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Abstract Seeking new insights into the homeostasis, modulation and plasticity of cortical

synaptic networks, we have analyzed results from a single-cell RNA-seq study of 22,439 mouse

neocortical neurons. Our analysis exposes transcriptomic evidence for dozens of molecularly

distinct neuropeptidergic modulatory networks that directly interconnect all cortical neurons. This

evidence begins with a discovery that transcripts of one or more neuropeptide precursor (NPP) and

one or more neuropeptide-selective G-protein-coupled receptor (NP-GPCR) genes are highly

abundant in all, or very nearly all, cortical neurons. Individual neurons express diverse subsets of

NP signaling genes from palettes encoding 18 NPPs and 29 NP-GPCRs. These 47 genes comprise

37 cognate NPP/NP-GPCR pairs, implying the likelihood of local neuropeptide signaling. Here, we

use neuron-type-specific patterns of NP gene expression to offer specific, testable predictions

regarding 37 peptidergic neuromodulatory networks that may play prominent roles in cortical

homeostasis and plasticity.

Introduction
Neuromodulation - the graded and relatively slow adjustment of fast synapse and ion channel func-

tion via diffusible cell-cell signaling molecules - is a fundamental requirement for adaptive nervous

system function (Abbott and Regehr, 2004; Bargmann, 2012; Bucher and Marder, 2013;

Katz and Lillvis, 2014; Marder, 2012; Marder et al., 2015; McCormick and Nusbaum, 2014;

Nadim and Bucher, 2014; Nusbaum et al., 2017). Neuromodulator molecules take many different

chemical forms, including diatomic gases such as nitric oxide, lipid metabolites such as the endocan-

nabinoids, and amino acids and their metabolites such as glutamate, GABA, acetylcholine, serotonin

and dopamine. By far the largest family of neuromodulator molecules known, however, comprises

the evolutionarily ancient proteinaceous signaling molecules known as neuropeptides (Baraban and

Tallent, 2004; Burbach, 2011; Gonzalez-Suarez and Nitabach, 2018; Hökfelt et al., 2013;

van den Pol, 2012; Wang et al., 2015). The most widely studied neuropeptides are the endoge-

nous ‘opioid’ peptides - enkephalins, endorphins and dynorphins - but there are nearly one hundred

other NPP genes in the human genome and numerous homologs are present in almost all known

animal genomes (Elphick et al., 2018; Jékely, 2013).

The broadest definition of ‘neuropeptide’ would embrace any soluble peptide that serves as a

messenger by diffusing from one neuron to another. A narrower but more common definition (Bur-

bach, 2011) requires (1) translation of a neuropeptide precursor protein (NPP) into the lumen of a

source neuron’s rough endoplasmic reticulum (rER), (2) enzymatic cleavage of the NPP into one or

more neuropeptide (NP) products during or after passage through the rER–Golgi complex and
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packaging into dense-core vesicles, (3) transport and storage of dense-core vesicles within the

source neuron, (4) secretion of the NP product upon demand by activity- and calcium-dependent

dense-core vesicle exocytosis, and then (5) interstitial diffusion to act upon a target neuron by bind-

ing to a ligand-specific receptor. This pathway enlarges the potential palette of distinct neuropepti-

des beyond that established simply by the large number of NPP genes, as a given NPP may be

differentially cleaved into alternative NP products during its intracellular and interstitial passage.

Most neuropeptide receptors are encoded by members of the very large superfamily of G-pro-

tein-coupled receptor (GPCR) genes (Hoyer and Bartfai, 2012; Krishnan and Schiöth, 2015;

Mains and Eipper, 2006; van den Pol, 2012). GPCRs are selective, high-affinity receptors distin-

guished by characteristic seven-transmembrane-segment atomic structures and signal transduction

involving heterotrimeric G-proteins (hence their name). Genes encoding GPCRs selective for neuro-

peptides (NP-GPCR genes) and for most of the other chemical neuromodulators mentioned above

are found in the genomes of almost all metazoans: phylogenomic evidence suggests very early evo-

lutionary origins (Jékely, 2013; Katz and Lillvis, 2014), possibly even predating evolution of the syn-

apse (Varoqueaux and Fasshauer, 2017). In modern metazoan nervous systems, synapses rely

primarily upon recycling small molecule transmitters and ligand-gated ion channels (alternatively

known as ‘ionotropic receptors’) for fast (millisecond timescale) transmission, but GPCRs selective

for widely varied ligands including the fast recycling transmitters and many other secreted molecules

(e.g., glutamate, GABA, acetylcholine, monoamines and neuropeptides) play critical roles in the

slower modulation of fast synaptic transmission and electrical activity (Elphick et al., 2018;

Grimmelikhuijzen and Hauser, 2012; Jékely, 2013; Krishnan and Schiöth, 2015; Varoqueaux and

Fasshauer, 2017).

Because modulatory neuropeptides are not subject to the rapid transmitter re-uptake and/or

degradation processes necessary for fast synaptic transmission, secreted neuropeptides are thought

to persist long enough (e.g., minutes) in brain interstitial spaces for diffusion to very-high-affinity NP-

GPCRs hundreds of micrometers distant from release sites (Ludwig and Leng, 2006; Nässel, 2009;

Russo, 2017). Neuropeptide signaling can thus be presumed both ‘paracrine’, with secretion from

individual neurons hitting receptor-positive cells over substantial diffusion distances and converging

by diffusion from many local secreting neurons onto single receptor-positive neurons, and to be rela-

tively slow (seconds-to-minutes timescale of action). Though present information is limited, eventual

degradation by interstitial peptidases nonetheless probably restricts diffusion of most neuropeptides

to sub-millimeter, local circuit distance scales.

The receptors encoded by NP-GPCR genes are highly diverse in ligand specificity but less diverse

in downstream signaling impacts. Although GPCR signaling has long been recognized as complex

and many faceted (Hamm, 1998), most known neuronal NP-GPCR actions reflect phosphorylation of

ion channels, synaptic proteins or transcription factors mediated by protein kinases dependent on

the second messengers cyclic AMP or calcium (Mains and Eipper, 2006; Nadim and Bucher, 2014;

van den Pol, 2012). Primary effects of NP-GPCRs expressed in cortex, in turn, fall into just three

major categories distinguished by G-protein alpha subunit (Ga) family. The Gi/o family (i/o) inhibits

cAMP production, the Gs family (s) stimulates cAMP production, and the Gq/11 family (q/11) ampli-

fies calcium signaling dynamics (Syrovatkina et al., 2016). For most NP-GPCR genes, the primary

Ga family (e.g., i/o, s or q/11) is now known (Alexander et al., 2017) and offers a good first-order

prediction of the encoded GPCR’s signal transducing action. The profound functional consequences

of neuromodulation by GPCRs range from modification of neuronal firing properties and calcium sig-

naling dynamics through regulation of synaptic weights and synaptic plasticity (Bargmann, 2012;

Markram et al., 2013; McCormick and Nusbaum, 2014).

It is well established that certain neuropeptides, including vasoactive intestinal peptide (VIP),

somatostatin (SST), neuropeptide Y (NPY), substance P, and cholecystokinin (CCK), are detectible at

high levels in particular subsets of GABAergic cortical neurons (Tremblay et al., 2016). These neuro-

peptides have come into broad use as markers for particular GABAergic interneuron classes, while

the corresponding NPP and NP-GPCR genetics have provided molecular access to these and other

broad neuron type classes (Daigle et al., 2018; Maximiliano José et al., 2018). In situ hybridization

and microarray data, for example the Allen Brain Atlases (Hawrylycz et al., 2012; Lein et al., 2007),

have also established that mRNA transcripts encoding these five NPPs and that many other NPPs

and NP-GPCR genes are expressed differentially in many brain regions. There has been a critical

lack, however, of comprehensive expression data combining whole-genome depth with single-cell
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resolution. Absent such data, it has been difficult to generate specific and testable hypotheses

regarding cortical neuropeptide function and to design robust experiments to test those hypotheses

(Tremblay et al., 2016; van den Pol, 2012).

Here we describe new findings regarding NPP and NP-GPCR gene expression in mouse cortex.

These findings have surfaced during a focused analysis of a previously published single-cell RNA-seq

data acquired from large numbers of isolated mouse cortical neurons (Tasic et al., 2018). We begin

by leveraging only the genomic depth and single-cell resolution of this dataset. Next, we introduce

the transcriptomic neurotaxonomy developed in the same resource publication and explore the

additional analytical power of a neurotaxonomic framework. Then, we distill these findings into spe-

cific and testable predictions concerning intracortical peptidergic modulation networks. Finally, we

discuss the potential of a neurotaxonomically integrated view of neuromodulatory and synaptic net-

works to reveal previously obscure principles of cortical sensory, mnemonic and motor function.

Results
The present study is based on analysis of a resource single-cell RNA-seq dataset acquired at the

Allen Institute (Tasic et al., 2018) and available for download at http://celltypes.brain-map.org/rna-

seq/. These RNA-seq data were acquired from a total of 22,439 isolated neurons, with detection of

transcripts from a median of 9462 genes per cell (min = 1445; max = 15,338) and an overall total of

21,931 protein-coding genes detected. Neurons were sampled from two distant and very different

neocortical areas: 13,491 neurons from primary visual cortex (VISp), and 8948 neurons from anterior

lateral motor cortex (ALM). Single neuron harvesting methods were designed to mildly enrich sam-

ples for GABAergic neurons, such that the sampled neuron population is roughly half GABAergic

(47%) and half glutamatergic (53%). The resource publication (Tasic et al., 2018) should be con-

sulted for full details of neuron harvesting, sample preparation, sequencing and data processing.

Since we refer very frequently here to this resource publication and dataset, we’ll refer to both now

simply as ‘Tasic 2018’, and all further references here to neuron ‘class’, ‘subclass’ or ‘type’ should be

understood to refer specifically to the particular mouse neocortex neurotaxonomy described in the

Tasic 2018 publication.

The Tasic 2018 single-cell RNA-seq data tables report the abundance of transcripts from individ-

ual neurons in both ‘counts per million reads’ (CPM) and ‘fragments per kilobase of exon per million

reads mapped’ (FPKM) units. Our analysis of this data compares gene expression levels quantita-

tively, with two distinct use cases: (1) comparisons across large sets of different genes, and (2) com-

parisons of the same gene across different individual cells, cell types and brain areas. We have relied

upon FPKM data (Mortazavi et al., 2008; Pimentel, 2014), for use case 1 (i.e., the Tables 1 compar-

isons across genes). For use case 2 (as in all figures below), we have preferred the CPM units,

because these units were used to generate the Tasic 2018 neurotaxonomy. In any case, choice of

CPM vs. FPKM units would have very little impact on the present outcomes.

