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Abstract The initiation of DNA replication in metazoans occurs at thousands of chromosomal

sites known as origins. At each origin, the Origin Recognition Complex (ORC), Cdc6, and Cdt1 co-

assemble to load the Mcm2-7 replicative helicase onto chromatin. Current replication models

envisage a linear arrangement of isolated origins functioning autonomously; the extent of inter-

origin organization and communication is unknown. Here, we report that the replication initiation

machinery of D. melanogaster unexpectedly undergoes liquid-liquid phase separation (LLPS) upon

binding DNA in vitro. We find that ORC, Cdc6, and Cdt1 contain intrinsically disordered regions

(IDRs) that drive LLPS and constitute a new class of phase separating elements. Initiator IDRs are

shown to regulate multiple functions, including chromosome recruitment, initiator-specific co-

assembly, and Mcm2-7 loading. These data help explain how CDK activity controls replication

initiation and suggest that replication programs are subject to higher-order levels of inter-origin

organization.

DOI: https://doi.org/10.7554/eLife.48562.001

Introduction
The appropriate spatiotemporal regulation of DNA replication is essential to genetic integrity and

cell proliferation. In eukaryotes, the initiation of DNA replication requires the coordinated action of

three proteinaceous factors – the Origin Recognition Complex (ORC), Cdc6, and Cdt1 – which co-

assemble on DNA origins in the G1 phase of the cell cycle to catalyze loading of the Mcm2-7 replica-

tive helicase onto chromatin. Once activated during the transition to S phase, Mcm2-7 helps pro-

mote origin melting, replisome assembly, and translocation of the replication fork.

ORC consists of a heterohexameric complex comprising the subunits Orc1-6. Five ORC subunits

(Orc1-5), as well as Cdc6 and the six subunits of Mcm2-7, possess an ATPases Associated with

diverse cellular Activities (AAA+) domain; Orc6 and Cdt1 are the only non-AAA+ proteins used for

Mcm2-7 loading. Despite sharing a high overall degree of conservation across eukaryotes, certain

aspects of initiator subunit sequence and function have nonetheless diversified during evolution. For

example, S. pombe Orc4 contains a unique domain not found in other ORCs that endows the pro-

tein with a preference for A/T rich regions of DNA (Chuang and Kelly, 1999; Lee et al., 2001). Con-

versely, S. cerevisiae ORC is able to recognize specific origin sequences (Bell and Stillman, 1992;

Li et al., 2018), whereas origin specification for metazoan ORCs appears more contextual

(Remus et al., 2004; Vashee et al., 2003). S. cerevisiae Cdt1 additionally possesses a catalytically-

inactive dioxygenase domain at its N-terminus that is necessary for yeast viability and Mcm2-7 load-

ing (Frigola et al., 2017; Takara and Bell, 2011); this fold is absent in S. pombe and metazoan

Cdt1s.
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Much of our current understanding of initiator mechanism derives from reconstitution studies

using budding yeast initiation factors. These efforts have helped define an orchestrated set of ATP-

dependent molecular exchanges between ORC, Cdc6, and Cdt1 that culminate in the loading of

two copies of Mcm2-7 onto origin DNA in the form of a stable double-hexamer (Duzdevich et al.,

2015; Evrin et al., 2009; Remus et al., 2009; Ticau et al., 2015). One aspect of initiation that has

been difficult to probe in vitro, however, is the potential for interactions between initiation factors

associated with different origins. Evidence for mesoscale coordination of origin activity derives from

multiple sources. For example, genomic studies aimed at defining sites of ORC binding and their

relation to replication origins have revealed evidence of origin clustering across chromosomes at

nucleosome-free regions (Cayrou et al., 2011; Miotto et al., 2016; Vaughn et al., 1990). Cellular

patterns of ORC localization are also strikingly non-uniform, often presenting as concentrated foci

on chromatin whether it be in D. melanogaster follicle cells (Austin et al., 1999) or human cells in tis-

sue culture (Lidonnici et al., 2004; Prasanth et al., 2010; Shen et al., 2010). Outside of initiation,

there exists a well-characterized phenomenon of origin interference that has been taken as evidence

of inter-origin communication (Cayrou et al., 2011); the clustering of co-replicating regions into so-

called Replication Factories or replication domains (RD) similarly has been observed in both fixed

and live cells (Cook, 1999; Xiang et al., 2018). Finally, the replication timing profile of origins, which

fire asynchronously throughout S-phase, partition to specific chromosome territories (Cremer and

Cremer, 2001; Gilbert et al., 2005; Pope et al., 2014). It is currently unclear whether the clustering

patterns observed for ORC binding sites, origin communication, and the timing of replication

domains is coincidence or dependent upon an as-yet-discovered set of physiological properties of

replication factors.

Present-day views of mesoscale organization within cells typically invoke processes such as pro-

tein gradients or membrane compartmentalization. Recently, a rapidly expanding body of work has

begun to recognize protein/protein and protein/RNA liquid–liquid phase separation (LLPS) as play-

ing critical functions in generating membraneless pseudo-organelles and co-localized bodies

(Boeynaems et al., 2018). Both nuclear and cytoplasmic liquid phase condensates (also known as

biomolecular condensates) have been observed and implicated in a panoply of functions, including

cellular signaling (Li et al., 2012; Su et al., 2016), centrosome assembly (Woodruff et al., 2017),

and chromatin/heterochromatin assembly and maintenance (Larson et al., 2017; Strom et al.,

2017; reviewed in Maeshima et al., 2016). A functional role for biological condensates is only

beginning to emerge; such entities may help sequester and/or co-localize certain factors to modu-

late biochemical output and response (Shin and Brangwynne, 2017). Intrinsically disordered amino

acid regions (IDRs) are often found in proteins that phase separate and can underpin multivalent

interactions that help drive phase separation (Li et al., 2012). Many phase-separating IDRs are addi-

tionally enriched for certain amino acids and are hence referred to as low-complexity domains (LCD)

(Hennig et al., 2015; Kato et al., 2012). Although multiple nuclear events are now being scrutinized

through the lens of phase separation, how these processes integrate and communicate with other

LLPS or dispersive-state pathways is currently unknown.

Here we report that the Drosophila melanogaster replication initiation factors ORC, Cdc6, and

Cdt1 possess N-terminal IDRs that facilitate DNA-dependent liquid-liquid phase separation in vitro.

Bioinformatic analyses reveal that these initiator IDRs possess a high-complexity sequence signature

that is preserved in metazoan homologs, but that is distinct from other condensate-promoting IDRs

in other cellular pathways. Biochemical studies show that these IDRs drive the selective co-assembly

and enrichment of Drosophila initiation factors into liquid phases in the presence of DNA, while

simultaneously excluding non-partner proteins that also phase separate. Although Drosophila

Mcm2-7 does not appear to phase separate on its own, initiation factors can recruit the complex

into condensates in a DNA-, ATP-, and ORC/Cdc6/Cdt1-dependent manner. In addition, cellular and

genetic studies establish that the Orc1 IDR is critical for its recruitment to mitotic chromosomes and

is essential for viability. Collectively, our observations not only reveal a new class of high-complexity

sequences that undergo phase separation, but also provide a model for how these elements pro-

mote physical interactions between replication initiation factors that could help promote long-range

chromosomal communication observed in replication programs.
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Results

D. melanogaster Cdt1 undergoes DNA-dependent liquid-liquid phase
separation (LLPS)
The architecture of D. melanogaster Cdt1 (DmCdt1) is markedly different from its budding yeast

counterpart (Figure 1A). Sequence analysis with the disorder prediction server DISOPRED

(Jones and Cozzetto, 2015) reveals that the N-terminal sequence of DmCdt1 is predicted to be an

extended intrinsically disordered region (IDR) (Figure 1A). Although the sequence of this region is

not conserved per se, an N-terminal IDR is present in other metazoan Cdt1s (Table 1).

The N-terminal IDR of metazoan Cdt1 contains multiple conserved short linear motifs (SLiMs)

(Davey et al., 2012) necessary for Cdt1 regulation, such as a PCNA interacting peptide (PIP) box

and kinase consensus sequences (Pozo and Cook, 2016). However, known SLiMs only account for a

small fraction (<25%) of the total length of the metazoan Cdt1 N-terminal IDR, so we asked whether

this domain might have more general functional significance. The IDR of DmCdt1 has a predicted pI

that is relatively basic (pI = 10.2); this feature, combined with the presence of tandem WH domains

in the protein, suggested that DmCdt1 might bind DNA. We found that agarose beads coupled

with a random 60 bp double-stranded DNA (dsDNA) were able to efficiently pull down DmCdt1,

Figure 1. D. melanogaster Cdt1 undergoes DNA-dependent phase separation. (A) Architecture of D.

melanogaster and S. cerevisiae Cdt1. The per-residue DISOPRED (Jones and Cozzetto, 2015) disorder prediction

score is shown in the plot below each gene, with a cutoff value of 0.5 indicated by the dashed line. Residues

scored above this cutoff are predicted to be disordered. (B) dsDNA-coupled (‘DNA Beads’) and control (‘Ctrl

Beads’) agarose beads were used to pull-down DmCdt1 and ScCdt1. DmCdt1 but not ScCdt1 bound to the DNA-

coupled beads. (C) Fluorescence anisotropy measurements of Cdt1 binding to a Cy5-labeled duplex

oligonucleotide. ScCdt1 showed no evidence of binding. DmCdt1 bound with a Kd, app = 83 ± 17 nM. (D) EMSA

analysis of DmCdt1 binding to duplex DNA. The complex between DNA and DmCdt1 is heterogeneous and

large, and is fully well-shifted at the highest concentrations. In good agreement with anisotropy measurements,

the calculated Kd, app for DmCdt1 is ~100 nM. (E) Mixing concentrated DmCdt1 with duplex DNA results in a

visible increase in solution turbidity that can be reversed with the addition of KCl. (F) DIC microscopy analysis of

solutions of Cdt1, DNA, and a Cdt1/DNA mixture (scale bar = 5 mm). Phase-separated droplets were evident when

Cdt1 was mixed with DNA. Gel images are representative from three independent experiments.

DOI: https://doi.org/10.7554/eLife.48562.002

The following figure supplement is available for figure 1:

Figure supplement 1. Sequence and length-dependence of Cdt1 phase separation.

DOI: https://doi.org/10.7554/eLife.48562.003
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whereas no such interaction was observed for ScCdt1 (Figure 1B). Quantitative analysis of dsDNA

binding using a fluorescence polarization (FP)-based assay also revealed DNA binding by DmCdt1

(Kd, app = 83 ± 17 nM) but not ScCdt1 (Figure 1C). Mouse and S. pombe Cdt1 have similarly been

shown to bind DNA in vitro (Houchens et al., 2008; Yanagi et al., 2002).

