1. Cell Biology
  2. Stem Cells and Regenerative Medicine
Download icon

Human perivascular stem cell-derived extracellular vesicles mediate bone repair

  1. Jiajia Xu
  2. Yiyun Wang
  3. Ching-Yun Hsu
  4. Yongxing Gao
  5. Carolyn Ann Meyers
  6. Leslie Chang
  7. Leititia Zhang
  8. Kristen Broderick
  9. Catherine Ding
  10. Bruno Peault
  11. Kenneth Witwer
  12. Aaron Watkins James  Is a corresponding author
  1. Johns Hopkins University, United States
  2. University of California, Los Angeles, United States
Research Article
  • Cited 14
  • Views 1,915
  • Annotations
Cite this article as: eLife 2019;8:e48191 doi: 10.7554/eLife.48191

Abstract

The vascular wall is a source of progenitor cells that are able to induce skeletal repair, primarily by paracrine mechanisms. Here, the paracrine role of extracellular vesicles (EVs) in bone healing was investigated. First, purified human perivascular stem cells (PSCs) were observed to induce mitogenic, pro-migratory, and pro-osteogenic effects on osteoprogenitor cells while in non-contact co-culture via elaboration of EVs. PSC-derived EVs shared mitogenic, pro-migratory, and pro-osteogenic properties of their parent cell. PSC-EV effects were dependent on surface-associated tetraspanins, as demonstrated by EV trypsinization, or neutralizing antibodies for CD9 or CD81. Moreover, shRNA knockdown in recipient cells demonstrated requirement for the CD9/CD81 binding partners IGSF8 and PTGFRN for EV bioactivity. Finally, PSC-EVs stimulated bone repair, and did so via stimulation of skeletal cell proliferation, migration, and osteodifferentiation. In sum, PSC-EVs mediate the same tissue repair effects of perivascular stem cells, and represent an 'off-the-shelf' alternative for bone tissue regeneration.

Article and author information

Author details

  1. Jiajia Xu

    Department of Pathology, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6084-2029
  2. Yiyun Wang

    Department of Pathology, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  3. Ching-Yun Hsu

    Department of Pathology, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  4. Yongxing Gao

    Department of Pathology, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  5. Carolyn Ann Meyers

    Department of Pathology, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  6. Leslie Chang

    Department of Pathology, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  7. Leititia Zhang

    Department of Pathology, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  8. Kristen Broderick

    Department of Surgery, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  9. Catherine Ding

    Department of Orthopaedic Surgery, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  10. Bruno Peault

    Department of Orthopaedic Surgery, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    Bruno Peault, is the inventor of perivascular stem cell-related patents held by the UC Regents (Patent No. 20160271186).
  11. Kenneth Witwer

    Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  12. Aaron Watkins James

    Department of Pathology, Johns Hopkins University, Baltimore, United States
    For correspondence
    awjames@jhmi.edu
    Competing interests
    Aaron Watkins James, is a scientific advisory board member for Novadip, LLC.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2002-622X

Funding

National Institute of Arthritis and Musculoskeletal and Skin Diseases (R01 AR070773)

  • Aaron Watkins James

Department of Defense (W81XWH-18-10613)

  • Aaron Watkins James

National Institute of Dental and Craniofacial Research (R21 DE027922)

  • Aaron Watkins James

Department of Defense (W81XWH-18-1-0121)

  • Aaron Watkins James

American Cancer Society (Research Scholar Grant RSG-18-027-01-CSM)

  • Aaron Watkins James

Orthopaedic Research and Education Foundation with funding provided by the Musculoskeletal Transplant Foundation

  • Aaron Watkins James

Maryland Stem Cell Research Foundation

  • Aaron Watkins James

Musculoskeletal Transplant Foundation

  • Aaron Watkins James

National Institute of Arthritis and Musculoskeletal and Skin Diseases (K08 AR068316)

  • Aaron Watkins James

Department of Defense (W81XWH-18-1-0336)

  • Aaron Watkins James

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were performed according to the approved protocol of the Animal Care and Use Committee (ACUC) at Johns Hopkins University (Approval No. MO16M226).

Human subjects: Human lipoaspirate was obtained under IRB approval at JHU with a waiver of informed consent (Approval No. IRB00119905 and IRB00137530).

Reviewing Editor

  1. Clifford J Rosen, Maine Medical Center Research Institute, United States

Publication history

  1. Received: May 3, 2019
  2. Accepted: September 3, 2019
  3. Accepted Manuscript published: September 4, 2019 (version 1)
  4. Version of Record published: September 27, 2019 (version 2)

Copyright

© 2019, Xu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,915
    Page views
  • 392
    Downloads
  • 14
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Salah A Baker et al.
    Research Article Updated

    Interstitial cells of Cajal (ICC) generate pacemaker activity responsible for phasic contractions in colonic segmentation and peristalsis. ICC along the submucosal border (ICC-SM) contribute to mixing and more complex patterns of colonic motility. We show the complex patterns of Ca2+ signaling in ICC-SM and the relationship between ICC-SM Ca2+ transients and activation of smooth muscle cells (SMCs) using optogenetic tools. ICC-SM displayed rhythmic firing of Ca2+transients ~ 15 cpm and paced adjacent SMCs. The majority of spontaneous activity occurred in regular Ca2+ transients clusters (CTCs) that propagated through the network. CTCs were organized and dependent upon Ca2+ entry through voltage-dependent Ca2+ conductances, L- and T-type Ca2+ channels. Removal of Ca2+ from the external solution abolished CTCs. Ca2+ release mechanisms reduced the duration and amplitude of Ca2+ transients but did not block CTCs. These data reveal how colonic pacemaker ICC-SM exhibit complex Ca2+-firing patterns and drive smooth muscle activity and overall colonic contractions.

    1. Cell Biology
    Alexander J Sercel et al.
    Tools and Resources

    Generating mammalian cells with specific mtDNA-nDNA combinations is desirable but difficult to achieve and would be enabling for studies of mitochondrial-nuclear communication and coordination in controlling cell fates and functions. We developed 'MitoPunch', a pressure-driven mitochondrial transfer device, to deliver isolated mitochondria into numerous target mammalian cells simultaneously. MitoPunch and MitoCeption, a previously described force-based mitochondrial transfer approach, both yield stable isolated mitochondrial recipient (SIMR) cells that permanently retain exogenous mtDNA, whereas coincubation of mitochondria with cells does not yield SIMR cells. Although a typical MitoPunch or MitoCeption delivery results in dozens of immortalized SIMR clones with restored oxidative phosphorylation, only MitoPunch can produce replication-limited, non-immortal human SIMR clones. The MitoPunch device is versatile, inexpensive to assemble, and easy to use for engineering mtDNA-nDNA combinations to enable fundamental studies and potential translational applications.