Single-neuron expression profiles of 18 select neuropeptide precursor
(NPP) genes
Table 1 lists results of analyzing the expression of 18 NPP genes in all 22,439 individual neurons rep-

resented in Tasic 2018. Here we have made use of the ‘peak FPKM’ (pFPKM) metric described in

Materials and methods below to quantify the expression of specific genes in highly expressing sub-

sets of single-cell populations that exhibit highly variant expression of that particular gene. Each of

the 18 NPP genes on this list meets two conditions: (1) the included NPP gene is highly expressed

(top quintile pFPKM over all protein-coding genes) across VISp and ALM cortical areas, and (2) at

least one gene for an NP-GPCR selective for the predicted product of at least one of the 18 NPPs is

highly expressed in neurons within the same local area of neocortex (see Table 2). The first require-

ment was imposed to increase the likelihood of active secretion of the NP product encoded by the

candidate NPP gene. The second requirement, for ‘cognate’ pairing between each included NPP

and a locally expressed NP-GPCR gene, was imposed to elevate the likelihood of paracrine NP sig-

naling within a cortical local circuit volume, as envisioned in Introduction above. The process for

selection of these 18 NPP genes is described in more detail in Materials and methods. Table 1 lists

Peak FPKM values for each of the 18 NPP genes, percentile and absolute ranks of that Peak FPKM

value across all protein-coding genes, the percentage of cells sampled in which expression of the
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listed gene is detectible, predicted neuropeptide product(s) encoded, and the NP-GPCR gene(s) ful-

filling requirement (2) for that NPP gene. Gene ontology results for the 18 select NPP genes are pro-

vided by Supplementary file 1. The Peak FPKM ranking columns in Table 1 show that expression

levels of most of the 18 NPP genes are extremely high in the range of values for all 21,931 protein-

coding genes detected in all 22,439 neurons sampled. Of these genes, Npy, Sst, Vip and Tac2 rank

as the top four overall in pFPKM values, while Cck, Penk and Crh also rank in the top ten. Eleven of

these NPP genes rank in the top percentile and all 18 rank in the top quintile by pFPKM. To the sim-

plest first approximation, very high abundance of a given protein-coding transcript implies the

potential, at least, for a very high rate of synthesis of the encoded protein. The extremely high peak

abundance of these NPP transcripts thus suggests that NP precursor proteins could be synthesized

at very high rates in neurons exhibiting such peak abundance. In a steady state, a high rate of syn-

thesis would then necessarily imply a correspondingly high overall rate of protein product elimina-

tion. For an NP precursor protein, processing and secretion of active neuropeptide would seem the

obvious and most likely route of elimination. The high abundance of transcripts encoding these 18

NPPs might thus be construed as prima facie evidence for robust secretion of neuropeptide

products.

Figure 1A quantifies differential expression of the 18 NPP genes listed in Table 1. Each of the 18

color-coded solid curves represents a distribution of single-neuron CPM values for one NPP gene.

Curves were generated by plotting CPM for each individual neuron in descending rank order along

a cell population percentile axis. Each curve exhibits a transition from high to very low (commonly

Table 1. Single-cell RNA-seq expression statistics for 18 highly expressed neuropeptide precursor protein (NPP) genes cognate to

locally expressed NP-GPCR genes (see Table 2).

NPP genes are tabulated here along with peak single-cell expression levels as pFPKM (Peak FPKM, see Materials and methods), per-

centile and absolute ranking of these pFPKM values across pFPKMs for all 21,931 protein-coding genes, and the percentage of cells

sampled in which transcripts of the given NPP gene were detected at > 1 CPM. The table also lists predicted neuropeptide products,

and genes encoding the locally expressed G-protein-coupled receptors (NP-GPCRs) cognate to the NPP (see Table 2). NPP genes are

listed here in descending order of Peak FPKM. Pastel color fills in the ‘Cognate NP-GPCR Genes’ column correspond to i/o (pink), s

(light green) and q/11 (light blue) transduction families of associated G-protein and will be used to highlight these families consistently

in all following figures.

NPP
Gene Peak FPKM

pFPKM
Percentile

pFPKM
Rank

%
Cells Predicted Neuropeptides

Cognate NP-GPCR
Genes

Npy 108,865 100.00 1 42 Neuropeptide Y Npy1r, Npy2r, Npy5

Sst 70,274 99.99 2 26 Somatostatins Sstr1, Sstr2, Sstr3, Sstr4

Vip 48,747 99.99 3 33 Vasoactive Intestinal Peptide Vipr1, Vipr2

Tac2 18,284 99.98 4 15 Neurokinin B Tacr3

Cck 16,396 99.97 6 69 Cholecystokinins Cckbr

Penk 11,160 99.96 8 26 Enkephalins Oprd1, Oprm1

Crh 9,118 99.95 10 17 Corticotropin-Releasing Hormone Crhr1, Crhr2

Cort 7,477 99.93 15 32 Cortistatin Sstr1, Sstr2, Sstr3, Sstr4

Tac1 5,728 99.92 18 11 Substance P, Neurokinin A Tacr1

Pdyn 2,813 99.69 68 8 Dynorphins Oprd1, Oprk1, Oprm1

Pthlh 1,656 99.29 156 18 Parathyroid-Hormone-Like Hormone Pth1r

Pnoc 698 97.68 509 23 Nociceptins Oprl1

Trh 510 96.51 766 3 Thyrotropin-Releasing Hormone Trhr, Trhr2

Grp 435 95.59 968 12 Gastrin-Releasing Peptide Grpr

Rln1 258 91.99 1757 7 Relaxin 1 Rxfp1, Rxfp2 Rxfp3

Adcyap1 165 87.29 2788 26 Adenylate Cyclase-Activating Polypeptides Adcyap1r1, Vipr1, Vipr2

Nts 121 82.14 3917 1 Neurotensin Ntsr1, Ntsr2

Nmb 112 80.53 4270 14 Neuromedin B Nmbr
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zero) expression across the sampled neuron population, but these transitions occur over very differ-

ent population percentile ranges, providing clear evidence for highly differential single-cell expres-

sion of these genes. Percentages of the sampled neuron population with detectible expression of a

given NPP gene range from more than 65% for Cck down to ~1% for Nts. (Note, however, that the

cell population sampled has been enriched for GABAergic cell types as described in Tasic 2018).

The RNA-seq data suggest that all, or at least very nearly all, neocortical neurons express at least

one NPP gene. The dashed curve in Figure 1A, labeled ‘Max NPP Gene’, was generated by plotting

CPM values of the NPP gene with the highest CPM in each individual cell in descending order along

a cell population percentile axis. This curve therefore shows that 97% of the sampled mouse cortical

neurons express at least one NPP gene at >1 CPM and that 80% express at least one NPP gene

at >1,000 CPM, a very high level. When one takes into account the pulsatile nature of transcription

Table 2. Single-cell RNA-seq expression statistics for 29 neuropeptide-selective, G-protein-coupled receptor (NP-GPCR) genes

cognate to locally expressed NPP genes (see Table 1).

NP-GPCR gene peak FPPM values, percentile ranking, and percentage sampled as for NPP genes in Table 1. The table names

encoded NP-GPCR proteins, A-F class of NP-GPCR, primary Ga signal transduction family (Alexander et al., 2017) and cognate NPP

genes. Color fill in ‘primary Ga family’ column as in Table 1.

NP-GPCR Gene Peak FPKM
pFPKM
Percentile

%
Cells Neuropeptide Receptor

GPCR
Class

Primary
Ga Family Cognate NPP Genes

Sstr2 413 95.3 42 Somatostatin Receptor 2 A4 Gi/o Sst, Cort

Npy2r 291 93.1 10 Neuropeptide Y Receptor Y2 A9 Gi/o Npy

Npy1r 272 92.4 50 Neuropeptide Y Receptor Y1 A9 Gi/o Npy

Grpr 231 91 10 GRP Receptor A7 Gq/11 Grp

Cckbr 210 90 52 Cholecystokinin B Receptor A6 Gq/11 Cck

Ntsr2 161 86.9 17 Neurotensin Receptor 2 A7 Gq/11 Nts

Npy5r 152 86.1 28 Neurpeptide Y Receptor Y5 A9 Gi/o Npy

Nmbr 123 82.4 8 Neuromedin B Receptor A7 Gq/11 Nmb

Rxfp1 121 82 22 Relaxin Family Receptor 1 A5 Gs Rln1

Sstr4 106 79.5 28 Somatostatin Receptor 4 A4 Gi/o Sst, Cort

Trhr 101 78.4 3 TRH Receptor A7 Gq/11 Trh

Sstr1 90 76 38 Somatostatin Receptor 1 A4 Gi/o Sst, Cort

Adcyap1r1 89 75.8 71 ADCYAP1 Receptor 1 B1 Gs Adcyap1, Vip

Crhr1 86 74.9 28 CRH Receptor 1 B1 Gs Crh

Rxfp3 85 74.7 5 Relaxin Family Receptor 3 A5 Gi/o Rln1

Oprl1 82 73.8 48 Opioid Receptor-Like 1 A4 Gi/o Pnoc

Crhr2 72 70.7 3 CRH Receptor 2 B1 Gs Crh

Tacr3 65 68 3 Tachykinin Receptor 3 A9 Gq/11 Tac2

Oprk1 64 67.4 3 Kappa-Opioid Receptor A4 Gi/o Pdyn

Tacr1 56 64.2 3 Tachykinin Receptor 1 A9 Gq/11 Tac1

Pth1r 51 61.6 15 PTH 1 Receptor B1 Gq/11 Pthlh

Vipr1 41 56.1 28 VIP Receptor 1 B1 Gs Vip, Adcyap1

Oprm1 35 52.1 43 Mu-Opioid Receptor A4 Gi/o Penk, Pdyn

Trhr2 30 48.9 10 TRH Receptor 2 A7 Gq/11 Trh

Vipr2 30 48.4 0.5 VIP Receptor 2 B1 Gs Vip, Adcyap1

Rxfp2 28 47.3 4 Relaxin Family Receptor 2 A5 Gs Rln1

Oprd1 26 45.8 13 Delta-Opioid Receptor A4 Gi/o Penk, Pdyn

Ntsr1 24 44.3 10 Neurotensin Receptor 1 A7 Gq/11 Nts

Sstr3 17 39.5 21 Somatostatin Receptor 3 A4 Gi/o Sst, Cort
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(Suter et al., 2011) and the stochastic nature of RNA-seq transcript sampling (Fu and Pachter,

2016; Kim et al., 2015; Tasic et al., 2016), these numbers might be best understood as lower limits.

The results summarized in Figure 1A may therefore be consistent with the proposition that every

cortical neuron is peptidergic.

Conservation of NPP gene expression statistics between VISp and ALM
The paired bars in Figure 1B represent fractions of cells expressing a given gene in each of the two

cortical areas. It is obvious that the differential expression profiles in VISp and ALM are highly similar

(r = 0.972, p<1.72E-11), in spite of stark differences in function and cytoarchitecture between these

two areas. Conservation of expression fractions across so many genes in such divergent cortical

Figure 1. Single-cell NPP gene expression and co-expression statistics for distant neocortical areas VISp and ALM show that expression patterns for 18

NPP genes are highly differential within both neocortical areas but highly conserved between areas. (A) Different NPP genes show very different

expression level distributions across the 22,439 VISp+ALM neurons sampled. Color-coded solid curves plot single-cell CPM values for the specified

individual NPP genes in descending order along a cell population percentile axis. The 18 curves are segregated for clarity into three panels (I, ii, iii)

sorted by cell population percentiles at which CPM values fall below 1. Large differences in fractions of cells expressing different NPP genes are

evident. The dashed curve labeled ‘Max NPP Gene’ in panel A.i was generated by plotting CPM values of for the most abundant NPP transcript in each

individual cell in descending order. (B) Fractions of cells expressing each NPP genes represented separately for 13,491 VISp neurons and 8,948 ALM

neurons, showing conservation between areas of the patterning of NPP expression fractions detailed in panel A. (C) Histograms illustrating frequencies

of various multiples of NPP genes co-expressed in individual neurons, represented separately for VISp and ALM neurons. The paired vertical bars show

strong conservation of co-expression patterns between the two areas.

The online version of this article includes the following source data for figure 1:

Source data 1. Sorted NPP CPM distributions for all neurons.

Source data 2. Single-cell NPP CPM expression table.
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areas suggests that these patterns have strong connections to conserved features of cortical function

and argues against these patterns being secondary to more ephemeral variables such as neuronal

activity patterns, which seem unlikely to be highly conserved between VISp and ALM areas.