Electrophoretic mobility assays confirmed DNA binding by DmCdt1 (Kd, app » 100 nM) but also

showed that the complex is highly heterogenous (Figure 1D). Indeed, elevated concentrations of

the protein (>190 nM) resulted in a well-shifted species, suggestive of increasingly higher-order

assemblies; however, size-exclusion chromatography showed that purified DmCdt1 is monodisperse

in solution (Figure 1—figure supplement 1A). Interestingly, in the course of conducting these stud-

ies, we found that upon mixing 20 mM DmCdt1 with stoichiometric amounts of a 60 bp duplex oligo,

the solution became visibly turbid, and that this turbidity was reversible by the addition of salt (400

mM KCl) (Figure 1E). Inspection of the turbid solution by differential interference contrast (DIC)

microscopy unexpectedly revealed the presence of phase-separated droplets up to 4 mm in diameter

(Figure 1F). These droplets were fully absent from the DNA alone sample and barely detectable in

both number and size in the DmCdt1 alone sample. Notably, Cdt1 phase separation was dependent

on the length, but not the sequence, of the dsDNA substrate, with maximal LLPS occurring in the

presence of oligonucleotides longer than 25 basepairs (Figure 1—figure supplement 1B–C). To

confirm that the affinity determined for Cdt1 in binding DNA was not confounded by the phase tran-

sition event, we determined whether a rapid binding/exchange equilibrium was maintained in the FP

DNA-binding assay using a competition assay that titrated ‘cold’ dsDNA against pre-formed Cdt1/

Table 1. Conservation of initiator IDR sequence features.

Analysis of eukaryotic initiator homologs for the presence of an N-terminal IDR, as well as IDR

sequence features (‘pI’=isoelectric point; ‘FCR’=fraction charged residues).

Orc1 Cdc6 Cdt1

D. melanogaster
N-term IDR length:
pI:
FCR:

362 aa
10.2
0.32

246 aa
9.4
0.35

294 aa
10.1
0.32

Human
N-term IDR length:
pI:
FCR:

300 aa
10.7
0.33

136 aa
10.6
0.29

175 aa
10.6
0.29

Mouse
N-term IDR length:
pI:
FCR:

298 aa
10.2
0.34

141 aa
10.0
0.31

178 aa
9.8
0.24

X. laevis
N-term IDR length:
pI:
FCR:

327 aa
9.7
0.33

140 aa
10.8
0.26

248 aa
10.1
0.31

C. elegans
N-term IDR length:
pI:
FCR:

242 aa
9.1
0.39

172 aa
9.9
0.38

194 aa
10.3
0.35

D. rerio
N-term IDR length:
pI:
FCR:

391 aa
9.8
0.31

156 aa
11.1
0.22

309 aa
9.9
0.31

S. cerevisiae
N-term IDR length:
pI:
FCR:

143 aa
4.7
0.49

31 aa
6.2
0.32

N/A
N/A
N/A

S. pombe
N-term IDR length:
pI:
FCR:

117 aa
10.6
0.36

133 aa
10.2
0.22

N/A
N/A
N/A

DOI: https://doi.org/10.7554/eLife.48562.004
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DNA complexes (Figure 1—figure supplement 1D). The unlabeled oligonucleotide was able to fully

reduce DNA binding by Cdt1 to background levels, with an inhibition constant (Kc, app = 62 ± 4 nM)

comparable to the observed Kd, app (83 nM), demonstrating that the labeled DNA in droplets is

freely exchangeable and therefore in equilibrium between bound and unbound states. Together,

these data demonstrate not only that DmCdt1 binds DNA, but that DNA-binding in turn induces the

protein to phase separate.

DNA-dependent phase separation of DmCdt1 requires the N-terminal
IDR and occurs at physiologic concentrations
The DNA-dependency of Cdt1 phase separation predicts that droplets should be enriched for both

protein and nucleic acid. To test this prediction, DmCdt1 was expressed and purified with an N-ter-

minal enhanced Green Fluorescent Protein (eGFP) tag (eGFP-Cdt1) (Figure 2A). A Cy5-labeled

duplex oligonucleotide (Cy5-dsDNA) was then mixed with an equimolar amount of protein (5:5 mM)

and imaged by two-color fluorescence imaging (Figure 2B). When eGFP-Cdt1 was mixed with Cy5-

dsDNA, droplets up to 3 mm in diameter appeared, all containing both protein and nucleic acid.

Samples with eGFP-Cdt1 alone did not show such droplets, nor were they observed for samples

with Cy5-dsDNA only. These data demonstrate that phase separation by Cdt1 is driven, at least in

part, by dsDNA-induced coacervation, and further show that dye-labeled oligonucleotides can serve

Figure 2. DmCdt1 phase separation is facilitated by an N-terminal IDR. (A) SDS-PAGE analysis and Coomassie

stain of purified eGFP-Cdt1. (B) Samples containing eGFP-Cdt1, Cy5-dsDNA (60 bp), and a mixture of eGFP-Cdt1

and Cy5-dsDNA (‘Mixed’) were prepared and analyzed by two-color fluorescent microscopy. Droplets were

observed in the Mixed sample enriched for both protein (green) and nucleic acid (red). (C) Cy5-dsDNA was

imaged alone or mixed with either wild-type Cdt1 (WT) or a Cdt1 construct lacking the N-terminal IDR (DIDR). Only

WT Cdt1 could induce droplet formation. (D) Schematic of a condensate depletion assay, a method for assessing

phase separation (see Materials and methods for details). (E) The depletion assay was utilized to assess the role of

the Cdt1 IDR in phase separation. DNA-induced the depletion of WT Cdt1 but not DIDR. (F) Phase diagram for

Cdt1 in the presence of equimolar amounts of sixty basepair dsDNA (filled markers = phase separation observed,

unfilled markers = phase separation not observed). (G) Depletion assay to assess phase separation at sub-

physiological concentrations of Cdt1. DNA-induced phase separation of Cdt1 is seen at the lowest concentration

tested (50 nM). Gel images are representative of three independent experiments.

DOI: https://doi.org/10.7554/eLife.48562.005

The following figure supplement is available for figure 2:

Figure supplement 1. Properties of D. melanogaster Cdt1 phase separation.

DOI: https://doi.org/10.7554/eLife.48562.006
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as a proxy for labeled protein when assessing DNA-dependent protein phase separation by fluores-

cence microscopy.

Given the known importance of protein IDRs in facilitating phase separation (Mitrea and Kri-

wacki, 2016), we hypothesized that the IDR of Cdt1 might likewise be critical for the condensates

we observed. We therefore purified an N-terminal IDR deletion of Cdt1 (Cdt1DIDR) and determined

whether, upon mixing with DNA, a condensed phase could form (Figure 2C). No droplets were

observed when Cdt1DIDR was mixed with Cy5-dsDNA, even at elevated levels (10 mM protein, 10 mM

DNA). To confirm these data with unlabeled DNA, we devised a simple depletion assay (Figure 2D).

In this approach, protein is incubated with or without DNA, after which the denser, phase-separated

material is pelleted by centrifugation, and the degree to which protein is depleted from the superna-

tant is assessed by SDS-PAGE. In agreement with the microscopy data, no depletion of full-length

Cdt1 was observed relative to the load control in the absence of DNA (Figure 2E), indicating that

no phase separation occurred. Moreover, the full-length Cdt1 signal was fully lost from the superna-

tant in the presence of DNA, indicating that a near complete partitioning of Cdt1 into the con-

densed (pelleted) phase took place. When the DmCdt1 IDR was removed, the protein was again

fully retained in the supernatant, regardless of whether DNA was present or not. Notably, a con-

struct containing only the Cdt1 N-terminal IDR residues (Cdt1IDR) bound DNA (Kd, app = 158 ± 32

nM) and underwent DNA-dependent phase separation on its own (Figure 2—figure supplement

1A–C), demonstrating that the Cdt1 IDR is necessary and sufficient for condensation and that it

directly interacts with dsDNA. Budding yeast Cdt1, which neither has an IDR (Table 1) nor binds

DNA (Figure 1), did not exhibit phase separation behavior in vitro (Figure 2—figure supplement

1D–E). However, all other metazoan Cdt1 homologs possess an N-terminal IDR; tests with human

Cdt1 revealed that, similar to DmCdt1, it also can undergo DNA-induced liquid phase condensation

(Figure 2—figure supplement 1F–G). Collectively, these data demonstrate the essential role of

metazoan Cdt1 IDRs in facilitating DNA-promoted phase separation.

During active replication in the early D. melanogaster embryo (0–2 hr), Cdt1 concentration peaks

at approximately 70 nM (Figure 2—figure supplement 1H–J). Given the low concentration of

endogenous Cdt1, it was unclear whether our biochemical experiments, which were conducted at

micromolar protein concentrations, would accurately reflect Cdt1 behavior in vivo. To address this

question, we used fluorescence microscopy to generate a phase diagram for DmCdt1, titrating pro-

tein and salt concentration, and assaying for the presence or absence of a condensed phase

(Figure 2F). Droplets were observed down to the lowest concentration of Cdt1 tested (62.5 nM)

when salt concentrations were set at or below physiological levels ([KGlutamate]=150 mM). Increas-

ing salt concentration to twice physiological levels (300 mM) shifted the concentration of protein

necessary to see phase separation to 500 nM. When the concentration of potassium glutamate was

increased to 600 mM, no phase separation was observed for any concentration of Cdt1 tested. The

ability of Cdt1 to phase separate at nanomolar concentrations was confirmed by the depletion assay,

wherein stoichiometric mixtures of DmCdt1 and duplex DNA were prepared from 800 nM to 50 nM,

and assessed for DNA-dependent depletion of protein in the supernatant (Figure 2G). DNA-coupled

loss of Cdt1 signal was seen at all concentrations tested. Together, these data demonstrate that

DmCdt1 undergoes DNA-dependent phase separation at physiological protein and salt

concentrations.

ORC and Cdc6 also partition into DNA-dependent liquid phases
Given the role of the DmCdt1 N-terminal IDR in promoting phase separation, we next examined

whether other replication initiation factors might possess similar disordered regions of analogous

function. Using DISOPRED (Jones and Cozzetto, 2015), we calculated the percent of predicted dis-

ordered residues, as well as the longest continuous disordered segment for each Drosophila protein

required for initiating replication, and ranked them according to low (0–10% predicted unstructured

residues), moderate (10–30%), or high disorder (>30%) (Figure 3A). In addition to Cdt1, Cdc6 and

two subunits of ORC (Orc1 and Orc2) were found to possess a high level of disordered content as a

proportion of their total polypeptide chain length, and each contained a continuous region of disor-

der longer than 200 amino acids. Conversely, the Mcm2-7 subunits, though possessing unstructured

regions, contain less than 30% predicted disordered sequence overall, with no single disordered

region extending beyond 150 amino acids. Similar patterns were seen for other metazoan replication

initiation factors, but not S. cerevisiae proteins (Table 1).
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For proteins classified with a high fraction of disordered content (>30%), we next assessed the

location of the disordered regions relative to known protein domains (Figure 3—figure supplement

1A). In all cases, the longest regions of uninterrupted disorder reside N-terminal to the bulk of the

folded domain content of the chain (i.e., upstream of the Cdt1 WH domains and of the AAA+ and

WH domains of Orc1, Orc2, and Cdc6). Cdc6 possesses the shortest N-terminal IDR (246 amino

acids) and Orc1 the longest (362 residues). There also exist shorter regions of disorder that serve as

linker sequences between tandem globular domains, such as between the AAA+ and WH domain of

Cdc6 (26 amino acid IDR) or the two WH domains of Cdt1 (152 amino acid IDR).

