High fat diet induces microbiota-dependent silencing of enteroendocrine cells

  1. Lihua Ye
  2. Olaf Mueller
  3. Jennifer Bagwell
  4. Michel Bagnat
  5. Rodger A Liddle  Is a corresponding author
  6. John F Rawls  Is a corresponding author
  1. Duke University School of Medicine, United States

Abstract

Enteroendocrine cells (EECs) are specialized sensory cells in the intestinal epithelium that sense and transduce nutrient information. Consumption of dietary fat contributes to metabolic disorders, but EEC adaptations to high fat feeding were unknown. Here, we established a new experimental system to directly investigate EEC activity in vivo using a zebrafish reporter of EEC calcium signaling. Our results reveal that high fat feeding alters EEC morphology and converts them into a nutrient insensitive state that is coupled to endoplasmic reticulum (ER) stress. We called this novel adaptation 'EEC silencing'. Gnotobiotic studies revealed that germ-free zebrafish are resistant to high fat diet induced EEC silencing. High fat feeding altered gut microbiota composition including enrichment of Acinetobacter species, and we identified an Acinetobacter strain sufficient to induce EEC silencing. These results establish a new mechanism by which dietary fat and gut microbiota modulate EEC nutrient sensing and signaling.

Data availability

Sequencing data have been deposited at SRA under Bioproject accession number PRJNA532723.All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1-8, Supplemental Figure 3. The link for access the source data: https://dx.doi.org/10.5061/dryad.mb004d1

The following data sets were generated

Article and author information

Author details

  1. Lihua Ye

    Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Olaf Mueller

    Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jennifer Bagwell

    Department of Cell Biology, Duke University School of Medicine, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Michel Bagnat

    Department of Cell Biology, Duke University School of Medicine, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3829-0168
  5. Rodger A Liddle

    Department of Medicine, Duke University School of Medicine, Durham, United States
    For correspondence
    rodger.liddle@duke.edu
    Competing interests
    The authors declare that no competing interests exist.
  6. John F Rawls

    Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, United States
    For correspondence
    john.rawls@duke.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5976-5206

Funding

National Institute of Diabetes and Digestive and Kidney Diseases (R01-DK093399)

  • John F Rawls

National Institute of Diabetes and Digestive and Kidney Diseases (R01 DK109368)

  • Rodger A Liddle

National Institute of Diabetes and Digestive and Kidney Diseases (R01-DK081426)

  • John F Rawls

Pew Charitable Trusts

  • John F Rawls

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All zebrafish experiments conformed to the US Public Health Service Policy on Humane Care and Use of Laboratory Animals, using protocol number A115-16-05 approved by the Institutional Animal Care and Use Committee of Duke University.

Copyright

© 2019, Ye et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,802
    views
  • 1,405
    downloads
  • 83
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lihua Ye
  2. Olaf Mueller
  3. Jennifer Bagwell
  4. Michel Bagnat
  5. Rodger A Liddle
  6. John F Rawls
(2019)
High fat diet induces microbiota-dependent silencing of enteroendocrine cells
eLife 8:e48479.
https://doi.org/10.7554/eLife.48479

Share this article

https://doi.org/10.7554/eLife.48479

Further reading

    1. Developmental Biology
    Bin Zhu, Rui Wei ... Pei Liang
    Research Article

    Wing dimorphism is a common phenomenon that plays key roles in the environmental adaptation of aphid; however, the signal transduction in response to environmental cues and the regulation mechanism related to this event remain unknown. Adenosine (A) to inosine (I) RNA editing is a post-transcriptional modification that extends transcriptome variety without altering the genome, playing essential roles in numerous biological and physiological processes. Here, we present a chromosome-level genome assembly of the rose-grain aphid Metopolophium dirhodum by using PacBio long HiFi reads and Hi-C technology. The final genome assembly for M. dirhodum is 447.8 Mb, with 98.50% of the assembled sequences anchored to nine chromosomes. The contig and scaffold N50 values are 7.82 and 37.54 Mb, respectively. A total of 18,003 protein-coding genes were predicted, of which 92.05% were functionally annotated. In addition, 11,678 A-to-I RNA-editing sites were systematically identified based on this assembled M. dirhodum genome, and two synonymous A-to-I RNA-editing sites on CYP18A1 were closely associated with transgenerational wing dimorphism induced by crowding. One of these A-to-I RNA-editing sites may prevent the binding of miR-3036-5p to CYP18A1, thus elevating CYP18A1 expression, decreasing 20E titer, and finally regulating the wing dimorphism of offspring. Meanwhile, crowding can also inhibit miR-3036-5p expression and further increase CYP18A1 abundance, resulting in winged offspring. These findings support that A-to-I RNA editing is a dynamic mechanism in the regulation of transgenerational wing dimorphism in aphids and would advance our understanding of the roles of RNA editing in environmental adaptability and phenotypic plasticity.

    1. Developmental Biology
    Hanee Lee, Junsu Kang ... Junho Lee
    Research Article

    The evolutionarily conserved Hippo (Hpo) pathway has been shown to impact early development and tumorigenesis by governing cell proliferation and apoptosis. However, its post-developmental roles are relatively unexplored. Here, we demonstrate its roles in post-mitotic cells by showing that defective Hpo signaling accelerates age-associated structural and functional decline of neurons in Caenorhabditis elegans. Loss of wts-1/LATS, the core kinase of the Hpo pathway, resulted in premature deformation of touch neurons and impaired touch responses in a yap-1/YAP-dependent manner, the downstream transcriptional co-activator of LATS. Decreased movement as well as microtubule destabilization by treatment with colchicine or disruption of microtubule-stabilizing genes alleviated the neuronal deformation of wts-1 mutants. Colchicine exerted neuroprotective effects even during normal aging. In addition, the deficiency of a microtubule-severing enzyme spas-1 also led to precocious structural deformation. These results consistently suggest that hyper-stabilized microtubules in both wts-1-deficient neurons and normally aged neurons are detrimental to the maintenance of neuronal structural integrity. In summary, Hpo pathway governs the structural and functional maintenance of differentiated neurons by modulating microtubule stability, raising the possibility that the microtubule stability of fully developed neurons could be a promising target to delay neuronal aging. Our study provides potential therapeutic approaches to combat age- or disease-related neurodegeneration.