Figure 1C represents frequencies with which transcripts of various multiples drawn from the set of

18 NPP genes were detected in individual neurons. These data establish a remarkable degree of

NPP gene co-expression in almost all individual cortical neurons. The modal number of co-expressed

NPP genes detected is two in VISp and five in ALM, but both distributions are actually quite flat

between 2 and 5, with broad plateaus out to seven co-expressed NPP genes per cell and a substan-

tial tail out to 10. Figure 1C also reveals strong similarities of NPP co-expression distributions

between VISp and ALM.

Single-neuron expression profiles of 29 select neuropeptide receptor
(NP-GPCR) genes
Table 2 lists 29 NP-GPCR genes that are highly expressed in varied subsets of the 22,439 individual

neurons sampled from cortical areas VISp and ALM. These 29 genes encode receptor proteins sub-

stantially selective for neuropeptide products encoded by the 18 NPP genes of Table 1 (cross-refer-

enced from that table as ‘Cognate NP-GPCR Genes’). Table 2 provides quantitative information on

expression levels of these 29 NP-GPCR genes, names the receptor proteins they encode, indicates

the A-F GPCR class and expected primary Ga family and cross-references back to the cognate corti-

cally-expressed NPP genes. As noted above, the 18 NPP genes and 29 NP-GPCR genes listed in

Tables 1 and 2 were selected for focused analysis here due to their cognate pairing and the conse-

quent implication of local intracortical signaling. Methods of NP-GPCR gene selection are described

more fully in Materials and methods. A more complete listing of NP-GPCR genes with pFPKM values

in provided by Table 2— source data 1. Gene ontology results for the 29 select NPP genes are pro-

vided by Supplementary file 2. The ‘pFPKM Percentile’ column in Table 2 shows that most of these

29 NP-GPCR genes are expressed in cortex with Peak FPKM values well above median (50th percen-

tile) for all protein coding genes. The range of cortical neuron pFPKM values for NP-GPCR genes

does not match the extreme heights noted for NPP genes, but this is as expected given that NP-

GPCR gene products are thought to be durable cellular components, unlikely to be rapidly disposed

by secretion as expected for NPP gene products. Peak FPKM values for NP-GPCR transcripts are

nonetheless quite high in the range of transcripts of other durable cellular component genes, sug-

gesting a strong likelihood that they are indeed translated into functionally important protein

products.

The single-cell RNA-seq data expose very highly differential expression of NP-GPCR genes in cor-

tical neurons. Figure 2 represents expression patterns of the 29 NP-GPCR genes listed in Table 2 in

the same manner as for the 18 NPP genes in Figure 1. Figure 2A establishes that each of the 29

NP-GPCR genes is expressed in highly differential fashion across the 22,439 mouse cortical neurons

sampled, as was the case for the 18 NPP genes. As was noted for NPP genes in Figure 1, each of

the curves in Figure 2A exhibits a transition from very high to very low (commonly zero) expression

across the sampled neuron population. These transitions occur at very different population percen-

tile points, again providing clear evidence for highly differential expression. Percentages of the sam-

pled neuron population expressing a given NP-GPCR gene (at greater than 1 CPM) range from

more than 72% for Adcyap1r1 down to 0.7% for Vipr2.

The RNA-seq data suggest that all, or at least very nearly all, neocortical neurons express at least

one NP-GPCR gene. The dashed curve in the left panel of Figure 2A, generated similarly to the

dashed curve for NPP genes in Figure 1A, shows that 98% of the sampled mouse cortical neurons

express at least one NP-GPCR gene at >1 CPM and that 78% express at least one NP-GPCR gene

at >100 CPM, lower than the comparable NPP curve in Figure 1, but still indicative of quite high

expression. Again, these numbers must be understood as lower limits to percentages of cortical neu-

rons actually expressing at least one of the 29 NP-GPCR genes, after taking into account the pulsa-

tile transcription and stochastic sampling issues cited above. The results summarized in Figure 2A

may thus be consistent with a conclusion that every cortical neuron expresses at least one NP-GPCR

gene cognate to a cortically expressed NPP gene.
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Conservation of NP-GPCR gene expression statistics between VISp and
ALM
Figure 2B provides evidence for strong conservation of differential NP-GPCR expression profiles

between distant cortical areas VISp and ALM. The paired bars represent fractions of cells expressing

a given gene in each of the two areas, again revealing strong similarities of differential expression

profiles in the two very different neocortical areas (r = 0.959, p<2.2E-16). Figure 2C represents fre-

quencies of NP-GPCR gene co-expression multiples detected in individual neurons. These data

establish that multiple NP-GPCR genes are co-expressed in almost all cortical neurons and that num-

bers of genes co-expressed are even higher than those noted above for co-expression of NPP

genes. Modal numbers of co-expressed NP-GPCR genes detected is six in both VISp and ALM with

Figure 2. Single-cell NP-GPCR gene expression and co-expression statistics for distant neocortical areas VISp and ALM show that expression patterns

for 29 NP-GPCR genes are highly differential within neocortical areas but conserved between areas. (A) Different NP-GPCR genes show very different

expression level distributions across the 22,439 VISp+ALM neurons sampled. Color-coded solid curves plot single-cell CPM values for the specified

individual NP-GPCR genes in descending order along a cell population percentile axis. The 29 curves are segregated for clarity into five panels (i-v)

sorted by cell population percentiles at which CPM values fall below 1. Large differences in fractions of cells expressing different NP-GPCR genes are

evident. Dashed curve labeled ‘max NP-GPCR Gene’ in panel A. i was generated by plotting CPM values of the highest CPM NP-GPCR gene for each

individual cell in descending order. (B) Fractions of cells expressing each NP-GPCR genes represented separately for 13,491 VISp neurons and 8,948

ALM neurons, showing strong conservation between areas of the patterning of NP-GPCR expression fractions documented in panel A. (C) Histograms

illustrating frequencies of various multiples of NP-GPCR gene co-expression in individual neurons, represented separately for VISp and ALM neurons.

The paired vertical bars illustrate strong conservation of co-expression patterns between the two cortical areas.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Sorted NP-GPCR CPM distributions for all neurons.

Source data 2. Single-cell NP-GPCR CPM expression table.

Figure supplement 1. Co-expression of cognate NPP/NP-GPCR pairs.
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broad plateaus extending out to 12 co-expressed NP-GPCR genes per cell. The striking similarities

of NP-GPCR co-expression distributions between the two otherwise divergent neocortical areas

once again suggests that the patterning of NP-GPCR co-expression may have consequences for cor-

tical function that are conserved because they are functionally important. As illustrated by Figure 2—

figure supplement 1, it is furthermore common for individual neurons to co-express cognate NPP/

NP-GPCR pairs, raising the intriguing possibility of cell-autonomous feedback mediated by an auto-

crine action of a secreted NP product on the secreting cell itself. Figure 2—figure supplement 1

additionally shows that cognate pair co-expression patterning is also highly conserved between

areas VISp and ALM.

Neurotaxonomic profiling of NPP and NP-GPCR gene expression
The analysis so far has relied solely upon the genomic depth and single-cell resolution characteristics

of the Tasic 2018 transcriptomic data. We now proceed to explore the analytical power of the tran-

scriptomic neurotaxonomy developed as part of the Tasic 2018 study. This neurotaxonomy makes it

possible to predict a protein ‘parts list’ for any neuron that can be mapped to a given transcriptomic

taxon. Combined with tools for genetic access to transcriptomic taxa, transcriptomic taxonomy

thereby offers rich prospects for experimental test of such predictions (see also Discussion below),

The present analysis will make extensive use of the Tasic 2018 neurotaxonomy’s representation of

115 glutamatergic and GABAergic transcriptomic neuron types (see Figure 3—figure supplement

1).

Figure 3 shows transcriptomic gene expression ‘heatmaps’, representing transcript abundance

for each of 18 NPP (Figure 3A) and 29 NP-GPCR (Figure 3B) across all 115 glutamatergic and

GABAergic neuron types by log10-scaled pseudocolor. These heatmaps show that expression of

every one of these 47 genes is highly specific to particular neuron types, but that type specificity

varies greatly from gene to gene. Note that CPM expression levels vary across neuron types by fac-

tors exceeding 10,000 for many NPP genes and 1000 for many NP-GPCR genes. These heat maps

also show that every neuron type expresses multiple NPP and NP-GPCR genes and that each of the

NPP and NP-GPCR genes is expressed in multiple neuron types (with Vipr2 in one Pvalb type as a

near exception). These two heatmaps further show many cases where both an NPP gene and its cog-

nate NP-GPCR receptor are expressed in the same neuron type, with the Cck/Cckbr and Adcyap1/

Adcyap1 r1 pairs being particularly prominent examples. Quite intriguingly, these expression heat

maps also suggest that each of the neuron types might be distinguished by a unique pattern of

expression of these 47 NP genes. This possibility will be explored quantitatively in connection with

Figure 4 below.

The dashed vertical line spanning Figure 3A and B heatmaps divides glutamatergic and GABAer-

gic neuron types and provides for ready comparison of NP gene expression patterns in these two

broad neurotaxonomic classes. Figure 3A shows clearly that more NPP genes are expressed more

strongly in GABAergic than in glutamatergic types. This differential is consistent with a long history

of neuroscientific use of neuropeptide products as protein markers of GABAergic neuron subsets (e.

g., VIP, SST, NPY, Substance P), which has no parallel in the marking of glutamatergic neuron sub-

sets. Figure 3A nonetheless also shows that every glutamatergic type expresses at least one NPP

genes at a very substantial level. Figure 3B shows that the broader expression of NPP genes in

GABAergic over glutamatergic types is leveled or even reversed for NP-GPCR genes. That is, while

GABAergic neurons clearly show the more prolific and varied expression of NPP genes, glutamater-

gic neurons may be somewhat more prolific expressors of NP-GPCR genes.

Additional graphics on the Figure 3 heatmaps further delineate the Tasic 2018 neurotaxonomy.

A cladogram reflects the hierarchical similarity progression from the broad GABAergic and glutama-

tergic classes to the 115 individual neuron types, as aggregated across VISp and ALM cortical areas.

Tinted rectangles and labels call out the five glutamatergic and seven GABAergic subclasses (see

also Figure 3—figure supplement 1). Thin gray vertical lines crossing both NPP and NP-GPCR heat-

maps demarcate those same subclasses. This delineation of subclasses shows that expression of

some genes tends to remain constant within some subclasses, but to change abruptly at subclass

boundaries. This does not seem, however, to be a very general case. Many genes show expression

that varies widely by type within subclass. Figure 3C quantifies such residual expression variation for

all NPP and NP-GPCR genes within each subclass. These significant residuals justify the use of more

narrowly defined taxa (e.g., the 115 neuron types) to adequately characterize cortical neuropeptide
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Figure 3. Neurotaxonomic heatmaps reveal highly neuron-type-specific expression of (A) 18 NPP and (B) 29 NP-GPCR genes in 22,439 individual

neurons harvested from areas VISp and ALM. Trimmed-mean (5% trim) CPM expression values for each of the 115 VISp+ALM glutamatergic and

GABAergic neuron types (see Figure 3—figure supplement 1) are normalized per gene to maximum value indicated at right for each row and

pseudocolored according to log10 scales at right. Note that these scales represent 5 (NPP) and 3 (NP-GPCR) orders of magnitude and that each gene

Figure 3 continued on next page
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gene expression. Relationships between NP gene expression patterns and the Tasic 2018 neuro-

taxonomy will be examined more quantitatively in the following section.

Transcripts of 18 NPP and 29 NP-GPCR genes are exceptionally potent
neuron-type markers
The strong marker patterning of the 47 NP gene expression profiles evident in Figure 3 suggests

the possibility that each of the 115 glutamatergic and GABAergic neuron types might be distin-

guished by a unique combination of these 18 NPP and 29 NP-GPCR genes. To explore this possibil-

ity and compare NP transcriptomes to other transcriptome subsets quantitatively, we developed the

analysis presented in Figure 4.