The realization that Cdc6 and two subunits of ORC possess long N-terminal IDRs suggested that

these factors, like Cdt1, might also undergo phase separation in a DNA-dependent fashion, and that

this property might promote their functional integration within a single condensed phase. This idea

was first tested by examining the ability of recombinant DmORC to phase separate using the deple-

tion assay (Figure 3B, lanes 1–3). Similar to the behavior of DmCdt1 when it forms condensates,

ORC was found to be depleted from the supernatant in the presence, but not in the absence, of

DNA. The inclusion of ATP did not have an appreciable effect on phase separation by ORC

Figure 3. DmORC and DmCdc6 undergo DNA-dependent phase separation. (A) Graphical comparison of the disorder for each Drosophila replication

initiation factor. Orc1, Orc2, Cdc6, and Cdt1 each contain long IDRs (as denoted by the numbers under each circle) and a high percentage of overall

disordered sequence (predicted >30%, depicted by color shading). (B) Analysis of ORC phase separation by the depletion assay. ORC (500 nM) phase

separates in a DNA-dependent fashion in the presence and absence of ATP. (C) Cy5-dsDNA (2.5 mM) was imaged alone and as a mixture with ORC (2.5

mM). In the presence of ORC, large phase-separated droplets formed. (D) Two ORC subunits, Orc1 and Orc2, have large N-terminal IDRs. The IDR of

Orc1 is longer and is enriched for positively-charged residues. (E) Analysis of ORCD1IDR (500 nM) and ORCD2IDR (500 nM) phase separation by depletion

assay. Loss of the Orc1 IDR abolishes phase separation but loss of the Orc2 IDR has no effect. (F) Droplets form when Cy5-dsDNA (2.5 mM) is mixed

with ORCD2IDR (2.5 mM) but not when mixed with ORCD1IDR (2.5 mM). (G) Cdc6 phase separation was assessed by depletion assay at 500 nM and (H) 5

mM concentrations. DNA induced Cdc6 phase separation but this was inhibited in the presence of 1 mM ATP. (I) Fluorescence imaging reveals phase-

separated droplets when Cy5-dsDNA (2.5 mM) is mixed with Cdc6 (20 mM). (J) Phase separation analysis for a Cdc6 construct lacking the N-terminal IDR

(Cdc6DIDR). Cdc6DIDR (500 nM) shows no depletion in the presence of DNA (500 nM). (K) Cdc6DIDR (20 mM) is unable to induce droplet formation as

assessed by fluorescence microscopy with Cy5-dsDNA (2.5 mM). Gel images are representative of three independent experiments.

DOI: https://doi.org/10.7554/eLife.48562.007

The following figure supplements are available for figure 3:

Figure supplement 1. Analysis of ORC and Cdc6 phase separation.

DOI: https://doi.org/10.7554/eLife.48562.008

Figure supplement 2. Multiple sequence alignment (MSA) of the Orc1 N-terminal IDR.

DOI: https://doi.org/10.7554/eLife.48562.009
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(Figure 3B, lanes 4–5), and fluorescence microscopy with Cy5-dsDNA confirmed that the DNA-

dependent depletion of ORC from the supernatant was due to phase separation (Figure 3C, no

droplets are observed for DNA alone). Assaying ORC phase separation over a range of protein con-

centrations (50 nM to 800 nM) consistently revealed ORC depletion when DNA was present but not

when it was absent (Figure 3—figure supplement 1B). Depletion occurred regardless of oligonucle-

otide sequence (Figure 3—figure supplement 1C), although like Cdt1, maximal phase separation

occurred with oligonucleotides longer than 25 basepairs (Figure 3—figure supplement 1D). Thus,

like Cdt1, ORC is able to undergo LLPS at physiological concentrations in the presence of a variety

of DNA substrates without any apparent DNA sequence dependence.

We next investigated whether ORC’s ability to undergo phase separation could be targeted to

the IDR of a specific subunit, or whether the IDRs of both Orc1 and Orc2 are required for this behav-

ior. In terms of length, the Orc1 IDR, at 362 amino acids, is approximately 100 residues longer than

the Orc2 IDR (Figure 3D). Comparisons of sequence composition between Orc1 and Orc2 IDRs –

performed by calculating the relative percentage of hydrophobic (A, G, I, L, M, P, V), hydrophilic (C,

N, S, T, Q), charged (D, E, H, K, R), and aromatic (F, W, Y) residues – show that the IDRs of Orc1 and

Orc2 are highly similar in content, with the values for Orc1 and Orc2 within 3% for each amino acid

category. Interestingly, Orc1 and Orc2 IDR amino acids are near equally distributed across hydro-

phobic (36/35%), hydrophilic (30/29%), and charged (32/33%) classes; this preponderance of hydro-

phobic residues is somewhat unexpected given the predicted unstructured nature of these

sequences. Glycine, which is grouped within the hydrophobic class, is often enriched in protein

unstructured regions, yet for both Orc1 and Orc2, glycine content is lower than expected for such a

region (Brüne et al., 2018).

Although the Orc1 and Orc2 IDRs are highly similar in terms of amino acid types, they do show a

marked difference in their isoelectric points (pI): the Orc1 IDR (pI = 10.1) is enriched for positively-

charged residues (20% positive and 12% negative), whereas the Orc2 IDR (pI = 6.0) is weakly

enriched for negatively-charged residues (17% negative and 16% positive). Speculating that this

divergence in net charge might be important for facilitating LLPS by ORC, we constructed two

mutant DmORC complexes, one with the Orc1 IDR deleted (ORC1DIDR) and the other lacking the

Orc2 IDR (ORC2DIDR). Phase separation for both constructs was then assessed by the depletion assay

and fluorescence imaging with Cy5-dsDNA. ORC1DIDR showed no evidence for phase separation in

either assay, whereas the construct lacking the Orc2 IDR exhibited wild-type behavior in both assays

(Figure 3E–F). These findings demonstrate that Drosophila ORC phase separates using interactions

that require the N-terminal IDR of Orc1 but not Orc2. Given the predicted lack of structure in the

Orc1 IDR we were surprised to discover that this region is relatively well-conserved across the Dro-

sophila genus (67% identity, Figure 3—figure supplement 2) and that the composition, length, and

pI of this region is conserved across the metazoan phyla (Table 1). Although S. cerevisiae Orc1 pos-

sesses an N-terminal IDR, this region is shorter than observed in metazoa and also has an acidic pI

(Table 1). Consistent with this observation, budding yeast ORC does not phase separate (Figure 3—

figure supplement 1E).

We next asked whether Cdc6 can undergo DNA-dependent LLPS. Similar to budding yeast Cdc6

(Feng et al., 2000), DmCdc6 was found to interact with DNA by dsDNA-coupled agarose bead pull-

down assays; the presence of ATP had no significant effect on Cdc6 DNA-binding (Figure 3—figure

supplement 1F). Upon testing whether Cdc6 phase separates in the presence of DNA using the

depletion assay (Figure 3G), we observed a reproducible DNA-dependent depletion of Cdc6 from

the supernatant (Figure 3G lanes 1–3); however, in contrast to ORC, this depletion was inhibited by

the presence of ATP (Figure 3G lanes 4–5). A recent report that ATP can function as a hydrotrope

to enhance intracellular protein solubility may provide an explanation for its effect on Cdc6 phase

separation (Patel et al., 2017). Repeating the assay at higher concentrations of DmCdc6 shows that

unlike DmCdt1, which appeared to fully partition into phases at higher concentrations (Figure 2E),

Cdc6 was only partially depleted from the supernatant (Figure 3H). When examined over a range of

protein concentrations and DNA sequences (Figure 3—figure supplement 1G–H), Cdc6 consis-

tently showed phase separating behavior, although the protein never completely partitioned into

the pellet. Notably, Cdc6 underwent complete partitioning into the condensed phase in the pres-

ence of plasmid DNA, whereas only partial depletion was observed with short oligonucleotides (Fig-

ure 3—figure supplement 1I), indicating that for DmCdc6, LLPS requires longer DNA segments

than either DmCdt1 or DmORC. Fluorescence microscopy with Cy5-dsDNA confirmed that Cdc6
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forms condensates in these conditions (Figure 3I), while tests with a Cdc6 mutant lacking the N-ter-

minal IDR (Cdc6DIDR) (Figure 3J) showed that this construct has no capacity to phase separate

(Figure 3J–K). Collectively, these studies confirm that Drosophila Cdc6 can form DNA-dependent

condensates in a manner that requires its N-terminal IDR.

Initiator IDRs co-assemble and recruit Mcm2-7
The independent ability of ORC, Cdc6, and Cdt1 to phase separate, as well as their reliance on the

same structural feature for this activity (an N-terminal IDR), suggested that these regions might allow

initiators to co-partition into a single condensed phase. To test this idea, condensates were pre-

pared by mixing ORC with Cy5-dsDNA, after which RFP-tagged DmCdc6 (tRFP-Cdc6) and eGFP-

Cdt1 were sequentially added. Both tRFP-Cdc6 and eGFP-Cdt1 showed marked enrichment within

ORC droplets (Figure 4A). Moreover, although phase separation by Cdc6 was partially inhibited by

ATP, all three initiator components can co-associate in a liquid phase in the presence of ATP

(Figure 4A). Thus, while ATP appears to impede phase separation by Cdc6 on its own, the presence

of the other initiators overcomes this barrier and allows the full suite of helicase loading factors to

co-localize into a highly concentrated protein/nucleic acid-rich phase.

Initiator IDRs have a distinct amino acid sequence signature compared to other phase-separating

factors such as human FUS and EWS, or C. elegans Laf1 (Figure 4—figure supplement 1A–E). Gen-

erally speaking, initiator IDRs can be characterized as having: 1) a high degree of sequence complex-

ity, and approximately equal representation of charged, hydrophilic, and hydrophobic residues, 2) a

deficiency in aromatic amino acids and glycine, and 3) a net positive charge. This sequence pattern

suggested that initiator IDRs might serve as specificity determinants for forming condensates. This

hypothesis was tested by comparing the recruitment of eGFP-tagged human FUS (eGFP-FUS) and

eGFP-DmCdt1 into preformed ORC/Cy5-dsDNA droplets. Relative to the bulk phase, a 10-fold

enrichment of eGFP-Cdt1 signal intensity is observed within ORC/Cy5-dsdNA droplets (Figure 4B–

C). Conversely, no enrichment is observed for eGFP-FUS (Figure 4B–C). Thus, initiator condensates

show a degree of specificity that allows for exclusion of other proteins with non-congruent IDRs.

Given the liquid phase-forming properties of ORC, Cdc6, and Cdt1 — along with their enzymati-

cally coordinated role in loading the Mcm2-7 replicative helicase onto DNA — we asked whether

Drosophila Mcm2-7 (DmMcm2-7) might undergo LLPS as well. We first addressed this question using

a modified form of the depletion assay where we assessed partitioning of FLAG-tagged Mcm2-7 to

both the dilute and condensed phases by Western blotting (Figure 4D). No evidence for phase sep-

aration by Mcm2-7 alone was observed under these conditions either in the presence or absence of

ATP (Figure 4E–F). Although specific MCM subunits contain predicted disordered domains

(Figure 3A), these regions are in all cases shorter than the N-terminal IDRs of ORC, Cdc6 and Cdt1,

and have a different amino acid composition (Figure 4—figure supplement 2A–B). The IDRs of

Mcm2 and Mcm3, for example, have an acidic pI (pI <6), and although Mcm4 contains an N-terminal

IDR with a basic pI (pI = 11.0), this region has fewer charged residues compared to the other initiator

IDRs. Fluorescence microscopy with FLAG-Mcm2-7 and Cy5-dsDNA showed no evidence of droplet

formation (Figure 4—figure supplement 2C), confirming that Mcm2-7 does not undergo phase

separation.

