phospholipid species were detected using

head-group specific MS/MS scanning modes; phosphatidylcholine as P184, phosphatidylethanol-

amine (PE) as neutral loss of 141 (NL141), phosphatidylserine as NL87 and phosphatidylinositol as

P241. Phospholipid acyl chain assemblies were confirmed using negative mode precursor scans for

the acyl fragments released from these lipids or their formate adducts. PE alkenyl-acyl species were

confirmed as described previously (Zemski Berry and Murphy, 2004) and quantified using MS-

scan. Mass spectra were processed by MassHunter software (Agilent Technologies) and individual

lipid species were quantified using the internal standards and LIMSA software (Haimi et al., 2006).

Cultivation of HEK293 and HUVEC
HEK293 were grown in DMEM containing glucose 1 g/l, pyruvate and GlutaMAX and supplemented

with 10% fetal bovine serum, 1% non-essential amino acids, HEPES 10 mM and 1% penicillin and

streptomycin (all from Life Technologies) at 37˚C in a water humidified 5% CO2 incubator. Cells were

sub-cultured twice a week at 90% confluence. HUVEC (passages 1 to 5) were obtained from Gibco

and cultivated as described in Ruiz et al. (2017). Briefly, cells were grown in M200 medium (Gibco)

containing the Low Serum Growth Supplement (Gibco) and 1% penicillin and streptomycin. Cells

were sub-cultured twice a week at 90% confluence, and cultivated on treated plastic flask and multi-

dish plates (Nunc). For FRAP and Laurdan dye experiments, HEK293 or HUVEC were seeded in glass

bottom dishes (Ibidi) pre-coated with 0.1% porcine gelatin (Sigma). The HEK293 cell line was authen-

ticated by genotyping and confirmed to be free of mycoplasma.

siRNA in HEK293 cells and HUVEC
The following pre-designed siRNAs were purchased from Dharmacon: AdipoR2 J-007801–10, Non-

target D-001810–10, ACSL1 J-011654–06, ACSL5 J-006327–09 and ACSL6 J-007748–05. For

HEK293 cells, transfection of 25 nM siRNA was performed in complete media using Viromer Blue

according to the manufacturer’s instructions 1X (Lipocalyx). HUVEC were transfected using 10 nM

siRNA and Lipofectamine RNAiMAX Transfection Reagent following the HUVEC optimized protocol
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from the manufacturer (Invitrogen). Knockdown gene expression was verified 48 hr after

transfection.

Quantitative PCR (qPCR)
Total C. elegans and cellular RNA were isolated using RNeasy Kit according to the manufacturer’s

instructions (Qiagen) and quantified using a NanoDrop spectrophotometer (ND-1000; Thermo Scien-

tific). cDNA was obtained using a RevertAid H Minus First Strand cDNA Synthesis Kit with random

hexamers (Thermo Scientific). qPCR experiments were performed with a CFX Connect thermal cycler

(Bio Rad) using Hot FIREpol EvaGreen qPCR SuperMix (Solis Biodyne) and standard primers. The rel-

ative expression of each gene was calculated according to the DDCT method (Livak and Schmitt-

gen, 2001). Expression of the housekeeping gene PPIA (human samples) and tba-1 (C. elegans)

were used to normalize for variations in RNA input. Primers designed for this study were: ACSL1-For

(5´-caagcaaacaccacgctgaa-3´), ACSL1-Rev (5´-caccatcagccggactcttc-3´), ACSL3-For (5´-tggatgatagctg-

cacaggc-3´), ACSL3-Rev (5´-tcggtggctttccatcaaca-3´), ACSL4-For (5´-ttcctccaagtagaccaacgc-3´),

ACSL4-Rev (5´-tcggtcccagtccaggtatt-3´), ACSL5-For (5´-gaggccaagacacccttgaa-3´), ACSL5-Rev (5´-

attacacgaacccttccgcc-3´), ACSL6-For (5´-gtaccttcaccactcctggc-3´), ACSL6-Rev (5´-gcaggcccagtagtt-

cagtt-3´), CRLS1-For (cacccccagcctgtatgaa-3´), CRLS1-Rev (5-´tggcccagtttcgagcaata-3´), TAZ-For (5-´

accaaggagctacactccca-3´), TAZ-Rev (5´-catgtgcctgcctgtgtcta-3´), HADHA-For (5´-ggtttggaggtg-

gaaaccca-3´), HADHA-Rev (5´-caggcggaactggatgtctt-3´), LCLAT1-For (5-´caactctggtgccacaaacg-3´),