We began by asking whether there exists a low dimensional representation of gene expression

that naturally separates neurons of different types into distinct parts of that low-dimensional space.

The extent to which a neuron’s location in such a space can be inferred from the expression of a lim-

ited subset of genes (such as the 47 NP genes) would then provide a measure of sufficiency of that

subset to determine the type of that neuron accurately. Hierarchical clustering methods to define

neuron types based upon gene expression are well established (Hastie et al., 2001; Oyelade et al.,

2016) but have difficulty when comparing and making inferences between datasets. We therefore

devised a machine learning approach based on linking deep neural networks called autoencoders

(Hinton and Salakhutdinov, 2006) to address this question explicitly and quantitatively.

We trained a single autoencoder network to represent cells in a low dimensional space based on

CPM values of the 6083 most highly expressed genes (HE genes) in the Tasic 2018 dataset.

Figure 4A shows the result of one such two dimensional encoding, where each of the 22,439 individ-

ual neurons appear as a distinct dot colored by its type assignment. The tight grouping of type-cod-

ing colors evident in Figure 4A implicitly conveys that position within this latent space corresponds

well to neuron types, despite the fact that the autoencoder did not have prior information about the

Tasic 2018 classification. With the first autoencoder held as fixed, we trained a second autoencoder,

linked to the first, to obtain a low-dimensional representation based on a much smaller subset of

genes. Figure 4B shows a two-dimensional representation of the same 22,439 neurons based on 47

NP genes. Again the tight color grouping suggests that the 47 NP genes alone suffice to assign

types in close register to the Tasic 2018 neurotaxonomy. The autoencoder network architectures are

schematized in Figure 4C. The cost function used to train the second autoencoder included a pen-

alty term to minimize differences in the representation of cells compared to that obtained by the first

autoencoder. This was done to ensure that the latent spaces of the two autoencoders are as similar

as possible while faithfully representing the expression patterns of the respective gene sets they

receive as input. This procedure allowed us to visualize the similarity between the gene sets in a

latent space that captures type information, and to quantify the extent to which any small gene sub-

set by itself could be used to identify neuron types.

To quantify the type classification ability of different gene sets, we used Quadratic Discriminant

Analysis (QDA) (Hastie et al., 2001) to perform supervised classification using five-dimensional

latent space representations of the different gene sets obtained by autoencoder networks. We

obtained a measure on a per-cell basis, resolution index (RI) to evaluate the degree of

Figure 3 continued

spans the entire pseudocolor range across neuron types. Subclasses are called out here by labels (IT, PT, NP, CT, L6b for glutamatergic types; Lamp5,

Sncg, Serpinf1, Vip, Chodl, Sst, Pvalb for GABAergic types) and demarcated on the heatmaps by thin gray lines. Gene rows are ordered here as in

Tables 1 and 2. (C) Violin plots representing coefficients of CPM variation (CV) for 18 NPP genes across types pooled within each of the 11 subclasses

indicated (Chodl not represented here as it is a singular neuron type) and globally across all cell types (‘All’). Callouts on each violin indicate genes of

highest CVs within each subclass. Inset shows within-subclass CV/global CV demonstrating variation within subclasses is a significant fraction of global

variability (dotted line mean = 0.239). See Figure 3—figure supplement 2 for individual gene statistics. (D) Similar for 29 NP-GPCR genes showing

greater relative variability, mean CV = 0.427. See Figure 3—figure supplement 3 for individual gene statistics.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Cell types, cluster ids and color codes for ALM and VISp regions.

Figure supplement 1. Tasic 2018 neurotaxonomy.

Figure supplement 2. NPP expression variation within subclasses.

Figure supplement 3. NP-GPCR expression variation within subclasses.
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Figure 4. Neurons can be clustered effectively based on just 47 NP genes (18 NPP and 29 NP-GPCR). (A) A two-dimensional latent space

representation of 22,439 cells based on 6083 highly expressed (HE) genes obtained by an autoencoding neural network. Dots represent individual cells,

colored according to the type-code assignments of Tasic et al. (2018) (see Figure 3—figure supplement 1). Cells of the same type appear as

grouped into distinct islands, which suggests that classifiers trained to identify cell types would perform well with such low dimensional representations

of gene expression. (B) Two-dimensional representation of neurons in such a latent space z2, based on the 47 NP genes. (C) Schematic of the network

architecture used to train the second autoencoder that learns to represent neurons in a latent space z2 that is similar to z1. This second autoencoder

represents cells in the latent space based on much smaller gene sets. (D) Inset illustrates resolution index (RI) associated with nodes on the hierarchical

tree used in the per-cell RI calculation. RI distribution (see Materials and methods) for NP genes-based cell type classification shows that a vast majority

of the cells can be correctly classified up to the type level (leaf nodes, RI = 1.0) of the Tasic 2018 hierarchy. Errors in classification (RI <1.0) at the type

level are nevertheless resolved at the class level of the hierarchy, as indicated by the high values for RI for the remaining cells. High average RI for HE

genes, and 4020 differentially expressed (DE) genes, and 47 DE genes indicates that the cell type classification procedure based on autoencoder

representations is accurate. The average RI for cell type classification based on the 47 NP genes is significantly higher (p<0.01, bootstrap) than both,

subsets of 47 genes selected randomly (Rand47, n = 100 subsets), and selected randomly but with expression levels matched to the NP genes (Rand47

ExpMatch, n = 100 subsets).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Autoencoder expression clustering performance by neuron type.

Figure supplement 2. 1‘‘‘Determination of optimal autoencoder latent space dimensionality.

Smith et al. eLife 2019;8:e47889. DOI: https://doi.org/10.7554/eLife.47889 12 of 35

Research article Neuroscience

https://doi.org/10.7554/eLife.47889


correspondence of classification results with the Tasic 2018 neurotaxonomy. The resolution index

averaged over all cells is used as a summary statistic to quantify the ability of different gene sets in

resolving neuron types. Briefly, QDA was performed iteratively on a given latent space representa-

tion, starting with all the leaf node type labels of the neurotaxonomy. In each subsequent iteration

the number of labels was reduced by successively merging leaf node labels into their parent node

class label (inset, Figure 4D). RI = 1.0 for a neuron that is assigned the correct type (e.g., Pvalb Reln

Tac1) and 0.0 < RI < 1.0 for neurons for which the iterative QDA based classification could deter-

mine the correct label only up to a subclass (e.g. Pvalb). A neuron is assigned RI = 0.0 if the QDA-

based classification failed to determine the correct label even at the glutamatergic or GABAergic

level.

Figure 4D shows neuron type classification results based on five dimensional latent space repre-

sentations of different subsets of genes (k = 13 fold cross validation). For the 6,083 HE genes and a

set of 4020 genes most differentially expressed (DE genes) across neuron types, the latent space is

obtained with the first autoencoder, and the RI distributions shown in blue have average values of

0.986 and 0.987, respectively, close to the theoretical maximum of 1.0 that can only be achieved

with perfect type classification for all neurons in the dataset. For subsets of 47 genes, the latent rep-

resentations were obtained with the second linked autoencoder, and the corresponding RI distribu-

tions are colored red. A set of 47 DE genes achieves average RI = 0.964. These results confirm the

idea that autoencoder-based low dimensional representations of gene expression can be used for

accurate type classification. The 47 NP genes can be used to classify neuron types well, with average

RI = 0.925 and a majority of the neurons (62%) classified correctly at the type level (with nearly uni-

form performance across all neuron types, see Figure 4—figure supplement 1). This RI performance

is significantly higher (p<0.01, bootstrap) than the average RI for of subsets of genes chosen ran-

domly (0.641 ± 0.047, n = 100), and chosen randomly but with expression levels matched with the

NP genes (0.843 ± 0.027, n = 100), with none of the individual randomly selected subsets reaching

the NP gene index of 0.925. Note that genes in the 47 DE set were chosen with prior knowledge of

the Tasic 2018 taxonomy, while the 47 NP gene set was not. This distinction thus makes the near

match of the 47 NP to the 47 DE gene sets in average RI all the more striking. This demonstration of

the exceptional power of NP genes to mark transcriptomic neuron types reinforces earlier indica-

tions of an especially close and fundamental connection between neuropeptide gene expression

and neuron type identity.

Conservation of NPP and NP-GPCR gene expression profiles between
VISp and ALM
Figure 5 juxtaposes separate VISp and ALM expression profiles for NPP and NP-GPCR genes across

93 VISp neuron types (Figure 5A) and 84 ALM neuron types (Figure 5B). Similarities of expression

profiles for the two areas are obvious in Figure 5, but there are also visible differences. The latter

are rooted primarily in the substantial divergence of glutamatergic neuron taxonomies discussed at

length in Tasic et al. (2018). Very strong similarities of both NPP and NP-GPCR expression profiles

are most obvious for the GABAergic types, where the taxonomies are identical except for the

absence of two GABAergic types in ALM (indicated by dark gray vertical placeholder bars in

Figure 5B). The general conservation of neuron-type-specific expression patterns among common

cell types between the two distant neocortical areas (NPP correlation: r = 0.974, p<2.2e-16, NP-

GPCR: 0.877, p<2.2e-16) thus provides another indication of robust connection between NP gene

expression and cortical neuron differentiation.

Prediction of local peptidergic signaling from expression of cognate
NPP/NP-GPCR pairs
Expression of an NPP gene in one neuron and a cognate NP-GPCR gene in another neuron nearby

implies a possibility of directed paracrine signaling, with diffusion of a secreted peptide coupling the

first neuron to the second. The present set of 47 cortical NP genes (18 NPP and 29 NP-GPCR) com-

prises the 37 distinct cognate NPP/NP-GPCR pairs enumerated in Table 3 and predicts accordingly

37 distinct peptidergic neuromodulation networks. As noted in the Introduction, expected neuro-

peptide diffusion distances suggest that any neuron within a local cortical area (e.g., VISp or ALM)

might signal by diffusion to any other neuron within that same local area, but almost surely not to
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Figure 5. Neurotaxonomic heatmaps show strong conservation of NPP and NP-GPCR expression patterns between two distant neocortical areas. (A)

Expression heatmap for 18 NPP and 29 NP-GPCR genes in 13,491 single VISp neurons classified by type. (B) Similar heatmap for 8948 single neurons

harvested from ALM. Heatmaps generated and displayed as described in Figure 3, except for segregation here of VISp and ALM harvest areas. Heat

maps are aligned horizontally here to match GABAergic neuron types between VISp and ALM. Vertical dark gray bars in Figure 5B are spacers marking

Figure 5 continued on next page
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more distant areas (e.g., from VISp to ALM). In the following, we therefore make predictions of 74

(37 � 2) peptidergic distinct signaling networks, keeping separate consideration of signaling within

VISp and within ALM.

Prediction of peptidergic networks from neurotaxonomic NP gene
expression profiles
Figure 6 displays weighted adjacency matrix plots representing predictions of neuron-type-specific

and neuron-subclass-specific peptidergic coupling from selections drawn from VISp and ALM of the

37 cognate NP gene pairs. The prediction matrices A-E are outer products (CPM*CPM units) of vec-

tors representing expression (CPM units) of an NPP gene (columns) and a cognate NP-GPCR gene

(rows) across all VISp or ALM neuron types. The predicted coupling matrices in F matrices are similar

except that factor vectors are down-sampled by averaging neuron-type-specific CPM values within

each of the subclasses (see Materials and methods for more details).

Figure 5 continued

the two GABAergic cell types absent in ALM. Glutamatergic neurotaxonomies are seen to differ substantially, but differences appear mainly at the

finest, ‘leaf’ levels of the neurotaxonomic hierarchy (see Tasic 2018) and Figure 3—figure supplement 1).