Mcm2-7 recruitment to and stable loading on DNA requires the formation of a pre-Replicative

Complex (pre-RC) containing ORC, Cdc6, and Cdt1 (Bowers et al., 2004; Evrin et al., 2013;

Kang et al., 2014). We therefore asked whether DmMcm2-7 might be recruited into condensed

phases in either the presence of the initiators alone, or also with ATP, which is required for loading.

Depletion reactions were set up that contained Mcm2-7 and DNA, and supplemented with either

ATP or Drosophila ORC, Cdc6, and Cdt1 (‘OCC’), or with both ATP and the OCC (Figure 4G). All

Mcm2-7 recruitment reactions included plasmid DNA, as plasmid most effectively induces phase

separation Figure 1—figure supplement 1B–C and Figure 3—figure supplement 1C–D,H–I), is suf-

ficiently long to accomadate Pre-RC assembly, and is capable of trapping loaded Mcm2-7 (which is

known to slide off linear DNA ends; Evrin et al., 2009). No appreciable pelleting of Mcm2-7 alone

was observed in either the presence or absence of ATP, or with just the OCC; however, when ATP

was included with the OCC, an ~8 fold enrichment of Mcm2-7 was observed in the pelleted phase.

These data demonstrate that although DmMcm2-7 does not phase separate on its own, it can be

specifically recruited into condensates when initiation factors and ATP are present.
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Because it was possible that some non-specific, but nevertheless ATP-dependent, feature of the

condensates might adventitiously pull Mcm2-7 complexes into the pelleted phase, we next investi-

gated whether ORC, Cdc6, and Cdt1 are all required for partitioning. DmMcm2-7 depletion reac-

tions were repeated with both ATP and DNA, except that this time individual initiators were

Figure 4. ATP-dependent recruitment of DmMcm2-7 into liquid phases containing DNA, Drosophila ORC, Cdc6 and Cdt1. (A) Analysis of tRFP-Cdc6

(2.5 mM) and eGFP-Cdt1 (2.5 mM) recruitment to pre-formed ORC/Cy5-dsDNA (2.5/2.5 mM) droplets in the absence (‘-ATP’) and presence (‘+ATP’) of

ATP (1 mM). (B) eGFP-Cdt1 (500 nM) or eGFP-FUS (500 nM) was added to reactions and assessed for the ability to co-localize with preformed ORC/

Cy5-dsDNA droplets (2.5/2.5 mM). In samples containing eGFP-Cdt1, all ORC/Cy5-dsDNA droplets are enriched for eGFP signal. No enrichment is

observed in samples containing eGFP-FUS.). (C) Quantitation of eGFP signal intensity within and outside of ORC/Cy5-dsDNA droplets for samples in

panel (B). (D) Schematic of a depletion assay to assess Mcm2-7 phase partitioning; both the supernatant and pellet were assessed for either the loss or

enrichment, respectively, of Mcm2-7. (E) Mcm2-7 (500 nM) was not depleted from the dilute phase and, consistently, was absent from the condensed

phase (F). (G) Loading reactions were prepared that contained either ORC, Cdc6, and Cdt1 (OCC) or ATP, or both the OCC and ATP, and phase

separation of Mcm2-7 was assessed by the depletion assay. In the presence of both the OCC and ATP, Mcm2-7 is significantly enriched in the

condensed phase. (H) Loading reactions were set up that contained both ATP and DNA, but from which individual initiators were removed (ORC, Cdc6,

or Cdt1), and the depletion assay performed. In the absence of any one initiator, Mcm2-7 no longer partitions to the pelleted phase.

DOI: https://doi.org/10.7554/eLife.48562.010

The following figure supplements are available for figure 4:

Figure supplement 1. Replication initiation factors form a new class of phase separating IDRs.

DOI: https://doi.org/10.7554/eLife.48562.011

Figure supplement 2. Analysis of D. melanogaster Mcm2-7 IDRs.

DOI: https://doi.org/10.7554/eLife.48562.012
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withheld (Figure 4H). Whereas partitioning of Mcm2-7 into the condensed phase is seen with the

intact OCC, no enrichment of the helicase complex is observed when any one of the initiation pro-

teins is omitted from the reaction (Figure 4H). Collectively, these data demonstrate that Mcm2-7

does not phase separate on its own, but that it can be selectively enriched in condensed phases con-

taining all of the factors required for helicase loading (ORC, Cdc6, and Cdt1) and ATP.

The association of ORC with chromatin in vivo is not dependent on its
ATPase function but does require the Orc1 N-terminal IDR.
The data presented thus far show that D. melanogaster ORC, utilizing the Orc1 N-terminal IDR, can

partition with DNA into phase condensates regardless of whether ATP is present or not. However,

previous work has demonstrated that the tight binding of DNA by yeast and metazoan ORC is

dependent upon ATP binding to its Orc1 subunit (Bell and Stillman, 1992; Bleichert et al., 2018;

Chesnokov et al., 2001; Giordano-Coltart et al., 2005). This dependency likely reflects the ability

of ORC to encircle DNA within its central channel (Bleichert et al., 2018; Li et al., 2018;

Yuan et al., 2017). A discrete patch within the DmOrc1 IDR that is close to the protein’s ATPase

domain has been demonstrated as necessary but not sufficient for the ATP-dependent binding of

DNA by ORC in vitro (Bleichert et al., 2018). However, whether ATP-independent DNA interactions,

such as those participating in LLPS, might be important for the recruitment of ORC to chromatin in

cells has not been established.

To first assess the need for ATP-binding by ORC to promote chromatin association in vivo, we

examined the dynamics of this interaction in live D. melanogaster embryos. A transgenic fly line

expressing eGFP-tagged Orc1 under the control of its endogenous promoter was made, and the

functional integrity of this transgene confirmed by its ability to rescue a null allele (Table 2). In paral-

lel, we constructed a mutant Orc1 transgene, eGFP-Orc1WalkerAB, that contains mutations in both its

Walker A (K604A) and Walker B (D684A/E685A) ATPase motifs; prior biochemical studies have

shown that these changes interfere with ATP binding and hydrolysis, respectively, in both budding

yeast and flies (Chesnokov et al., 2001; Klemm et al., 1997; Klemm and Bell, 2001). Genetic

crosses revealed that eGFP-Orc1WalkerAB was unable to rescue the null allele (Table 2). In principle,

the incapacitated function of the eGFP-Orc1WalkerAB transgene could arise either from an inability to

localize to chromatin, or from downstream replication initiation events that require ATP turnover. To

test whether the Orc1WalkerAB construct showed altered chromatin recruitment, we directly visualized

the dynamics of eGFP-Orc1 chromatin association in embryos with RFP-tagged histone H2A by lat-

tice light-sheet microscopy (Chen et al., 2014). Previous work with a transgenic fly line expressing

an eGFP-tagged Orc2 subunit has demonstrated that in the early embryo, ORC associates with ana-

phase chromosomes (Baldinger and Gossen, 2009). Consistent with this observation, we observed

clear loading of eGFP-Orc1 onto chromosomes beginning in anaphase, with a 2.7 (±0.4)-fold chro-

mosomal enrichment of eGFP-Orc1 (Figure 5A,C–D and Figure 5—video 1). Interestingly, eGFP-

Orc1WalkerAB also showed wild-type like chromatin association (Figure 5B–D and Figure 5—video 2,

2.7 (±0.3)-fold enrichment). These data demonstrate that the initial association of ORC with chroma-

tin in vivo proceeds through a DNA-binding mode that does not require ATP.

Other aspects of metazoan ORC are also thought to play a role with how it associates with chro-

mosomes. These include recruitment to histone H4K20me2 marks through an N-terminal Bromo-

Adjacent Homology (BAH) domain found in Orc1 (Kuo et al., 2012; Noguchi et al., 2006), and the

direct binding of DNA by the Orc6 TFIIB domains (Balasov et al., 2007; Liu et al., 2011). To more

Table 2. Rescue of Orc1 null allele (orc14739) by WT Orc1 and WalkerAB mutant transgenes.

orc14739/Cyo; tg/tg orc14739/Cyo; tg/TM3 orc14739/orc14739; tg/tg orc14739/orc14739; tg/TM3

WT eGFP-Orc1 223♀
209♂

347♀
428♂

86♀
80♂

196♀
186♂

eGFP-Orc1WalkerAB 413♀
396♂

622♀
847♂

0♀
0♂

0♀
0♂

eGFP-Orc1DIDR 360♀
365♂

617♀
655♂

0♀
0♂

0♀
0♂

DOI: https://doi.org/10.7554/eLife.48562.015
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Figure 5. The Orc1 N-terminal IDR, but not ATP binding, is required for chromatin recruitment. (A) Representative maximal intensity projections of time

series images of a mitotic event in D. melanogaster embryos expressing eGFP-Orc1 and His2A-RFP (‘meta’=metaphase, ‘ana’=anaphase,

‘telo’=telophase, ‘l telo’=late telophase, and ‘e int’=early interphase). Loading of eGFP-Orc1 onto chromosomes reached a maximum in late telophase

(t = 0). (B) As in (A), but with eGFP-Orc1WalkerAB and His2A-RFP embryos. (C) Quantitative analysis of the fold-change in eGFP signal intensity on

chromosomes as cells progress through mitosis. Time is registered with respect to late telophase where maximum loading was observed. (D) No

difference in maximum fold intensity was observed between eGFP-Orc1 and eGFP-Orc1WalkerAB. (E–H) Analysis of Orc1 chromatin association in S2 cells

transiently transfected with mCherry-His2A and either wild-type Orc1 (E), Orc1WalkerAB (F), Orc1DBAH (G), or Orc1DIDR (H) (‘meta’=metaphase, ‘e

ana’=early anaphase, ‘ana’=anaphase, ‘telo’=telophase, and ‘l telo’=late telophase). (I) Quantitative analysis of the fold-change in eGFP signal intensity

observed on telophase chromosomes for each of the Orc1 constructs (E–H). No significant difference was observed between WT, Orc1WalkerAB, and

Orc1DBAH, but Orc1DIDR was not recruited to chromosomes.

DOI: https://doi.org/10.7554/eLife.48562.013

The following video and figure supplement are available for figure 5:

Figure supplement 1. Dynamics of Orc1 chromosome recruitment in tissue culture cells and embryos.

DOI: https://doi.org/10.7554/eLife.48562.014

Figure 5—video 1. Mitotic dynamics of eGFP-Orc1. eGFP-Orc1 (green) loads onto chromosomes (His2A-RFP, white) beginning in anaphase and

reaches a maximum in telophase.

DOI: https://doi.org/10.7554/eLife.48562.016

Figure 5—video 2. Mitotic dynamics of eGFP-Orc1WalkerAB.

DOI: https://doi.org/10.7554/eLife.48562.017

Figure 5—video 3. Example of chromatin segmentation from the His2A-RFP signal.