LCLAT1-Rev (5´-tgagtaggcacattgcaggg-3´), acs-13-For (5´-tctactcgaagaatcgcgcc-3´), acs-13-Rev (5´-

tgggcattg ctccttgaact-3´), tba-1-For (tctcgcaggttgtgtcttcc) and tba-1-Rev (agcctcatggtaagccttgt).

Primer sequences for AdipoR2 and PPIA were previously described (Ruiz et al., 2019), as were those

for sXBP-1, ATF4, DDiT, HSPA5 (Oslowski and Urano, 2011). cDNA samples for Figure 5—figure

supplement 2F are from a previously published study (Ruiz et al., 2018). Changes in gene expres-

sion were measured in n � 3 biological independent experiment, including internal technical

triplicates.

HEK293 fatty acid treatment
Palmitate was dissolved in sterile DMSO then mixed with fatty acid-free bovine serum albumin BSA

(all from Sigma) in serum-free medium for 15 min at room temperature. The molecular ratio of BSA

to PA was 1 to 5.3 when using 400 mM palmitate, and 1 to 2.65 when using 200 mM palmitate. Cells

were then cultivated in this serum-free media containing palmitate for 24 hr prior to analysis.

Fluorescence recovery after photobleaching (FRAP) in HEK293 cells
For FRAP in mammalian cells, HEK293 cells were stained with BODIPY 500/510 C1, C12 (4,4-Difluoro-

5-Methyl-4-Bora-3a,4a-Diaza-s-Indacene-3-Dodecanoic Acid) (Invitrogen) at 2 mg/ml in PBS for 10

min at 37˚C (Devkota et al., 2017). FRAP images were acquired with an LSM880 confocal micro-

scope equipped with a live cell chamber (set at 37˚C and 5% CO2) and ZEN software (Zeiss) with a

40X water immersion objective. Cells were excited with a 488 nm laser and the emission between

493 and 589 nm recorded. Images were acquired with 16 bits image depth and 256 � 256 resolution

using a pixel dwell of ~1.34 ms. At least ten (n � 10) pre-bleaching images were collected and then

the region of interest was beached with 50% of laser power. The recovery of fluorescence was traced

for 25 s. Fluorescence recovery and Thalf were calculated as previously described (Devkota et al.,

2017).

Laurdan dye measurement of membrane fluidity in HUVECs
Live cells were stained with Laurdan dye (6-dodecanoyl-2-dimethylaminonaphthalene) (Thermo

Fisher) at 10 mM (HUVEC) or 15 mM (HEK293) for 45 min. Images were acquired with an LSM880 con-

focal microscope equipped with a live cell chamber (set at 37˚C and 5% CO2) and ZEN software

(Zeiss) with a 40 � water immersion objective as described before (Bodhicharla et al., 2018;

Ruiz et al., 2019). Cells were excited with a 405 nm laser and the emission recorded between 410

and 461 nm (ordered phase) and between 470 and 530 nm (disordered phase). Pictures were

acquired with 16 bits image depth and 1024 � 1024 resolution, using a pixel dwell of ~1.02 msec.

Images were analyzed using ImageJ version 1.47 software (Schneider et al., 2012), following pub-

lished guidelines (Owen et al., 2012).
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Mitochondria isolation and ACSL1/ACS-13 Subcellular Localization
HEK293 cells and synchronized adults of various C. elegans strains were harvested and washed sev-

eral times. Mitochondria and microsomal fractions were isolated using the Qproteome mitochondria

isolation kit (Qiagen). Protein sample concentrations were quantified using the BCA protein assay kit

(Pierce) according to the manufacturer’s instructions. Equal amounts of protein were mixed with

Laemmli sample loading buffer (Bio-Rad), heated to 37˚C for 10 min, and loaded in 4% to 15% gradi-

ent precast SDS gels (Bio-Rad). After electrophoresis, the proteins were transferred to nitrocellulose

membranes using Trans-Blot Turbo Transfer Packs and a Trans Blot Turbo apparatus with the prede-

fined mixed-MW program (Bio-Rad). Blots were blocked with 5% nonfat dry milk (Bio-Rad) or BSA

(Sigma) in PBS (Gibco) containing 0.05% Tween-20 (Sigma) (PBS-T) for 1 hr at room temperature.