The online version of this article includes the following source data for figure 5:

Source data 1. Cell types, cluster ids and color codes for VISp region.

Source data 2. Cell types, cluster ids and color codes for ALM region.

Table 3. The 18 NPP and 29 NP-GPCR genes of Tables 1 and 2 constitute 37 cognate NPP/NP-GPCR pairs and predict at least 37

potentially distinct peptidergic modulatory networks.

The 37 pairs are enumerated here along with indications of the expected primary GPCR signal transduction class for each NP-GPCR

(Alexander et al., 2017) and a fraction denoting frequency with which the given cognate pair occurs as a fraction of all neuron pairs

surveyed. Pastel table fill colors denote G-protein transduction class as in Tables 1 and 2.

#
Cognate Pair
Symbol

NPP
Gene

NP-
GPCR
Gene

Primary
Ga

Family
Fraction of Type
Pairs #

Cognate Pair
Symbol

NPP
Gene

NP-GPCR
Gene

Primary
Ga

Family
Fraction of Type
Pairs

1 NpyfiNpy1r Npy Npy1r Gi/o 0.7805 19 VipfiVipr1 Vip Vipr1 Gs 0.496

2 NpyfiNpy2r Npy Npy2r Gi/o 0.341 20 VipfiVipr2 Vip Vipr2 Gs 0.052

3 NpyfiNpy5r Npy Npy5r Gi/o 0.8095 21 CrhfiCrhr1 Crh Crhr1 Gs 0.3925

4 SstfiSstr1 Sst Sstr1 Gi/o 0.751 22 CrhfiCrhr2 Crh Crhr2 Gs 0.2035

5 SstfiSstr2 Sst Sstr2 Gi/o 0.836 23 Rln1fiRxfp1 Rln1 Rxfp1 Gs 0.2465

6 SstfiSstr3 Sst Sstr3 Gi/o 0.405 24 Rln1fiRxfp2 Rln1 Rxfp2 Gs 0.07

7 SstfiSstr4 Sst Sstr4 Gi/o 0.806 25 Adcyap1fiAdcyap1r1 Adcyap1 Adcyap1r1 Gs 0.284

8 PenkfiOprd1 Penk Oprd1 Gi/o 0.4955 26 Adcyap1fiVipr1 Adcyap1 Vipr1 Gs 0.1465

9 PenkfiOprm1 Penk Oprm1 Gi/o 0.9 27 Adcyap1fiVipr2 Adcyap1 Vipr2 Gs 0.0155

10 CortfiSstr1 Cort Sstr1 Gi/o 0.6265 28 Tac2fiTacr3 Tac2 Tacr3 Gq/11 0.0955

11 CortfiSstr2 Cort Sstr2 Gi/o 0.6965 29 CckfiCckbr Cck Cckbr Gq/11 0.6635

12 CortfiSstr3 Cort Sstr3 Gi/o 0.338 30 Tac1fiTacr1 Tac1 Tacr1 Gq/11 0.119

13 CortfiSstr4 Cort Sstr4 Gi/o 0.672 31 PthlhfiPth1r Pthlh Pth1r Gq/11 0.392

14 PdynfiOprd1 Pdyn Oprd1 Gi/o 0.2115 32 TrhfiTrhr Trh Trhr Gq/11 0.016

15 PdynfiOprk1 Pdyn Oprk1 Gi/o 0.0745 33 TrhfiTrhr2 Trh Trhr2 Gq/11 0.055

16 PdynfiOprm1 Pdyn Oprm1 Gi/o 0.4 34 GrpfiGrpr Grp Grpr Gq/11 0.113

17 PnocfiOprl1 Pnoc Oprl1 Gi/o 0.654 35 NtsfiNtsr1 Nts Ntsr1 Gq/11 0.0225

18 Rln1fiRxfp3 Rln1 Rxfp3 Gi/o 0.106 36 NtsfiNtsr2 Nts Ntsr2 Gq/11 0.054

37 NmbfiNmbr Nmb Nmbr Gq/11 0.5655
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Figure 6. Neurotaxonomic expression profiles of 37 cognate NPP/NP-GPCR pairs predict 37 peptidergic networks. Weighted adjacency matrix plots

predicting local peptidergic coupling amongst neuron types (A–E) and subclasses (F). Matrices were computed as outer products (CPM*CPM units) of

row and column factor vectors representing abundance (CPM units) of NPP and cognate NP-GPCR genes. Pseudocolor scales representing both

expression (CPM) and coupling (CPM*CPM) are logarithmic. (A) 93 � 93 matrix predicting coupling amongst 93 VISp neuron types based on type-

Figure 6 continued on next page
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Figure 6C-E represents 8 more of the 37 cognate pair coupling matrices predicted for VISp.

Along with Figure 6A and B, these exemplify the wide variety of neuron-type-specific coupling

motifs resulting from transcriptomic prediction. Most coupling matrices (i.e., pairs 1, 9, 29), predict

significant coupling over wide swaths of type-pairs, approaching 20% of the entire matrix. A few

matrices at the other extreme, such as 6 and 34, predict very sparse coupling. Other predictions are

intermediate in sparsity. As one might expect, similar patterns are evident in the downsampled, sub-

class level predictions of Figure 6F. Even from the small subset of the 37 coupling matrix plots

shown in Figure 6, it is evident that both type-level and subclass-level matrices are densely tiled by

predictions of connectivity. Inspection of Figure 6 and similar plots for the remainder of the 37 cog-

nate pairs (Figure 6—figure supplements 1–8) also reveals that there is a great deal of cross-net-

work redundancy, with multiple pairs covering a large majority of the coupled types and subclasses,

sometimes within and sometimes crossing Ga family boundaries. These observations will be

strengthened by the analysis of Figure 7 below.

Finally, Figure 6 illustrates the tendency of coupling predictions from most cognate NP pairs to

fall in contiguous ‘patches’ of the full coupling matrix. This is a natural reflection of the strong ten-

dency of both NPP and NP-GPCR expression to align with early nodes in the Tasic 2018 hierarchical

clustering which was also evident in Figures 3 and 5. The broadest example of coupling matrix

patches reflecting hierarchical neurotaxonomy structure is provided by the observation that most siz-

able coupling patches fall strictly within single quadrants of glutamatergic-GABAergic neuron type

pairing. Variations in coupling matrix structure across all 37 cognate NP pairs are represented in

more quatitative terms by Figure 6—figure supplements 9 and 10. Additional details regarding the

generation of the coupling matrices are provided in Materials and methods.

Prediction of second-messenger impacts from neurotaxonomic NP gene
expression profiles
For compact visualization of predicted signaling impacts of multiple distinct peptidergic networks

and to facilitate empirical tests of such predictions based on calcium and cyclic AMP sensors (see

Discussion), we developed the ‘ISQ’ graphic exemplified in Figure 7. This treatment makes use of

the trichotomous G-protein primary transduction family approximation described in Introduction and

Figure 6 continued

specific expression of the Npy gene and the cognate Npy1r NP-GPCR gene, as indicated by row and column vector ‘heat’ strips called out by curved

arrows. (B) An 84 � 84 square matrix similarly representing Npy-Npy1r coupling, depicted as in (A), except based only on the 84 ALM neuron types.

Dashed crosses demarcate the four quadrants of directed NPP/NP-GPCR pairing between glutamatergic (‘E’) and GABAergic (‘I’) neuron types, called

out as (Efi E), (Efi I), (Ifi I) and (Ifi E). Light gray lines, pastel color blocks and labels flanking both axes demarcate higher, subclass levels of the Tasic

2018 neurotaxonomy (as in Figure 3A above). (C–E) Exemplar matrix predictions for a further sampling of the 37 VISp cognate NPP/NP-GPCR pairs

from each of the three primary G-protein transduction families: (C) Gi/o; (D) Gs; (E) Gq/11. (F) Adjacency matrices similar to A-E, except row and

column factor vectors were calculated as means of CPM values across neuron types comprising indicated subclasses. (Cladograms and taxonomic color

codes as delineated in Figure 6—figure supplements 1–8). Links below point to source data files and similar plots for all 37 VISp and ALM type and

subclass adjacency matrices, and to additional quantitative analysis of coupling matrix hierarchies (Figure 6—figure supplement 9) and morphologies

and correlations (Figure 6—figure supplement 10).

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. NP coupling predictions by cognate pair and type for area VISp (archive containing 37 CSV files, one for each of the 37 cognate pairs

listed in Table 3 and represented in Figure 6—figure supplements 1–8).

Source data 2. NP coupling predictions by cognate pair and type for area ALM (archive containing 37 CSV files, one for each of the 37 cognate pairs

listed in Table 3 and represented in Figure 6—figure supplements 1–8).

Figure supplement 1. Neurotaxonomic coupling predictions for cognate NPP/NP-GPCR pairs #1-#4.

Figure supplement 2. Neurotaxonomic coupling predictions for cognate NPP/NP-GPCR pairs #5-#9.

Figure supplement 3. Neurotaxonomic coupling predictions for cognate NPP/NP-GPCR pairs #10-#14.

Figure supplement 4. Neurotaxonomic coupling predictions for cognate NPP/NP-GPCR pairs #15-#18.

Figure supplement 5. Neurotaxonomic coupling predictions for cognate NPP/NP-GPCR pairs #19-#23.

Figure supplement 6. Neurotaxonomic coupling predictions for cognate NPP/NP-GPCR pairs #24-#27.

Figure supplement 7. Neurotaxonomic coupling predictions for cognate NPP/NP-GPCR pairs #28-#32.

Figure supplement 8. Neurotaxonomic coupling predictions for cognate NPP/NP-GPCR pairs #33-#37.

Figure supplement 9. Hierarchical relationships of coupling matrices.

Figure supplement 10. Coupling matrix localization and correlation metrics for VISp and ALM areas.
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Figure 7. Pooling NP-GPCRs by primary Ga family enables neurotaxonomic prediction of primary NP-GPCR signaling impacts across 37 cognate NP

pairs (see text) for each of areas VISp and ALM. (A) ISQ color maps representing coupling matrix predictions at the Tasic 2018 neurotaxonomy type

level, merging Gi/o (red), Gs (green) and Gq/11 (blue) primary Ga family components. (B) Component primary Ga family (color) channels prior to

merger displayed in (A). (C) Coupling matrix plots as in (A) and (B), except generated at the higher Tasic 2018 neurotaxonomy subclass level. Individual

aggregate matrix components as in (B) are plotted at the right for both VISp and ALM. Dashed white crosses overlaying each matrix plot demarcate

glutamatergic and GABAergic classes and the four corresponding matrix quadrants (Efi E, EfiI, IfiI and IfiE) as in the individual matrix plots of

Figure 6. (Cladograms and taxonomic color codes as delineated in Figure 3—figure supplement 1).

The online version of this article includes the following source data for figure 7:

Source data 1. VISp coupling predictions by Ga family and type.

Source data 2. ALM coupling predictions by Ga family and type.
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delineated in Table 3 above: the Gi/o family (‘I’) inhibits production of cyclic AMP, the Gs family (‘S’)

stimulates production of cyclic AMP) and the Gq/11 family (‘Q’) augments intracellular calcium

dynamics. Such trichotomy is certainly an oversimplification, as it is known that downstream GPCR

signal transduction is richly multifaceted (Weis and Kobilka, 2018) and that some GPCRs may signal

via members of multiple Ga families, but we postulate here that this simplified scheme may nonethe-

less offer a first approximation useful for the design of exploratory experimentation and theory.