DOI: https://doi.org/10.7554/eLife.48562.020
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rapidly sort through different Orc1 mutants and their role in chromatin association, we turned to D.

melanogaster S2 tissue culture cells. A series of eGFP-labeled Orc1 constructs to be used for co-

expression analysis were constructed, along with a mCherry-tagged variant of histone H2A to pro-

vide a benchmark for timing events of interest. To confirm that the S2 cell culture system recapitu-

lates the behavior of ORC seen in embryos, the dynamics of wild-type Orc1 in mitotic cells were

imaged first. Consistent with our observations in embryos, Orc1 loaded onto chromosomes begin-

ning in anaphase (2.5 ± 0.2 fold enrichment; Figure 5E,I), and mutations within the Orc1 Walker A

and B motifs had no effect on the observed recruitment (2.3 ± 0.4 fold enrichment, Figure 5F,I). A

time course analysis of Orc1 enrichment reveals that loading onto chromosomes begins in anaphase

and reaches peak intensity in telophase (Figure 5—figure supplement 1A). We next tested how

deletion of either the Orc1 BAH domain (Orc1DBAH) or the Orc1 IDR (Orc1DIDR) altered Orc1 chroma-

tin recruitment in S2 cells (the design of these constructs retained the nuclear localization signal

present in the most N-terminal portion of the Orc1 IDR, which directly follows the BAH domain). The

Orc1DBAH construct showed wild-type like association with chromosomes (2.6 ± 0.7 fold enrichment;

Figure 5G,I), demonstrating that the BAH domain is not required for chromatin association in vivo.

By contrast, chromosome recruitment of Orc1DIDR was fully abolished to background levels (1.0 ± 0.2

fold enrichment; Figure 5H–I), such that no increase in ORC signal on chromosomes was observed

as cells progressed through mitosis. A closer inspection of the data reveals that the chromosome

signal for Orc1DIDR appears to decrease upon entry into anaphase but recovers to background

(metaphase) levels in telophase (Figure 5—figure supplement 1A, red line). Finally, we used fly

genetics to confirm the essential function of the Orc1 N-terminal IDR, demonstrating that an

Orc1DIDR transgene is incapable of rescuing an Orc1 null allele (Table 2). Currently, we know of no

other function of ORC that is essential for viability other than its activities in DNA replication.

Together, these data demonstrate that the Orc1 N-terminal IDR is both essential for viability and

facilities the ATP-independent recruitment of ORC to mitotic chromosomes.

Initiator phase separation is regulated by CDK-dependent
phosphorylation
Our analysis of Orc1 dynamics in cells shows that the association of the complex with chromatin is

regulated and does not occur until anaphase (Figure 5). This result suggests that a cell-cycle-depen-

dent change in the status of either chromatin or ORC might be responsible for promoting DNA

binding. Previous work has shown that the association of human and X. laevis ORC with chromatin is

regulated by CDK-dependent phosphorylation (Findeisen et al., 1999; Lee et al., 2012; Li et al.,

2004; Rowles et al., 1999). Interestingly, the major sites for CDK action map to the Orc1 IDR and

the phosphorylation of these loci interferes with the binding of Drosophila ORC to DNA in vitro

(Remus et al., 2005); the binding of D. melanogaster ORC to mitotic chromosomes also requires

cessation of CDK activity (Baldinger and Gossen, 2009). Despite these observations, the mechanism

by which phosphorylation of ORC inhibits its ability to bind chromatin has remained unclear.

Since phase separation by replication initiation factors appears coupled to electrostatic interac-

tions between their IDRs and DNA (Figure 2—figure supplement 1), as indicated by the salt-sensi-

tivity of phase separation (Figure 2F) and the basic nature of the initiator IDRs (Table 1), we

hypothesized that initiator phosphorylation might inhibit the ability of these factors to form conden-

sates. An analysis of putative CDK phosphorylation sites shows that Orc1 hosts sixteen such motifs

(Figure 6A), all but one of which localizes to the Orc1 IDR. Of these, seven IDR sites represent full

CDK consensus sequences, [S/T]PX[K/R], while the others represent the minimal sequence, [S/T]P.

Given the abundance of phosphorylation sites within the Orc1 IDR, we asked whether the Cdc6 and

Cdt1 IDRs are also enriched with CDK consensus sequences (Figure 6A). Cdc6 and Cdt1 have seven

and sixteen putative sites, respectively. For Cdc6, all sites reside within the N-terminal IDR and four

represent full consensus sequences. For Cdt1, 13/16 sites are within the N-terminal IDR and nine

represent the full consensus sequence. Thus, replication initiation factor IDRs, which constitute the

regions responsible for phase separation, retain the vast majority of CDK phosphorylation sites.

To test the functional implications of initiator phosphorylation, we modified our depletion assay

to include pre-treatment with CDK/Cyclin. Initiation factors were treated for 60 min with recombi-

nant CDK1/CycA expressed and purified from insect cells. After treatment, DNA was added to

induce phase separation and the depletion assay was completed as above, with phase separation

assessed by protein removal from the supernatant after centrifugation (Figure 6B). Reactions were
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set up that lacked either CDK1/CycA or ATP to control for the independent effect of each reagent.

DNA was again seen to robustly stimulate phase separation by ORC, and the addition of either

CDK1/CycA or ATP alone had no effect on this behavior; however, treatment with CDK1/CycA and

ATP fully inhibited ORC phase separation (Figure 6C). Analysis of the reactions by light microscopy

corroborated the results of the depletion assay (Figure 6D), demonstrating that ORC phase separa-

tion is inhibited by CDK-dependent phosphorylation. We next asked whether Cdc6 and Cdt1 are

similarly regulated. Although Cdc6 phase separation is inhibited in the presence of both CDK1/CycA

and ATP (Figure 6E), it is likewise inhibited by ATP alone and thus a specific effect of phosphoryla-

tion could not be assessed. By comparison, phase separation by Cdt1 was fully inhibited by treat-

ment with CDK1/CycA and ATP, but not by either CDK1/CycA or ATP alone (Figure 6F). These

results demonstrate that CDK/Cyclin phosphorylation can directly inhibit liquid phase condensation

by replication initiation factors.

Figure 6. CDK/Cyclin-dependent phosphorylation of initiators regulates phase separation. (A) Schematic of CDK/

Cyc phosphorylation consensus sequences across the DmOrc1, DmCdc6, and DmCdt1 proteins. Tic marks along

each sequence represent the minimum consensus sequence ([T/S]P); those denoted with an asterisk (*) indicate

the full consensus sequence ([T/S]PX[K/R]). (B) Schematic of the depletion assay used to assess the effect of

phosphorylation on phase separation. (C) Depletion assay with untreated ORC or ORC treated with CDK1/CycA/

ATP, CDK1/CycA alone, or ATP alone. No depletion is observed when ORC is pre-treated with CDK1/CycA/ATP,

but either reagent alone has no effect. (D) Fluorescence microscopy analysis of samples in (C) confirms that

phosphorylated ORC is unable to induce phase separation (‘a’, untreated ORC; ‘b’, ORC treated with CDK1/CycA/

ATP; ‘c’, ORC treated with CDK1/CycA; ‘d’, ORC treated with ATP). (E) Analysis of Cdc6 depletion under

conditions described in (C). Cdc6 phase separation is inhibited in the presence of CDK1/CycA/ATP, as well as by

ATP alone. (F) Analysis of Cdt1 depletion under conditions described in (C). Cdt1 phase separation is fully

inhibited when treated with CDK1/CycA/ATP. A slight decrease in Cdt1 mobility is seen in the phosphorylated

reaction.

DOI: https://doi.org/10.7554/eLife.48562.018
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Discussion
We report here the discovery of a novel condensation property for metazoan replication initiator

proteins that directly impacts their biochemical and cellular functions. These findings have substan-

tial implications for the mechanisms of DNA replication initiation, and for understanding how replica-

tion is managed across a topologically complex chromatin substrate. More generally, our findings

also expand the catalogue and types of IDRs that are known to drive protein phase separation and

reinforce the notion that such elements can act as a ‘sorting code’ for distinguishing partner proteins

from other factors in the cell.

Recruitment of ORC to chromosomes
Evolution has created multiple mechanisms for recruiting replication initiation factors to chromo-

somes (reviewed in Bleichert et al., 2017). The prevailing view is that recruitment occurs principally

through the ability of the origin recognition complex (ORC) to bind origin DNA in an ATP-depen-

dent manner that depends on DNA encirclement within the central channel of the complex

(Bleichert et al., 2018; Li et al., 2018; Sun et al., 2013; Yuan et al., 2017). However, we demon-

strate here that in the absence of ATP, D. melanogaster ORC can interact with DNA at physiological

protein and salt concentrations in vitro (Figure 3), and that the Orc1 ATP-binding and hydrolysis

motifs are dispensable for its recruitment to chromatin in vivo, both in the early embryo and in cell

culture. (Figure 5). The N-terminal intrinsically disordered region (IDR) of DmOrc1 is shown to be

the key element underpinning the ATP-independent association of ORC with chromosomes (Figure 3

and Figure 5). Corroborating these results is previous work that demonstrates a specific role for

human and C. elegans Orc1 in facilitating ATP-independent ORC/DNA binding (Giordano-

Coltart et al., 2005; Kara et al., 2015; Sonneville et al., 2012; Vashee et al., 2003) and a direct

role for a short DNA-binding motif within the Orc1 IDR (Bleichert et al., 2018; Kawakami et al.,

2015; Li et al., 2018). It remains to be determined whether the Orc1 IDR alone is sufficient for

proper origin recognition (as opposed to general chromatin recruitment), or whether the action of

this element works in concert with other DNA-interaction surfaces of ORC, such as the Orc1 BAH

domain (Kuo et al., 2012) or the TFIIB domains of Orc6 (Liu et al., 2011).

The long-standing observation that DNA binding by ORC is enhanced by ATP (Bell and Stillman,

1992; Chesnokov et al., 2001; Vashee et al., 2003) would at first seem at odds with the ATP-inde-

pendent DNA association phenomena reported here. This dichotomy can be reconciled by invoking

a two-step model wherein (for metazoan ORC at least) the tight, ATP-dependent encirclement of a

short segment of DNA occurs after an initial set of weaker interactions takes place between an initia-

tor IDR and a DNA segment or chromatin region (). These dynamic interactions would likely involve

contacts between short basic motifs within the Orc1 IDR and DNA, and between the IDRs of ORC

molecules as well. The association of ORC with relatively small, diffusible, and nucleosome-free

DNAs in this fashion can directly lead to phase separation in vitro, as observed here. By contrast,

multivalent ORC-ORC and ORC-DNA interactions in vivo need to contend with a much larger and

less pliable chromatin substrate. The nature of the DNA substrate in this context would be expected

to resist large-scale condensation by ORC-ORC and ORC-DNA interactions; these associations

would instead be expected to help distribute ORC across chromosomes in a manner akin to surface

‘wetting,’ a well-known property of condensate-forming systems (Brangwynne et al., 2009;

Feric et al., 2016).

The initial IDR-dependent recruitment of ORC to DNA would poise the complex for the second

binding step whereby ORC encircles a nucleic acid duplex using specialized and structurally-defined

DNA binding elements that line the ORC central channel. These interactions would rely on a confor-

mational state that is stabilized by ATP binding, rendering the complex competent for catalyzing

Mcm2-7 loading. Consistent with this two-step model, an eGFP-tagged Orc1 transgene carrying an

ATP binding and hydrolysis mutation loses its ability to complement a null allele of the protein

(Table 2), even though it associates with chromatin in what appears to be a wild-type manner (Fig-

ure 5). Although the precise link between the association of ORC with chromatin and the specifica-

tion of a particular locus as a bona fide origin is unclear, it is tempting to speculate that some ATP-

controlled aspect of DNA encirclement underpins this step.