Blots were incubated overnight at 4˚C with primary antibody in the blocking buffer recommended

by the antibody supplier. Blots were washed with PBS-T and incubated with the appropriate second-

ary antibody: swine anti-rabbit IgG/HRP (1:3000; Dako) or goat anti-mouse IgG/HRP (1:5000; Dako)

and washed again with PBS-T. Blots were developed with ECL (Immobilon Western; Millipore), and

the signal was visualized with a digital camera (VersaDoc; Bio-Rad). PageRuler Plus prestained pro-

tein ladder was used to assess molecular weight (Thermo Fisher Scientific). Western blots were quan-

tified by densitometry using Image Lab version six software. Primary antibody used with HEK293

samples: anti-ACSL1 (D2H5, 1:1000), anti-Calnexin (C5C9, 1:1000), anti-VDAC (D73D12, 1:1000),

anti-GAPDH (14C10, 1:2500) (all rabbit monoclonal from Cell Signaling). For C. elegans samples, the

primary antibodies included mouse monoclonal anti-GFP (GF28R, Invitrogen, 1:1000), mouse mono-

clonal anti-tubulin (T5169, Sigma-Aldrich; 1:1000).

Trypan blue staining
After 24 hr of treatment, cell supernatant was collected, and cells were detached and mixed again

with their respective supernatant. The cell suspension was then mixed 1:1 with a 0.4% trypan blue

solution (Gibco) and loaded in a hemacytometer and examined immediately under the microscope.

The percentage of positive and negative cells in four quadrants was registered.

Bioenergetics to assess mitochondrial function
Oxygen consumption rate (OCR) was determined by using a Seahorse XF 96 instrument (Agilent).

Cell media composition during the assay was: Seahorse XF base medium (Agilent) supplemented

with 5.5 mM glucose, 100 mM pyruvate and 2 mM L-glutamine. The Seahorse XF Cell Mito Stress

Test was run using 2 mM oligomycin (Sigma-Aldrich), 200 mM DNP (as uncoupler; Sigma-Aldrich), 1

mM rotenone (Sigma-Aldrich) and 1 mM antimycin A (Sigma-Aldrich) as per the manufacturer’s

instructions. Cells were stained with both Hoechst 33342 (Thermo Fisher) and propidium iodide

(Thermo Fisher) to assess nuclei counts and viability as measured by fluorescence microscopy. OCR

values were normalized against viable cells.

Statistics
Error bars show the standard error of the mean, and t-tests were used to identify significant differen-

ces between treatments. Asterisks are used in the figures to indicate various degrees of significance,

where *: p<0.05; **: p<0.01; and ***: p<0.001. Quantitative experiments were performed at least

twice independently (except for the acylcarnitine and cardiolipin lipidomics which were performed

once with three independent replicates) and with the number of replicates indicated for each

method, meaning that populations of worms or cells were independently grown in separate experi-

ments and analysed.
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Löfgren L, Forsberg GB, Ståhlman M. 2016. The BUME method: a new rapid and simple chloroform-free method
for total lipid extraction of animal tissue. Scientific Reports 6:27688. DOI: https://doi.org/10.1038/srep27688,
PMID: 27282822

Mello CC, Kramer JM, Stinchcomb D, Ambros V. 1991. Efficient gene transfer in C. elegans: extrachromosomal
maintenance and integration of transforming sequences. The EMBO Journal 10:3959–3970. DOI: https://doi.
org/10.1002/j.1460-2075.1991.tb04966.x, PMID: 1935914

Michel CI, Holley CL, Scruggs BS, Sidhu R, Brookheart RT, Listenberger LL, Behlke MA, Ory DS, Schaffer JE.
2011. Small nucleolar RNAs U32a, U33, and U35a are critical mediators of metabolic stress. Cell Metabolism
14:33–44. DOI: https://doi.org/10.1016/j.cmet.2011.04.009, PMID: 21723502