Figure 7 displays three-channel ‘ISQ’ (red, green, blue) color maps predicting coupling in areas

VISp and ALM based on aggregation across three primary Ga families (Gi/o, Gs and Gq/11). Individ-

ual cognate-pair coupling matrices were computed as in Figure 6, log10 scaled, individually normal-

ized to maximum values, then summed into a red, green or blue color channel by primary Ga family

as listed in Table 3. Figure 7A merges red, green and blue (i.e., Gi/o, Gs, Gq/11) color channels for

the Tasic 2018 neuron-type-level. Figure 7B displays the three component channels individually. The

dashed white crosses on these and following coupling matrix both plots divide these ISQ maps into

four E-I quadrants as in Figure 6. Major features of the ISQ maps are clearly very similar for VISp

and ALM. Figure 7C show aggregated matrix plots generated in similar fashion for the subclass-

level neurotaxonomy.

The ISQ maps of Figure 7 exhibit a number of interesting features. (1) The aggregate matrices

show that the 37 cognate pairs cumulatively predict coupling that densely tiles the entire neuron-

type coupling matrix, with the largest area of relatively weak coupling being that from NP, CT and

L6b subclasses to GABAergic neurons. (2) Aggregate predictions are highly conserved between

VISp and ALM areas. (3) All four E-I quadrants show coupling representative of all three Ga families.

(4) There is nonetheless some family predominance within each quadrant: Gi/o (blue) in the EfiE

quadrant, Gs (green) in the EfiI quadrant, and Gi/o (red) in the IfiI and IfiE quadrants. (5) As is par-

ticularly notable in the component matrix plots, Gi/o (red) signaling is the most heavily concentrated,

with quite little signaling expressed in the top two (E-E and E-I) quadrants but tiling the bottom two

(I-E and I-I) quite thoroughly. Gq/11 signaling shows a weaker, but still noticeable tendency toward

concentration in the two left quadrants (E-E and I-E). Gs signaling exhibits distinct zone of concentra-

tion, but these are not well captured by the quadrant structure. (6) The presence of cyan, yellow and

purple (blended) colors in the merged matrix plots (A and C), particularly in the bottom quadrants is

indicative of coincidence of signaling impacts of multiple Ga families at individual type (A) and sub-

class (C) intersections.

Discussion
Light from single-cell transcriptomics is now beginning to illuminate dark corners of cellular neurosci-

ence that have long resisted mechanistic and functional analysis (Fan et al., 2018; Fishell and

Kepecs, 2019; Földy et al., 2016; Gokce et al., 2016; Luo et al., 2018; Okaty et al., 2011;

Paul et al., 2017; Shekhar et al., 2016; Tasic et al., 2018; Tasic et al., 2016; Telley et al., 2016;

Zeng and Sanes, 2017). Cortical neuropeptide signaling may be one such corner. While profound

impacts of neuropeptide signaling are well-established in a wide range of non-mammalian and sub-

cortical neural structures (Borbély et al., 2013; Burbach, 2011; Elphick et al., 2018;

Grimmelikhuijzen and Hauser, 2012; Katz and Lillvis, 2014; Jan et al., 1979) and there certainly is

an excellent literature on cortical neuropeptide signaling (Crawley, 1985; Férézou et al., 2007;

Gallopin et al., 2006; Gomtsian et al., 2018; Hamilton et al., 2013; Liu et al., 2018; Mena et al.,

2013; Mitre et al., 2018; Owen et al., 2013; Rossier and Chapouthier, 1982; Williams and Ziegl-

gänsberger, 1981), published physiological results are surprisingly rare given the breadth of neuro-

scientific interest in cortex. The new transcriptomic data analyzed here suggest a possible

explanation for this relative rarity. Though many NPP and cognate NP-GPCR genes are expressed

abundantly in all or very nearly all neocortical neurons, such expression is highly differential, highly

cell-type specific, and often redundant. These previously uncharted differential expression factors

may have hindered repeatable experimentation. Our analysis supports this unwelcome proposition

but may also point the way to more productive new perspectives on intracortical peptidergic

neuromodulation.
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Summary of findings
The present single-cell analysis establishes that mRNA transcripts from one or more of 18 NPP genes

are detectible in over 97% of mouse neocortical neurons (Figure 1A,B) and that transcripts of one or

more of 29 cognate NP-GPCR genes are detectible in over 98% (Figure 2A,B). Transcripts of at least

one of the 18 NPP genes are present in the vast majority of cortical neurons at extremely high copy

number (Table 1), suggesting the likelihood of brisk translation into neuropeptide precursor pro-

teins. Brisk synthesis of precursor proteins further suggests brisk processing to active neuropeptide

products and secretion of these products. Likewise, NP-GPCR transcripts rank high in abundance

compared to most other transcripts of protein-coding genes (Table 2), supporting the likelihood of

functional receptor products. Our observations thus support the proposition that all, or very nearly

all, neocortical neurons, both glutamatergic and GABAergic, are also both neuropeptidergic and

modulated by neuropeptides. We are not aware of any previous empirical support for quite such a

strong conclusion.

Leveraging the analytical power of the Tasic 2018 transcriptomic neurotaxonomy, we find that

patterns of differential expression of the 18 NPP and 29 NP-GPCR genes are very highly specific to

neuron types as discerned from genome-wide transcriptomic analysis (Figure 3). Though much addi-

tional work (e.g., see Cadwell et al., 2017; Daigle et al., 2018; Moffitt et al., 2016; Shah et al.,

2016; Wang et al., 2018; Zeng and Sanes, 2017) will be needed to fully reconcile new transcrip-

tomic neurotaxonomies such as the Tasic 2018 example with existing anatomical and physiological

neurotaxonomies, it seems very likely that some such reconciliation will eventually take place, and

that the dimensions of neurotaxonomy will be expanded to include emerging connectomic data

(Jonas and Kording, 2015).

Our analysis shows that very intricate single-cell (Figures 1B,C and 2B,C) and neurotaxonomic

(Figure 5) patterns of expression of 18 NPP and 29 cognate NP-GPCR genes are very rigorously

conserved between VISp and ALM, two distant and quite different areas of neocortex. Such strong

conservation would seem improbable if these intricate patterns resulted from ephemeral factors

such as local electrical activity or modulation status. Rather, we suggest that this strong conservation

is more likely to reflect a really fundamental evolutionary and developmental connection between

neuropeptide network architectures and adaptive cortical circuit function.

Following earlier indications that neurons may express multiple NPP genes, for example

(Mezey et al., 1999), our analysis establishes that expression of multiple NPP genes in individual

neurons may be the rule in cortex (Figure 1C). Our analysis also establishes the generality of expres-

sion of multiple NP-GPCR genes in individual cortical neurons (Figure 2C). The significance of these

observations remains to be explored but should be viewed in light of recent discoveries of large

numbers and great diversity of transcriptomic neuron types in neocortex and many other brain

regions. Combinatorial expression of neuropeptide precursor and receptor genes obviously expands

the prospects for molecular multiplexing that may allow selective communication amongst a multi-

plicity of distinct neuron types even though the signaling molecules propagate in diffuse paracrine

fashion. It is also good to keep in mind, however, that the selectivity of NP-GPCRs for particular pep-

tide moieties is not perfect. Various kinds of concentration-dependent ‘crosstalk’ between nominally

separate peptidergic networks are therefore possible. Here in the interests of simplicity we have

confined explicit peptidergic signaling predictions to the highest affinity pairings of NPP and NP-

GPCR gene products (e.g., see Alexander et al., 2017).

We also find that a modest set of 47 neuropeptide-signaling genes permits transcriptomic neuron

type classification that is exceptionally precise in comparison to other similarly small gene sets (Fig-

ure 4). Connections between neuronal cell-type differentiation and differential expression of neuro-

peptides were first recognized by the widespread use of neuropeptide immunoreactivity to

discriminate interneuron types (DeFelipe et al., 2013). The exceptional power of neuropeptide

genes as cell type markers is also evident in the Tasic 2018 neuron-type nomenclature (see

Tasic et al., 2018) and bold red type highlights in Figure 3—figure supplement 1) and is notewor-

thy in other recent single-cell transcriptomic analyses of mouse neuron differentiation (Huang and

Paul, 2019; Paul et al., 2017; Sugino et al., 2019; Zeisel et al., 2018). The tight alignment of neu-

ron type classifications based solely on neuropeptide-signaling gene expression with the classifica-

tions based on genome-wide expression patterns, as evident in Figure 4, offers an intriguing

suggestion of a very deep and fundamental connection between the expression of evolutionarily
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ancient neuropeptide-signaling genes and the differentiation of neuron type identities during meta-

zoan speciation.

The structures of predicted neuropeptidergic modulation networks
Our analysis delineates neuron-type-specific expression of 37 cognate pairs amongst the 18 NPP

and 29 NP-GPCR genes analyzed (Table 3). Each of these pairs can be taken to predict a modulatory

connection from cells expressing a particular NPP gene, via a secreted NP product, to cells express-

ing the particular NP-GPCR gene (Figure 6). Each pair thus establishes the prospect of a directed

modulatory network with nodes defined by the neurotaxonomic identities of the transmitting NPP-

expressing and the receiving NP-GPCR-expressing neurons. The analyses represented in Figures 1,

2, 3 and 5 and Table 3 establish that at least one of the 37 pairs directly involves every neuron sam-

pled, and that the vast majority of neurons are directly involved in more than one of the 37 predicted

networks. The nearly complete adjacency matrix tiling evident in Figures 6 and 7 remarkably sug-

gests that at least one of the 18 peptides considered here may directly interconnect almost every

cortical neuron type with almost every other neuron type. Because of this saturated, multiplexed

coverage of all neurons and neuron types, we refer to these predicted neuropeptidergic networks as

‘dense’.

Transcriptomic prediction of paracrine local signaling from GABAergic neuron sources is particu-

larly compelling. Because few cortical GABAergic neurons have axons that project beyond the con-

fines of a single cortical area, considerations of diffusion physics and the limited lifetime of peptides

after secretion strongly imply that secreted neuropeptides act locally. On the other hand, most of

the glutamatergic neurons do emit long axons, so it is possible that neuropeptides secreted from

such neurons may act in remote cortical or extracortical projection target areas. Even so, most corti-

cal glutamatergic neurons also have locally ramifying axon branches and may also secrete neuropep-

tides from their local dendritic arbors (Vila-Porcile et al., 2009). The high cortical expression of NP-

GPCRs cognate to NPP genes expressed by glutamatergic neurons in the same local area suggests

a scenario supportive of local modulatory signaling from glutamatergic neuron sources, though this

case may not be quite as strong as that for strictly local GABAergic neurons. That said, the much

more profuse expression of NPP genes in GABAergic neuron types along with the somewhat more

profuse NP-GPCR expression in glutamatergic types does suggest a ‘prevailing wind’ of peptidergic

signaling, blowing mainly from GABAergic to glutamatergic neurons, as presaged in an earlier

microarray analysis of developing mouse cortex (Batista-Brito et al., 2008).

Though our NP network predictions are entirely consistent with decades of pioneering work on

peptidergic neuromodulation and cortical gene expression (Burbach, 2011; Hökfelt et al., 2013;

van den Pol, 2012), it is only with the recent advent of single-cell and neurotaxonomics methods

that such specific predictions have become possible and, most importantly, testable.

Testing peptidergic network predictions
The present predictions regrading cortical neuropeptidergic coupling are based on detection of cel-

lular mRNA transcripts, but prediction from such data depends upon (1) extrapolation from cellular

mRNA census to inference about rates of synthesis, processing, localization and functional status of

cellular NPP and NP-GPCR proteins, (2) assumptions about neuropeptide diffusion and lifetime in

cortical interstitial spaces, (3) assumptions about signaling consequences of neuropeptide binding to

cortical NP-GPCR receptors. Though we have already discussed several factors that mitigate such

concerns, we stipulate here that these uncertainties remain substantial. Nonetheless, we expact that

these same uncertainties will define paths for very productive future research.