The potential for a link between IDR-dependent modes of DNA-binding and higher-order DNA

structure/origin organization remains to be established. It will be particularly important to
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understand whether chromatin or DNA structural elements implicated in origin selection (e.g.,

G-quadruplex sequences; Cayrou et al., 2015; Cayrou et al., 2012) might play a role in initiator

phase separation. Our finding that condensation in vitro is neither sequence-specific nor possible

with short DNA fragments (� 25 basepairs, Figure 3—figure supplement 1) is consistent with the

known absence of sequence-defined origins in metazoan species (Heinzel et al., 1991; Hyrien and

Méchali, 1993; Méchali and Kearsey, 1984) and a lack of sequence specificity observed for meta-

zoan ORCs in binding to DNA in vitro (Remus et al., 2004; Vashee et al., 2003). Whether the DNA

length requirement for LLPS by ORC might impact the selection of origin sites is currently unknown,

but may influence the preference of ORC for open, nucleosome-free regions of chromatin

(MacAlpine et al., 2010; Miotto et al., 2016).

Formation of the Pre-RC and helicase loading
An important property of initiator IDRs is that they allow for both self-self and partner protein inter-

actions (Figure 4A). Thus, as ORC forms local interactions with itself to spread out along chromatin,

this condensation would in turn be expected to promote the formation of stable subunit-subunit

interactions that are ultimately necessary for helicase loading (such as the proper docking of Cdc6

into the ORC ring, ). Importantly, this mechanism of co-association is seen to predominate in vitro at

Figure 7. The role of IDR- and DNA-dependent initiator co-association in replication initiation. Prior to mitosis, ORC exists in an inhibited state

incompetent for chromatin recruitment (A). At the metaphase to anaphase transition (A–B), D. melanogaster ORC is activated, possibly in part through

IDR dephosphorylation, thereby driving the condensation of ORC onto the surface of chromosomes (B). The Orc1 IDR likely plays a key role in this

event, both interacting with DNA and also participating in intermolecular IDR-IDR interactions that drive ORC enrichment on chromosomes. The spatial

patterning of ORC is developmentally regulated and appears correlated with the establishment of chromatin territories and TADs. Before cellularization

(top, ‘Pre-cellularization cycles’), the multi-nucleate fly embryo undergoes synchronous divisions that lack a G1 phase. At this stage, ORC shows

homogenous chromosome binding. Conversely, ORC is non-uniformly distributed in differentiated cells (bottom, ‘Lineage-dependent cycles’) where

replication domain boundaries coincide with underlying features of chromatin architecture. Once ORC is bound to chromosomes, Cdc6 and Cdt1 are

co-recruited through direct interactions with DNA and through inter-initiator IDR-IDR interactions (C). When the full suite of helicase loading factors are

present, the Pre-RC forms and Mcm2-7 loading commences (D). Loading is terminated by the phosphorylation of initiator IDRs which displace them

from chromatin and inhibit re-association (E).

DOI: https://doi.org/10.7554/eLife.48562.019
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physiological salt and protein concentrations. Moreover, the selective partitioning of Mcm2-7 into

initiator/DNA phases is seen only when all three initiation components (ORC, Cdc6, and Cdt1) and

ATP are present. This stringent requirement for the intact OCC and nucleotide is consistent with

what is known to be the minimal set of factors necessary to catalyze the loading of Mcm2-7 com-

plexes onto DNA. Since the pre-RC catalyzes multiple rounds of Mcm2-7 deposition through the

reiterative binding and release of individual initiation factors (Ticau et al., 2015), the ‘wetting’ of a

swath of DNA loci by a multitude of initiation factors would help keep those factors that cycle on

and off of ORC at a relatively high concentration to promote successive Mcm2-7 loading cycles.

Such behavior may be particularly useful in the early stages of embryogenesis and in pluripotent

stem cells, where cycling times are short and helicase loading occurs rapidly (Matson et al., 2017).

Initiator IDRs may serve a role beyond simply increasing the efficiency of chromatin association

and helicase loading. It has long been recognized that initiators are under stringent cellular control

by CDKs (reviewed in Parker et al., 2017). It has also been established that a majority of CDK sites

map to unstructured regions of Orc1, Cdc6, and Cdt1; however, how phosphorylation at these sites

might regulate initiator function has remained unknown. Here, we demonstrate that the formation of

initiator condensates is disrupted by CDK action (Figure 6). The inability of the phosphorylated initi-

ator proteins to phase separate with DNA provides a ready explanation for how post-translational

modifications unique to metazoan ORC could lead these factors to dissociate from chromatin late in

the cell cycle and then associate again either in anaphase or G1 when the CDK levels are low

(Findeisen et al., 1999; Lee et al., 2012; Remus et al., 2005) (). Budding yeast ORC is also nega-

tively regulated by CDK-dependent phosphorylation (Nguyen et al., 2001), although this regulation

likely occurs through a distinct mechanism, as we did not observe phase separation of ScORC (Fig-

ure 3—figure supplement 1E). It is notable that in metazoans Cdt1 inactivation requires the further

degradation of the protein through a PCNA-dependent ubiquitination pathway (Arias and Walter,

2006); why this extra level of stringency has evolved remains to be determined. How phosphoryla-

tion interferes with phase separation is unknown and will require a more sophisticated understanding

of the biophysical interactions underpinning the condensation reaction. Given the overall clustering

of positively charged residues in the IDRs, and the DNA dependence of the condensation, charge

neutralization of the domain and/or charge repulsion seem likely to play a critical role.

Beyond cell-cycle regulation, the IDR-dependent recruitment and co-association of ORC mole-

cules with chromatin could also help account for more complex forms of initiator behavior and spa-

tial patterning seen in vivo, such as the non-uniform organization of both replication origins and

ORC binding sites across chromatin (Cayrou et al., 2011; Miotto et al., 2016; Petryk et al., 2016;

Vaughn et al., 1990). We and others have observed that the distribution of ORC changes through-

out the cell cycle, often in a species and cell-type specific manner (Baldinger and Gossen, 2009;

Kara et al., 2015; McNairn et al., 2005; Méndez et al., 2002; Natale, 2000; Sun et al., 2002), and

seems coincident with underlying changes in chromatin topology. For example, in early D. mela-

nogaster embryos, in which the cell cycle proceeds directly from mitosis to S-phase (skipping G1),

ORC appears to homogeneously coat mitotic chromosomes (Figure 5 and Figure 5—video 1–

2). Human Orc1 shows a similar pattern of binding during mitosis in U2OS cells and, after mitotic

exit, recruits other ORC subunits to chromatin (Kara et al., 2015). Mirroring the spatial patterning

seen for human and D. melanogaster ORC in mitosis, mitotic chromosomes in metazoans are homo-

geneously organized and lack chromatin domains (Naumova et al., 2013; Oomen and Dekker,

2017). Conversely, ORC shows a non-uniform, punctate distribution in interphase in many differenti-

ated cell types of metazoan species (Austin et al., 1999; Kara et al., 2015; Lidonnici et al., 2004;

Prasanth et al., 2010; Shen et al., 2010). The switch in cellular ORC patterning between early

embryonic and differentiated states appears coincident with the establishment of large-scale chro-

matin domains and topologically-associated domains (TADs) (Hug et al., 2017; Li et al., 2014), chro-

mosomal regions that provide a basic level of chromatin organization and that also appear to

possess liquid-phase like properties (Nuebler et al., 2018). Notably, replication domains appear to

substantially overlap with TADs in multiple eukaryotic systems (Petryk et al., 2016; Pope et al.,

2014). Similar to the role observed for the Orc1 IDR in binding mitotic chromosomes, it seems plau-

sible that this region could help regulate large-scale spatial patterning of ORC in the nucleus. In

such instances, the self-assembling properties of the Orc1 IDR would be used to reinforce the forma-

tion and maintenance of chromatin domains with other resident factors (such as HP1). Further
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studies will be needed to explore whether initiator self-assembly on chromatin is coordinated with

or helps to underpin higher-level replication organization ().

From a parallel perspective, it is interesting to note that the visualization of both newly-replicated

DNA (Kennedy et al., 2000; Xiang et al., 2018) and proteins present at the replication fork during

S-phase (Chagin et al., 2016) often reveals a non-uniform organization within the nucleus, a feature

that has led to the proposal that replisomes may be grouped into ‘factories’ (Cook, 1999). While

speculative, the formation and regulation of these replication foci could be aided by self-assembly

mechanisms similar to those proposed here for initiation. Preliminary analyses of D. melanogaster

replication proteins reveals that there is a high prevalence of long IDRs (data not shown). Proteins

required at each stage of the replication reaction, from initiation to elongation, contain disordered

domains, including Mcm10 and Chiffon (the fly homolog of Dbf4), as well as multiple cyclin proteins,

topoisomerases, the clamp loader subunit Rfc1 and various polymerase components. Some of these

IDRs have sequence characteristics similar to initiators, while others are clearly distinct. Given the

selectivity we observe for initiator condensates (Figure 4), it is possible that the phase formed by

Pre-RC machineries may represent an evolving structure that, through the fluid exchange of its resi-

dent components facilitated by IDR-IDR interactions, drives replication forward, culminating in the

spatial co-localization of multiple active forks within a nuclear zone.

Molecular mechanism of initiator phase separation
Phase transitions in biology are driven by multivalent interactions (Li et al., 2012). For protein LLPS,

multivalency is achieved in two non-mutually exclusive ways: 1) by the linear and repetitive arrange-

ment of folded interaction modules, and 2) through extended regions of intrinsic disorder that con-

tain short linear interaction motifs (Boeynaems et al., 2018). Replication initiation factors fall within

the latter of the two classes.

A major family of IDRs that mediate phase separation are the so-called low-complexity domain

(LCD) proteins, which include factors such as FUS, Laf1, Ddx4 and hnRNPA1. Studies investigating

the biophysical mechanisms of phase separation in these and other proteins have suggested a role

for p-p and p-cation contacts (Vernon et al., 2018). Aromatic residues are major mediators of these

type of interactions and have demonstrated functionality in LCD condensates (Chong et al., 2018b;

Jiang et al., 2015; Kato et al., 2012; Lin et al., 2017; Nott et al., 2015; Qamar et al., 2018;

Wang et al., 2018). Other sequences are also able to participate in p-p/p-cation bonding pairs, such

as repetitive RG/RGG motifs (Chong et al., 2018a; Elbaum-Garfinkle et al., 2015). Even for non-

LCD IDRs, such as the Nephrin intracellular domain (NICD), aromatic residue-mediated p-p contacts

are of primary importance in facilitating phase separation (Pak et al., 2016). Given these data, we

were surprised to find that both aromatic residues (<3% for Orc1, Cdc6, and Cdt1) and glycine (<4%

for Orc1, Cdc6, and Cdt1) are substantially underrepresented in initiator IDR sequences compared

to other phase separating LCD proteins (Figure 5—figure supplement 1E). Initiator IDRs are also

devoid of simple repetitive motifs.