Mota M, Banini BA, Cazanave SC, Sanyal AJ. 2016. Molecular mechanisms of lipotoxicity and glucotoxicity in
nonalcoholic fatty liver disease. Metabolism 65:1049–1061. DOI: https://doi.org/10.1016/j.metabol.2016.02.
014, PMID: 26997538

Murphy RC, James PF, McAnoy AM, Krank J, Duchoslav E, Barkley RM. 2007. Detection of the abundance of
diacylglycerol and triacylglycerol molecular species in cells using neutral loss mass spectrometry. Analytical
Biochemistry 366:59–70. DOI: https://doi.org/10.1016/j.ab.2007.03.012, PMID: 17442253

Nguyen HM, Mejia EM, Chang W, Wang Y, Watson E, On N, Miller DW, Hatch GM. 2016. Reduction in
cardiolipin decreases mitochondrial spare respiratory capacity and increases glucose transport into and across
human brain cerebral microvascular endothelial cells. Journal of Neurochemistry 139:68–80. DOI: https://doi.
org/10.1111/jnc.13753, PMID: 27470495

Oslowski CM, Urano F. 2011. Measuring ER stress and the unfolded protein response using mammalian tissue
culture system. Methods in Enzymology 490:71–92. DOI: https://doi.org/10.1016/B978-0-12-385114-7.00004-0,
PMID: 21266244

Owen DM, Rentero C, Magenau A, Abu-Siniyeh A, Gaus K. 2012. Quantitative imaging of membrane lipid order
in cells and organisms. Nature Protocols 7:24–35. DOI: https://doi.org/10.1038/nprot.2011.419

Paix A, Folkmann A, Seydoux G. 2017. Precision genome editing using CRISPR-Cas9 and linear repair templates
in C. elegans. Methods 121-122:86–93. DOI: https://doi.org/10.1016/j.ymeth.2017.03.023, PMID: 28392263

Palomer X, Pizarro-Delgado J, Barroso E, Vázquez-Carrera M. 2018. Palmitic and oleic acid: the yin and yang of
fatty acids in type 2 diabetes mellitus. Trends in Endocrinology & Metabolism 29:178–190. DOI: https://doi.
org/10.1016/j.tem.2017.11.009, PMID: 29290500

Peck B, Schulze A. 2016. Lipid desaturation - the next step in targeting lipogenesis in Cancer? The FEBS Journal
283:2767–2778. DOI: https://doi.org/10.1111/febs.13681, PMID: 26881388

Pei J, Millay DP, Olson EN, Grishin NV. 2011. CREST–a large and diverse superfamily of putative transmembrane
hydrolases. Biology Direct 6:37. DOI: https://doi.org/10.1186/1745-6150-6-37, PMID: 21733186

Piccolis M, Bond LM, Kampmann M, Pulimeno P, Chitraju C, Jayson CBK, Vaites LP, Boland S, Lai ZW, Gabriel
KR, Elliott SD, Paulo JA, Harper JW, Weissman JS, Walther TC, Farese RV. 2019. Probing the global cellular
responses to lipotoxicity caused by saturated fatty acids. Molecular Cell 74:32–44. DOI: https://doi.org/10.
1016/j.molcel.2019.01.036, PMID: 30846318

Promlek T, Ishiwata-Kimata Y, Shido M, Sakuramoto M, Kohno K, Kimata Y. 2011. Membrane aberrancy and
unfolded proteins activate the endoplasmic reticulum stress sensor Ire1 in different ways. Molecular Biology of
the Cell 22:3520–3532. DOI: https://doi.org/10.1091/mbc.e11-04-0295, PMID: 21775630

Ratnappan R, Amrit FR, Chen SW, Gill H, Holden K, Ward J, Yamamoto KR, Olsen CP, Ghazi A. 2014. Germline
signals deploy NHR-49 to modulate fatty-acid b-oxidation and desaturation in somatic tissues of C. elegans.
PLOS Genetics 10:e1004829. DOI: https://doi.org/10.1371/journal.pgen.1004829, PMID: 25474470
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