Physiological and anatomical experimentation will be essential to testing transcriptomic predic-

tions of intracortical neuropeptide signaling. We have suggested that such work may have been frus-

trated in the past by irreproducibility due to the uncharted multiplicity, neuron-type-specificity, and

redundancy of NPP and NP-GPCR expression. This conundrum may now be resolved with the emer-

gence of transcriptomic neurotaxonomies and new tools for experimental access to specific cortical

neuron types. Such access may be either prospective, using Cre and/or Flp driver lines

(Daigle et al., 2018; He et al., 2016; Madisen et al., 2015) or viral vectors (Dimidschstein et al.,

2016) of substantial neuron-type-specificity, or retrospective by multiplexed FISH (Lein et al., 2017;

Zeng and Sanes, 2017), immunostaining (He et al., 2016; Xu et al., 2010), patch-seq
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(Cadwell et al., 2017; Lein et al., 2017) or morphological classification methods (DeFelipe et al.,

2013; Zeng and Sanes, 2017). These and other new molecular tools like those discussed below now

seem poised enable truly decisive and repeatable tests of neuron-type-specific transcriptomic pre-

dictions of peptidergic signaling. It will be critical, however, for the field to have continually updated

access to rapidly growing bodies of genetic and transcriptomic data and to the requisite animal

strains and labeling materials.

A vast pharmacopeia of well-characterized specific ligands and antagonists for most NP-GPCRs

(Alexander et al., 2017) will be bedrock for the functional analysis of neuron-type-specific peptide

signaling. For analysis of type-specific neuropeptide signaling in network context (i.e., ex vivo slices

and in vivo), newer optophysiological methods of calcium imaging and optogenetic stimulation/inhi-

bition will certainly join electrophysiology as foundations for measurement of neuropeptide impacts.

In addition, many new tools more specific to neuropeptide signaling are emerging. Super-resolution

3D immunohistologies like array tomography (Smith, 2018) and 3D single-molecule methods

(Jia et al., 2014; von Diezmann et al., 2017) will enable imaging of dense-core vesicle localization

and neuropeptide contents in type-specific network anatomical context. Genetically encoded fluo-

rescent dense-core vesicle cargos will allow real-time detection of neuropeptide secretion

(Ding et al., 2019), while genetically encoded sensors of extracellular GPCR ligands

(Patriarchi et al., 2018; Sun et al., 2018), GPCR activation (Haider et al., 2019; Hill and Watson,

2018; Livingston et al., 2018; Ratnayake et al., 2017; Stoeber et al., 2018), G-protein mobiliza-

tion (Ratnayake et al., 2017), cAMP concentration (Hackley et al., 2018; Ma et al., 2018), protein

kinase activation (Chen et al., 2014) and protein phosphorylation (Haider et al., 2019) will enable

fine dissection of NP dynamics and NP-GPCR signal transduction events (Spangler and Bruchas,

2017). In addition, new caged NP-GPCR ligands (Banghart et al., 2018) and antagonists

(Banghart et al., 2013) will provide for precise spatial and temporal control for NP receptor activa-

tion. All of these tools have already been proved at least in principle, and all should be readily appli-

cable to testing specific hypotheses derived from the type-specific peptidergic signaling predictions

set forth here (Figures 6 and 7 and their supplements).

Prospects for elucidating cortical homeostasis, modulation and
plasticity
Our results suggest that densely multiplexed peptidergic networks could play very significant roles

in the homeostasis, modulation and plasticity of cortical synaptic networks. Due to the clearly formi-

dable complexity of cortical networks, however, a real grasp of the myriad network interactions

implicated is certain to require theoretical and computational approaches, in addition to experimen-

tal biophysics tests as outlined in the preceding section. Work at the fertile intersection of the neuro-

science and the computer science of learning (Dayan and Abbott, 2001; Huh and Sejnowski, 2017;

Koch and Segev, 1998; Lillicrap et al., 2016; Marblestone et al., 2016; Guerguiev et al., 2017;

Song et al., 2000) seems particularly relevant to fathoming the possible significance of the neuro-

peptidergic networks we predict here.

Neuroscience and computer science efforts to model or engineer adaptive neural networks (be

they biological or artificial) share the hard problem of optimally individualized adjustment of very

large numbers of what both fields know as ‘synaptic weights’. At the heart of this challenge is ‘credit

assignment’, that is, the assignment of ‘credit’ (or ‘blame’) to guide the strengthening (or weaken-

ing) of the small subset of synapses that actually contribute differentially to success (or failure) in a

given perceptual, mnemonic or motor task. Neuroscientists struggle with the credit assignment

problem as they search for biological learning rules. Computer scientists are driven by a quest for

greater computational efficiency in training artificial networks and the prospect that evolution may

have developed superior strategies. One concept that has come into prominence as a candidate bio-

logically plausible solution to the credit assignment problem is that of modulated ‘Hebbian’ or

‘spike-timing-dependent’ plasticity (STDP) (Bengio et al., 2016; Dan and Poo, 2006; Farries and

Fairhall, 2007; Florian, 2007; Frémaux and Gerstner, 2015; Froemke, 2015; Izhikevich, 2007;

Marblestone et al., 2016; Pawlak et al., 2010; Poo et al., 2016; Roelfsema and Holtmaat, 2018;

Xie and Seung, 2003) While most biological studies of modulated STDP so far have focused on the

monoamine neuromodulator dopamine (Brzosko et al., 2019; Izhikevich, 2007; Kuśmierz et al.,

2017; Schultz, 2015) known commonalities of signal transduction downstream from widely varying

GPCRs suggest that NP-GPCRs could play roles in credit assignment analogous to those postulated
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for dopamine-selective GPCRs (Hamilton et al., 2013; Roelfsema and Holtmaat, 2018; but see

Edelmann and Lessmann, 2011).

Deeper understanding of neuromodulation roles in adaptive cortical function seems certain to

require a framework for integrating consideration of the panoply of possible activity-dependent

modulatory networks with modulated excitatory and inhibitory synaptic networks. Figure 8 concep-

tualizes one such framework schematically, using a common neurotaxonomy to integrate statistics of

multiple neuromodulatory and multiple synaptic signaling networks. Panels A-C idealize a logic for

prediction of neuropeptidergic connectivity statistics from transcriptomic data. Panel D cartoons the

use of a common neurotaxonomy to integrate probabilistic NP network graphs (panels B,C; three in

this case) and multiple synaptic networks (panels E,F; two in this case) into a single graph represent-

ing superimposed modulatory and synaptic network. The present analysis suggests that a more real-

istic materialization of the Figure 8 schematic would involve approximately 100 neuron types and

dozens of NPP and NP-GPCR genes. It would also require information that is presently unavailable

about excitatory and inhibitory synaptic connectivity statistics in such a neurotaxonomic framework.

It is very encouraging, however, that vigorous ongoing efforts (e.g., see Daigle et al., 2018;

Jonas and Kording, 2015; Swanson and Lichtman, 2016; Tasic, 2018; Zeng and Sanes, 2017) sug-

gest that such information is on the way. A view of cortical circuitry as a superimposition of multiple

modulatory and synaptic networks, linked by a common neurotaxonomy as idealized in Figure 8,

may prove essential to fathoming the interplay of slow neuromodulation and fast synaptic signaling

necessary for adaptive cortical function.

Figure 8. Neurotaxonomy offers a framework for integrating statistical descriptions of multiple modulatory and synaptic networks, as schematized here

for purely fictitious neuron types, transcriptomic and connectomic data. Multiple directed network graphs are predicted here for peptidergic networks

from transcriptomic data (A–C) and for synaptic networks from connectomic data (D,E) to predict a modulated synaptic network (F). (A) Transcriptional

heat maps representing expression of three fictitious NPP genes (Npp1,2,3) and three cognate NP-GPCR genes (Npr1,2,3) across a neurotaxonomy

comprising seven fictitious neuron types (a-c excitatory; d-g inhibitory). (B) Adjacency matrices derived from expression data in (A) as outer products of

column and row factor vectors representing NPP and NP-GPCR expression, respectively. (C) Directed network graphs representing the same three NP

networks, diagramming paracrine coupling by three neuropeptides (NP1,2,3) with routing of broadcast diffusive signals determined by differential

expression of peptide-receptor pairings. (D) Neurotaxonomic adjacency matrices expressing excitatory and inhibitory synaptic connection statistics. (E)

Synaptic network graphs derived from (D). (F) Directed multigraph illustrating use neurotaxonomy to integrate the three modulatory graphs and two

synaptic connectivity graphs.
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Implications for psychopharmacology
Neuropeptidergic signaling molecules have long beguiled as potential neuropsychiatric drug targets

(Hökfelt et al., 2003; Hoyer and Bartfai, 2012). There seems to be some disappointment, however,

in the returns on what has been rumoured to be very large research investments. The present study

raises the possibility that both NP-targeted drug discovery and the reproducibility of physiological

experimentation have been hindered by the same uncharted multiplicity, cell-type-specificity and

redundancy of NPP and NP-GPCR expression. By charting these waters, single-neuron transcrip-

tomic analysis may improve the odds substantially for both reproducible research and psychiatric

drug development.

Today’s psychiatric pharmaceuticals almost all target signaling by the monoamine neuromodula-

tors dopamine, serotonin, noradrenaline and/or histamine and their selective GPCR receptors (Data-

Franco et al., 2017; Hamon and Blier, 2013; Millan et al., 2015; Urs et al., 2014). Because they

are so numerous, neuropeptide signaling systems may be much more neuron-type specific than

monoamines. Greater neuron-type-specificity may translate to NP-targeting drugs being less trou-

bled by side-effects and compensation (Hoyer and Bartfai, 2012). Moreover, while GPCRs have

long been known as among the most ‘druggable’ of targets (Gurrath, 2001; Lundstrom, 2009), the

‘druggability’ of GPCRs is currently advancing very rapidly due to advances in GPCR structural biol-

ogy and molecular dynamic simulations (Hilger et al., 2018; Koehl et al., 2018; Weis and Kobilka,

2018). It seems likely that new knowledge of the neuron-type-specificity of NP signaling gene

expression will substantially advance the development of NP-targeting pharmaceuticals.

Conclusions
Because single-cell RNA-seq data enable prediction of complete protein parts lists of individual neu-

rons, they open powerful new perspectives on neuronal differentiation, function and network archi-

tectures. The power of these new perspectives has been further enhanced by parallel development

of transcriptomic neurotaxonomies. Here we have exploited both a pioneering large-scale RNA-seq

dataset and its data-driven neurotaxonomy to pursue a new perspective on local neuropeptidergic

modulatory signaling in mouse cortex. This work has revealed a surprisingly highly structured and

abundant expression of cortical NPP and NP-GPCR genes: dozens of neuropeptide signaling genes

are expressed at very high levels in very distinctive and highly conserved patterns. While entirely

consistent with previous bulk transcriptomic and proteomic observations, it is only with the advent

of the RNA-seq combination of single-cell resolution with genomic depth that this extreme structure

and abundance has come into focus. We have endeavored here to shape these findings into specific

and testable peptidergic signaling predictions in the hopes of guiding fruitful experimentation based

on emerging transcriptomic neurotaxonomies, new means for genetic access to specific neuron

types and powerful new tools for biophysical analysis of neuropeptide actions. The observations pre-

sented here suggest the intriguing possibility that the homeostasis, modulation and plasticity of cor-

tical circuitry may involve local neuropeptidergic signaling networks of previously unrecognized

abundance and density.