Outside of p-p/p-cation interactions, electrostatics can be another major driver of protein phase

separation. This force is particularly relevant in systems that undergo complex coacervation with

nucleic acids (Aumiller and Keating, 2016), such as seen with the tau protein and RNA

(Wegmann et al., 2018; Zhang et al., 2017). The process of complex coacervation through the utili-

zation of RNA as a counterion scaffold is mechanistically analogous to how we believe the replication

initiators behave in the presence of DNA. Lines of evidence supporting this model include the dem-

onstration that: 1) all D. melanogaster initiator IDRs have a pI >9 (Table 1), 2) initiator condensation

is salt-sensitive (Figure 2) and each initiator has relatively high fraction of charged residues (between

32–35%) (Figure 5—figure supplement 1), and 3) although similar in overall amino acid composi-

tion, the Orc1 IDR (pI = 10.1) but not the Orc2 IDR (pI = 6.0) is necessary for ORC phase separation

(Figure 3). We envision that initiator IDR interactions with DNA overcome interchain electrostatic

repulsion between proximally positioned initiator IDRs, thereby promoting intermolecular interac-

tions between the IDRs. Although at present we possess a minimal understanding of the biophysics

of initiator LLPS, the relatively equal representation of hydrophobic, hydrophilic, and charged amino

acids within initiator IDRs suggests that intermolecular IDR-IDR interactions may be of multiple types

(Figure 5—figure supplement 1).
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Conservation of initiator IDRs across eukaryotes
The IDRs of D. melanogaster Orc1, Cdc6, and Cdt1 share a similar sequence composition but no

identifiable sequence identity. This profile has led us to conclude that the general sequence features

of these IDRs are sufficient to facilitate DNA-dependent phase separation. It is notable, however,

that the Orc1 IDR amino acid sequences are highly conserved across the Drosophila genus (repre-

senting over 40 M years of evolution; Drosophila 12 Genomes Consortium et al., 2007; Figure 3—

figure supplement 2), suggesting that there may be presently unrecognized sequence-specific func-

tional information.

All metazoan homologs of Orc1, Cdc6, and Cdt1 that we have analyzed contain a predicted

N-terminal IDR longer than one-hundred amino acids (Table 1, including human, mouse, D. rerio, X.

laevis, and C. elegans). Interestingly, for all species Orc1 contains the longest IDR and Cdc6 the

shortest. While suggestive, an IDR alone does not unequivocally determine whether a protein will

phase separate. Further classification of eighteen homologous metazoan sequences demonstrate

that they contain sequence characteristics similar to D. melanogaster initiator proteins: all possess a

basic pI (calculated pIs range from 9.1 to 11.1), a low content of aromatic and glycine residues, and

a relatively high fraction of charged residues (ranging from 0.22 to 0.39). Based on our current lim-

ited understanding of initiator phase separation, these data suggest that the ability of initiators to

undergo DNA-dependent LLPS is likely broadly conserved across metazoa. In line with this idea, we

show that human Cdt1, like DmCdt1, forms condensates in a DNA-dependent manner (Figure 2—

figure supplement 1G). A recent report demonstrating an essential function for the phosphoryla-

tion-regulated conversion of intramolecular IDR interactions in human Orc1 to intermolecular interac-

tions between ORC and Cdc6 IDRs (Hossain et al., 2019) is similarly supportive with such a

proposal (Figure 6). We anticipate that these interactions, possibly augmented by other transient

IDR-IDR interactions forming in both cis and trans, facilitate some form of condensation or localized

clustering of initiation factors for the functional assembly of pre-RCs. In instances where Mcm2-7

loading has been reported using purified metazoan proteins (e.g., human; Wu et al., 2014), it is

tempting to speculate that this may be occurring in such environments.

In contrast to the metazoan initiators, our sequence analysis predicts that the S. cerevisiae initia-

tion factors are likely to be incapable of DNA-dependent phase separation (Table 1). Indeed, we

found ScCdt1, which lacks an N-terminal IDR altogether, unable to either bind DNA or undergo

phase separation (Figure 2—figure supplement 1). Additionally, the IDRs of ScOrc1 and ScCdc6

are relatively short (143 and 31 amino acids, respectively) and have an acidic as opposed to a basic

pI (pI = 4.7 and 6.2, respectively); ScORC also showed no evidence of phase separation (Figure 3—

figure supplement 1E). For fission yeast, the predictions from our analysis are less reliable. S.

pombe Cdt1 does not have an N-terminal IDR but homologs of Orc1 and Cdc6 each have an

approximately one-hundred amino acid N-terminal IDR with a basic pI.

Intersection with emerging roles of cellular phase separation
The present work provides strong evidence that DNA replication, a cellular pathway vital to cell pro-

liferation, is impacted by phase separation-promoting elements. These observations in turn provide

a provocative link between the replication machinery and their function in at least two other cellular

structures recently predicted to be impacted by phase separation. One is heterochromatin: recent

work has demonstrated that Heterochromatin Protein 1 (HP1), a major cellular organizer of hetero-

chromatin, undergoes phase separation in vitro and in vivo (Larson et al., 2017; Strom et al.,

2017). Interestingly, there is a conserved linkage between the formation of HP1-dependent hetero-

chromatic domains and ORC binding, with the localization of HP1 and ORC to chromatin being

interdependent (Huang et al., 1998; Pak et al., 1997; Prasanth et al., 2010; Prasanth et al.,

2004). Notably, Orc1 targeting to heterochromatin relies on the Orc1 N-terminal IDR in both human

and D. melanogaster model systems (Lidonnici et al., 2004; Pak et al., 1997). It is tempting to spec-

ulate that the formation of heterochromatic domains may involve a condensed phase that forms by

the coordinated action of ORC and HP1 (and likely many other proteins), and that this activity may

have the dual purpose of excluding transcriptional machineries to maintain a silenced state while

enriching ORC in an otherwise inaccessible compartment that must nonetheless be replicated. We

anticipate that any mechanism(s) underlying the formation and maintenance of heterochromatic

domains may be developmentally regulated, since HP1 domains are clearly visible during interphase
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in the early embryo (Strom et al., 2017), whereas the association of ORC with chromatin appears

restricted to mitosis during the same developmental stage (Figure 5). Beyond HP1, ORC phase sep-

aration may have a direct role in chromatin compaction, which could underlie reports that ORC plays

a role in mitotic chromosome condensation (Pflumm and Botchan, 2001; Prasanth et al., 2004).

A second condensate connection with ORC may involve centrosomes. It has recently emerged

that centrosomes form by the phase separation of scaffolding factors, known as the pericentriolar

material (PCM). A major PCM scaffolding factor in C. elegans, SPD-5, undergoes spontaneous self-

assembly into spherical condensates that selectively recruit centrosome client proteins necessary for

the nucleation of microtubules (Woodruff et al., 2017; Woodruff et al., 2015). Notably, multiple

subunits of ORC, including both Orc1 and Cdc6, are targeted to centrosomes where they regulate

centrosome copy number (Hemerly et al., 2009; Kim et al., 2015; Prasanth et al., 2004). We spec-

ulate that the sequence features which enable initiator phase separation on DNA (e.g. their N-termi-

nal IDRs) may permit their selective partitioning and enrichment on centrosomes. From a

mechanistic standpoint, it is interesting to note that the scaffolding protein SPD-5 and its homologs

in other metazoans bear a high net negative charge (DmCentrosomin is 30% charged with pI = 5.8),

suggesting that initiator recruitment to centrosomes may proceed through a mechanism similar to

their condensation on chromatin, that is, by complex coacervation through charge-charge interac-

tions with a poly-anionic scaffold (in this case, protein).

In conclusion, we have demonstrated that replication initiators contain a novel class of IDRs that

facilitate phase separation and affect each stage of the initiator functional cycle. This work estab-

lishes a new paradigm for understanding metazoan initiation mechanisms and their regulation by

CDK activity, and how initiation can be organized at the mesoscale. These findings in turn open up

numerous new avenues of cross-disciplinary investigation into how the replication initiation machin-

eries interface with other cellular pathways, such as those involved in chromatin maintenance and

establishment.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Recombinant
DNA reagent

2Cc-T QB3 Macrolab
(UC Berkeley)

RRID:Addgene_37237 Ligation independent
cloning (LIC); E. coli
expression vector

Recombinant
DNA reagent

1GFP QB3 Macrolab
(UC Berkeley)

RRID:Addgene_29663 LIC cloning;
E. coli expression
vector

Recombinant
DNA reagent

1b QB3 Macrolab
(UC Berkeley)

RRID:Addgene_29653 LIC cloning;
E. coli expression
vector

Recombinant
DNA reagent

pFastbac1 ThermoFisher Insect cell
expression vector

Recombinant
DNA reagent

438A QB3 Macrolab
(UC Berkeley)

RRID:Addgene_55218 LIC cloning; insect
cell expression vector

Recombinant
DNA reagent

438B QB3 Macrolab
(UC Berkeley)

RRID:Addgene_55219 LIC cloning; insect
cell expression vector

Recombinant
DNA reagent

4C QB3 Macrolab
(UC Berkeley)

RRID:Addgene_30116 LIC cloning; insect
cell expression vector

Recombinant
DNA reagent

pattB Fragments inserted
into MCS by
restriction enzyme
cloning; transgene
vector

Recombinant
DNA reagent

pCopia-LIC This paper LIC cloning;
D. melanogaster
cell culture
expression vector

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Peptide,
recombinant protein

TEV QB3 Macrolab
(UC Berkeley)

Used at
1/10 (weight/weight)
TEV/substrate ratio

Peptide,
recombinant protein

Flag peptide Sigma-Aldrich

Strain, strain
background
(Escherichia coli)

Rosetta 2(DE3)pLysS QB3 Macrolab
(UC Berkeley)

Chemically
competent cells

Strain, strain
background
(Escherichia coli)

DH10bac QB3 Macrolab
(UC Berkeley)

Chemically
competent cells

Cell line
(D. melanogaster)

S2 UC Berkeley
Cell Culture Facility

Cell line
(Spodoptera frugiperda)

Sf9 UC Berkeley
Cell Culture Facility

Cell line
(Trichoplusia ni)

High5 This paper;
UC Berkeley Cell
Culture Facility

Commercial
assay or kit

ANTI-FLAG M2 Affinity
Agarose Gel

Sigma-Aldrich A2220
(RRID:AB_10063035)

0.5 mL resin
per 1 L expression

Commercial
assay or kit

Amylose Resin NEB E8021L 5 mL of resin;
column format

Commercial
assay or kit

High Capacity
Strepatavidin Agarose

ThermoFisher
Scientific

20357

Commercial
assay or kit

Effectene Qiagen 301425

Antibody Anti-Cdt1 affinity
purified antibody
(rabbit polyclonal)

M. Botchan 1/1,000 dilution

Antibody IRDye800 CW
Donkey anti-Rabbit
(donkey polyclonal)

LI-COR 926–32213
(RRID:AB_621848)

1/10,000 dilution

Antibody Anti-FLAG (rabbit
monoclonal)

Sigma-Aldrich F7425 1/1,000

Cloning, expression, and purification of DmCdt1
The coding sequence for full-length D. melanogaster Cdt1 was cloned into the QB3 Macrolab vector

2Cc-T for a tobacco etch virus (TEV) protease-cleavable C-terminal hexa-histidine (His6)-maltose

binding protein (MBP) tag and into vector 1GFP for an N-terminal His6-eGFP tag. A construct lack-

ing the N-terminal IDR (amino acids 298–743), Cdt1DIDR, was cloned into QB3 Macrolab vector 1b

for a TEV-cleavable N-terminal His6 tag. All DmCdt1 constructs were expressed in overnight cultures

at 16˚C from Rosetta 2(DE3)pLysS (QB3 Macrolab) after 1 mM IPTG induction. Cells were harvested

by centrifugation and cell pellets frozen at �80˚C until further processing.