Materials and methods

Data and software resources
The present study is based on analysis of a resource single-cell mRNA-seq dataset acquired at the

Allen Institute (Tasic et al., 2018) and available for download at http://celltypes.brain-map.org/rna-

seq/ These RNA-seq data were acquired from a total of 22,439 isolated neurons, with detection of

transcripts from a median of 9462 genes per cell (min = 1,445; max = 15,338) and an overall total of

21,931 protein-coding genes detected. Neurons were sampled from two distant and very different

neocortical areas: 13,491 neurons from primary visual cortex (VISp), and 8948 neurons from anterior

lateral motor cortex (ALM). Tasic et al., harvested tissue specimens from a variety of transgenic mice

expressing fluorescent proteins to enable enrichment of samples for neurons and for relatively rare

neuron types by FACS sorting after dissociation. This enrichment procedure resulted, by design, in a

disproportionate representation of GABAergic neurons, canonically ~20% of neurons (Sahara et al.,

2012), such that the sampled neuron population is roughly half GABAergic (47%) and half glutama-

tergic (53%). The resource publication (Tasic et al., 2018) should be consulted for full details of
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neuronal sample and library preparation, sequencing and data processing. Source data, spread-

sheets, R scripts and other code used to generate all tables and figures presented here are available

at https://github.com/AllenInstitute/PeptidergicNetworks (Gala, 2019; copy archived at https://

github.com/elifesciences-publications/PeptidergicNetworks). A derived data set np_gpcr_cpm.csv

was used for analyses summarizing CPM, region and metadata for the NPP and NP-GPCR genes.

The primary Tasic 2018 data tables are available for download at http://celltypes.brain-map.org/rna-

seq/.

Data metrics
The Tasic 2018 single-cell RNA-seq data tables report the abundance of transcripts from individual

neurons in both ‘counts per million reads’ (CPM) and ‘fragments per kilobase of exon per million

reads mapped’ (FPKM) units. Our analysis of this data compares gene expression levels quantita-

tively, with two distinct use cases: (1) comparisons across large sets of different genes, and (2) com-

parisons of the same gene across different individual cells, cell types and brain areas. We have relied

upon FPKM data (Mortazavi et al., 2008; Pimentel, 2014), for use case 1 (i.e., the Tables 1 and

2 comparisons across genes). For use case 2 (as in all figures below), we have preferred the CPM

units, because these units were used to generate the Tasic 2018 neurotaxonomy. While choices

between CPM and FPKM units here should have little impact upon outcomes, it would seem incon-

sistent to use FPKM units to compare across cell types discerned on the basis of CPM units.

The NP signaling genes upon which the present analysis focuses are expressed very differentially

across the sampled populations of individual mouse cortical neurons. That is, each gene is expressed

at a high level in some subset of cells but at zero or very low levels in the remainder of the popula-

tion. To compactly characterize such expression, we developed a ‘Peak FPKM’ (pFPKM) metric. This

metric is generated by ranking single-cell FPKM values for a given gene across the entire population

of 22,439 neurons sampled, then designating the FPKM value at the ascending 99.9th percentile

point as pFPKM. This metric was designed to minimize effects of sporadic outliers and sample size

while still closely approximating the actual peak expression value in even very small subsets of neu-

rons expressing the gene in question. Figures 1A and 2A, and their Source data files provide very

detailed additional information about the single-cell RNA-seq value distributions sampled by the

pFPKM metrics.

Selection of the 18 NPP gene set
As noted in Introduction, usage and definitions of the term ‘neuropeptide’ vary widely across the

current literature. It therefore seems unwise at present to claim that any attempted consensus list

would accurately circumscribe all neuropeptides. For the purposes of the present work, we have

relied therefore on the reasonably exhaustive list of 96 classical and candidate human and mouse

NPP genes put forth in a widely cited publication (Burbach, 2010) and related website (http://neuro-

peptides.nl/, last accessed 10 October 2019). To reconcile this list to current mouse gene nomencla-

ture, we used both the HGNC nomenclature ((https://www.genenames.org/, last accessed 10

October 2019) and the Mouse Genome Database (MGD) (http://www.informatics.jax.org, last

accessed 10 October 2019). The result is the list of 94 putative mouse NPP genes presented in

Supplementary file 3, which also tabulates the pFPKM values and percentile scores compiled for

each NPP genes from the Tasic 2018 dataset. These 94 NPP genes were further segregated using a

preliminary (early 2018) version of the Tasic 2018 neurotaxonomy to select NPP genes exhibiting

median CPM expression levels > 10 in one or more neuron type in VISp and ALM cortex. This

screening resulted in the list of 39 such NPP genes represented in Supplementary file 4, with most

exceeding the 10 CPM threshold by a large margin (observed range was 24–4100 CPM).

Supplementary file 4 also tabulates criteria that drove inclusion of only the 18 NPP genes repre-

sented in Table 1 while 21 other cortically expressed NPP genes were excluded. The 18 select NPP

genes include all but two (Edn3 and Gal) genes for which transcripts ranked in the top quintile by

pFPKM of the 94 putative NPP genes as tabulated in Supplementary file 3.

Selection of the 29 NP-GPCR gene set
The 18 select NPP genes listed in Table 1 were used to search manually for cognate NP-GPCRs

expressed in mouse cortex, relying primarily on ligand/receptor pairing data retrieved from the
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IUPHAR/BPS Pharmacology website (http://www.guidetopharmacology.org, accessed in March,

2018) and the Tasic 2018 NP-GPCR expression data tabulated in Supplementary file 5. This process

resulted in selection of the 29 mouse NP-GPCR genes listed in Table 2, which also lists for each the

corresponding cognate NPP gene or genes used to root the search. The matching of NP-GPCR and

NPP genes in Table 2 neglects a few receptor/ligand pairings rated on the IUPHAR/BPS website as

very low in affinity compared to primary pairings.

Autoencoder-based classifier development and evaluation methods
Gene sets
Table of different sets of genes used for experiments shown in Figure 4:

Gene set Description

NP47 The combined set of 18 NPPs and 29 NP-GPCRs

HE 6083 genes selected based on maximum value across all neurons in the dataset

DE 4020 differentially expressed genes for Tasic 2018 neurotaxonomy

DE47 47 most variable genes selected from the set of DE genes

Rand47 Random subsets of 47 genes drawn from the set of HE genes

Rand47 ExpMatched Random subsets of 47 genes such that the maximum
expression value approximately matches that of the NP genes

Autoencoder network architecture
Autoencoders are multi-layer, feedforward neural network models that consist of encoder/decoder

subnetworks. In its basic realization, the encoder subnetwork learns to compress the high dimen-

sional input into a low dimensional representation, from which the decoder subnetwork estimates

the original input. We constructed a network with two autoencoders, with eight hidden layers each.

The architecture of the first autoencoder (HE Genes autoencoder, Figure 4C) is Input(6083) fi Drop-

out(0.8) fi Dense(100) fi Dense(100) fi Dense(100) fi Dense(100) fi Dense(d) fi Batch Normaliza-

tion (latent representation z1) fi Dense(100) fi Dense(100) fi Dense(100) fi Dense(100) fi Dense

(6083), and the architecture of the second autoencoder (NP Genes autoencoder, Figure 4B) is Input

(47) fi Dropout(0) fi Dense(x) fi Dense(x) fi Dense(x) fi Dense(x) fi Dense(d) fi Batch Normaliza-

tion (latent representation z2) fi Dense(x) fi Dense(x) fi Dense(x) fi Dense(x) fi Dense(47). The

numbers in parentheses of Dense denote the number of fully connected units in those layers. All

Dense layer units use the rectified linear (ReLU) function as the nonlinear transformation except for

those in the Dense(d) layers, which do not use a nonlinear transformation. For results using the NP

genes autoencoder x = 50; tests with x = 25, led to qualitatively similar results (not shown) and did

not change overall conclusions of the analyses. The Dropout layer (Srivastava, 2014) is used with

dropout probability = 0.8 to regularize the HE Genes autoencoder and prevent over-fitting. The

numbers of input/output units in each network match the number of input genes. The two dimen-

sional representations (d = 2) shown in Figure 4A–B, and the five dimensional (d = 5) representa-

tions used in Figure 4D are the outputs of the Batch Normalization layer (Ioffe and Christian, 2015)

for the respective networks. We determined the optimal latent space dimensionality d = 5 for the

quantitative analysis by varying the latent space dimensionality of the HE Genes network between 2

and 20 dimensions and choosing the value that maximized the QDA analysis-based cell type classifi-

cation accuracy for the HE genes (see Figure 4—figure supplement 2).

Autoencoder training
Both autoencoder networks were trained using the backpropagation algorithm with the Adam opti-

mizer (Kingma and Ba, 2014) and a batch size of 956. The HE genes autoencoder was trained for

50,000 epochs using the mean squared error between the input and the output layers as the loss

function. The NP genes autoencoder was trained for 10,000 epochs using L = R+lC as the loss func-

tion, where R denotes the mean squared reconstruction loss as in the HE genes network, C denotes

the penalty for mismatch between the latent representations, and l = 100 is the weighting scalar
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between the two terms. After training the HE genes network and obtaining the latent representation

z1 for each cell, C calculates the mean squared error between the latent representation of the NP

genes network z2 and z1, while simultaneously normalizing variance along the narrowest direction for

z2. The two additive loss terms, R and C, together minimize the reconstruction error while attempt-

ing to match the representation learned using only the HE gene set. The same procedure was used

for all small gene subsets including NP and random gene sets. Python implementations of the net-

works using the Tensorflow and Keras libraries are included in the code repository.

Quantifying abilities of gene sets to classify cell types
The neurotaxonomy of Tasic et al. (2018) defines hierarchical relationships of neuronal cell types.

For each gene set, we used Quadratic Discriminant Analysis (QDA) to train multiple classifiers on the

latent space representations to predict labels at different levels of the cell type hierarchy. The differ-

ent levels (nodes) in the hierarchy were characterized in Tasic 2018 with a resolution index measure.

Here we re-normalized that resolution index measure to have a value of 0.0 for the class of neurons

(root node), and 1.0 for the 115 VISp+ALM cell types (leaf nodes, inset in Figure 4D). All intermedi-

ate nodes in the hierarchical classification tree have a positive resolution index that is less than 1.0.

We used this property of nodes in the hierarchical classification tree to assign a resolution index (RI)

value to each cell. The procedure starts with a classifier that was trained using all the leaf node

labels, that is all the 115 VISp+ALM cell type labels. Test cells that are classified correctly at this level

are assigned RI = 1.0, which corresponds to the resolution index measure of the leaf nodes. Test

cells that are incorrectly classified at this level of detail are re-assigned labels by a classifier that was

trained on successively merged labels along the hierarchical tree till they are correctly classified.

These cells receive the resolution index value of the node for which they are assigned the correct

label. This procedure was performed using 13 fold cross validation for all the different gene sets,

and the results were pooled.

Peptidergic coupling matrices
For a given cortical area A ALM;VISPf g , we denote by NPPAðg; tÞ the mean CPM expression matrix

having entries NPP gene g and cell type t. Similarly, NPGPCRAðh; tÞ has as entries the expression of

NP-GPCR gene h in type t. The coupling matrix CA
ðg;tÞ of the pair (g,h) in area A is then defined

Ca
ðg;tÞðt; sÞ ¼ log10ðNPPAðg; tÞ � NPGPCRAðh; sÞÞ for the fixed pair (g,h) in (NPP, NP-GPCR) as t,s range

over all cell types in A. Matrices CA
ðg;tÞ are formally the (square matrix) outer product NPPA NPGPCRA

then presented in log10 units. Pooled representations are computed by averaging values of coupling

matrices CA
ðg;tÞ over 12 major cell types prior to rendering.

Transduction mode predictions
Peptidergic coupling matrices are summed, log10 scaled and maximum normalized independently

according to Gi/o, Gs and Gq/11 family membership, then displayed in red, green and blue, respec-

tively. Pooled representations are computed by averaging type-level data over subclasses before

similar rendering.
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