A cell pellet from 1 L of DmCdt1 expressing cells was resuspended in 40 mL of Lysis Buffer (20

mM Tris pH 7.5, 500 mM NaCl, 30 mM Imidazole, 10% glycerol, 200 mM PMSF, 1x cOmplete EDTA-

free Protease Inhibitor Cocktail (Sigma-Aldrich), 1 mM BME and 0.1 mg/mL lysozyme) and lysed by

sonication. The lysate was clarified by centrifugation at 30,000 xg for 1 hr, filtered through an aPES

0.45 mm bottle-top filter unit (Nalgene Rapid-Flow, ThermoFisher), and then passed over a 5 mL

HisTrap HP column (GE Healthcare). The column was washed with 10 column volumes (CV) of Nickel

Wash Buffer (20 mM Tris pH 7.5, 500 mM NaCl, 30 mM Imidazole, 10% glycerol, 200 mM PMSF, 1

mM BME) and finally eluted with 15 mL of Nickel Elution Buffer (20 mM Tris pH 7.5, 150 mM NaCl,

500 mM Imidazole, 10% glycerol, 1 mM BME). The protein was further purified by heparin affinity

chromatography (HiTrap Heparin HP, GE Healthcare), eluting with a linear gradient of increasing salt

from 150 mM - 1 M NaCl; full-length Cdt1 elutes at approximately [NaCl]=600 mM while
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degradation products elute earlier. Fractions containing full-length Cdt1 were then pooled and, for

full-length and Cdt1DIDR, but not eGFP-Cdt1, the tag was cleaved with TEV protease at a 1:10 ratio

of TEV:protein in an overnight incubation at 4˚C. An additional nickel affinity step was then used to

remove TEV, uncleaved protein, and the free tag from purified Cdt1. Finally, the purified sample was

concentrated to 2 mL and loaded onto a HiPrep 16/60 Sephacryl S-300 HR column (GE Healthcare)

equilibrated and run in Sizing Buffer (50 mM HEPES pH 7.5, 300 mM KGlutamate, 10% glycerol, 1

mM BME). Peak fractions were pooled, concentrated in a 10K Amicon Ultra-15 concentrator (Milli-

pore), flash frozen in liquid nitrogen, and stored at �80˚C. All DmCdt1 constructs were purified with

the same procedure, except for eGFP-Cdt1 for which the TEV cleavage step was omitted.

Cloning, expression, and purification of ScCdt1
The coding sequence for full-length S. cerevisiae Cdt1 was cloned into the QB3 Macrolab vector 1b

for expression with a TEV-cleavable N-terminal His6-tag. ScCdt1 was expressed in bacteria as previ-

ously described for DmCdt1. Cells from a 1 L expression were resuspended in 40 mL of Lysis Buffer

(50 mM Tris pH 7.5, 300 mM KCl, 10% glycerol, 30 mM Imidazole, 200 mM PMSF, 1x cOmplete

EDTA-free Protease Inhibitor Cocktail (Sigma-Aldrich), 1 mM BME and 0.1 mg/mL lysozyme) and

lysed by sanitation. The lysate was clarified by centrifugation at 30,000 xg for 1 hr and subsequently

filtered through an aPES 0.45 mm bottle-top filter unit. The clarified lysate was loaded onto a 5 mL

HisTrap HP column and washed with 10 CV of Nickel Wash Buffer (50 mM Tris pH 7.5, 300 mM KCl,

10% glycerol, 30 mM Imidazole, 200 mM PMSF, 1 mM BME) and eluted with 3 CV of Nickel Elution

Buffer (50 mM Tris pH 7.5, 300 mM KCl, 10% glycerol, 250 mM Imidazole, 1 mM BME). The His6 tag

was then removed with an overnight incubation with TEV protease at a 1:10 (w:w) ratio of TEV:pro-

tein. After cleavage, cleaved ScCdt1 was isolated from TEV, the cleaved tag, and uncleared protein

by an additional nickel purification step. Finally, the protein was purified by size exclusion chroma-

tography over a HiPrep 16/60 Sephacryl S-300 HR column (GE Healthcare) equilibrated and run in

Sizing Buffer (50 mM HEPES pH 7.5, 300 mM KGlutamate, 10% glycerol, 1 mM BME). Peak fractions

were pooled, concentrated in a 10K Amicon Ultra-15 concentrator (Millipore), flash frozen in liquid

nitrogen, and stored at �80˚C.

Cloning, expression, and purification of human Cdt1
The coding sequence for full-length human Cdt1 was cloned into the QB3 Macrolab vector 4C for

expression with a tobacco etch virus (TEV)-cleavable C-terminal hexa-histidine (His6)-maltose binding

protein (MBP) tag. This vector was transformed into DH10bac cells for generation of bacmid DNA

that was transfected (Cellfectin II) and amplified in Sf9 cells. Virus was amplified twice in Sf9 cells

and protein expressed from 2 L of High5 cells infected with high-titer virus. Human Cdt1 was purified

from High5 cells according to the method described above for DmCdt1 except that lysozyme was

omitted from the Lysis Buffer.

Cloning, expression, and purification of DmORC. All ORC constructs were expressed in High5

insect cells from baculoviruses. Baculoviruses were generated by Cellfectin II (ThermoFisher) trans-

fection of Sf9 cells with DH10bac-derived bacmid DNA that, in all cases, encoded a TEV-cleavable

His6 and MBP tag on Orc1 and Orc4, respectively. Full-length ORC was generated by co-infection of

High5 cells with two baculoviruses, one encoding Orc1-5 and the second encoding Orc6. ORC com-

plexes were also produced with deletions in the N-terminal IDR of Orc1 (ORC1DIDR) and Orc2

(ORC2DIDR). ORC1DIDR was generated by co-infection of High5 cells with three baculoviruses, one

encoding Orc2-5, a second encoding Orc6, and a final virus from which Orc1DIDR was expressed. To

generate the deletion, Orc1 was cloned into Macrolab vector 438B and an internal deletion (deletion

of amino acids 248–549) generated by around-the-horn mutagenesis. Similarly, ORC2DIDR was gener-

ated by co-infection of High5 cells with three baculoviruses, one encoding both Orc1 and Orc3-5, a

second encoding Orc6, and a final virus from which Orc2DIDR was expressed. To generate the dele-

tion, an Orc2 N-terminal deletion (amino acid 270–618) was cloned into Macrolab vector 438A.

Baculoviruses were amplified for two rounds prior to infection of High5 cells for protein expression.

All ORC constructs were purified according to the same procedure. The cell pellet from 2 L of

cells was resuspended in 80 mL of Lysis Buffer (50 mM Tris pH 7.5, 300 mM KCl, 50 mM Imidazole,

10% glycerol, 200 mM PMSF, 1x cOmplete EDTA-free Protease Inhibitor Cocktail (Sigma-Aldrich), 1

mM BME) and lysed by sonication. The lysate was then clarified by centrifugation at 30,000 xg for 1
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hr and the supernatant filtered through an aPES 0.45 mm bottle-top filter unit. Subsequently, the

lysate was subjected to a 20% ammonium sulfate precipitation for 30 min at 4˚C and then centri-

fuged again for 1 hr at 30,000 xg. The supernatant was then passed over a 5 mL HisTrap HP column

(GE Healthcare) and washed with 10 CV of Nickel Wash Buffer (50 mM Tris pH 7.5, 300 mM KCl, 50

mM Imidazole, 10% glycerol, 200 mM PMSF, 1 mM BME) before protein elution with a 6 CV linear

gradient from 50 to 250 mM Imidazole. The sample was then further purified by a second affinity

step over an 8 mL amylose column (NEB), where it was washed with 3 CV of Amylose Wash Buffer

(50 mM Tris pH 7.5, 300 mM KCl, 10% glycerol, 1 mM BME) and eluted with 2 CV of Amylose Elution

Buffer (Amylose Wash Buffer supplemented to 20 mM maltose). The affinity tags from Orc1 and

Orc4 were then removed by adding TEV at a 1:10 ratio and incubating overnight at 4˚C. Finally, the

sample was concentrated and then purified by size exclusion chromatography on a HiPrep 16/60

Sephacryl S-300 HR column (GE Healthcare) equilibrated and run in Sizing Buffer (50 mM HEPES pH

7.5, 300 mM KGlutamate, 10% glycerol, 1 mM BME). Peak fractions were pooled, concentrated in a

30K Amicon Ultra-15 concentrator (Millipore), flash frozen in liquid nitrogen, and stored at �80˚C.

Cloning, expression, and purification of DmCdc6
The coding sequence for full-length D. melanogaster Cdc6 and a construct lacking the N-terminal

IDR (amino acids 231–662), Cdc6DIDR, was cloned into the QB3 Macrolab vector 4C for expression in

Sf9 insect cells as an TEV-cleavable N-terminal His6-MBP fusion. To generate tagRFP-Cdc6, the cod-

ing regions for tagRFP and Cdc6 were amplified and cloned by Gibson Assembly into vector 4C to

generate tagRFP-Cdc6 with a TEV-cleavable N-terminal His6-MBP tag. Expression vectors were

transformed into DH10bac cells (QB3 Macrolab) for production of bacmid DNA that was subse-

quently transfected into Sf9 cells using Cellfectin II to generate virus. Baculoviruses were amplified

for two rounds in Sf9 cells to generate the high-titer virus used for expression.

For expression of Cdc6, one liter of Sf9 cells in a shaker flask was infected with high-titer baculovi-

rus for two days. Subsequently, the cells were harvested by centrifugation and stored at �80˚C until

downstream processing. To purify Cdc6, the 1 L of harvested cells was resuspended in 40 mL of Lysis

Buffer (50 mM Tris pH 7.5, 300 mM KCl, 10% glycerol, 200 mM PMSF, 1x cOmplete EDTA-free Prote-

ase Inhibitor Cocktail (Sigma-Aldrich), 5 mM MgOAc, 10 mM ATP, 1 mM BME) and lysed by sonica-

tion. The lysate was clarified by centrifugation at 30,000 xg for 1 hr, filtered through an aPES 0.45

mm bottle-top filter unit (Nalgene Rapid-Flow, ThermoFisher), and then passed over an 5–8 mL amy-

lose column (NEB). The bound protein was washed with ten CV of Amylose Wash Buffer (50 mM Tris

pH 7.5, 300 mM KCl, 10% glycerol, 200 mM PMSF, 5 mM MgOAc, 10 mM ATP, 1 mM BME) and

eluted with 2 CV of Amylose Elution Buffer (Amylose Wash Buffer supplemented to 20 mM maltose).

Peak fractions were pooled and TEV protease added at a 1:10 ratio of TEV to protein, then incu-

bated overnight at 4˚C. The cleaved protein was subsequently purified by heparin affinity chroma-

tography (HiTrap Heparin HP, GE Healthcare), eluting with a linear gradient of increasing salt from

100 mM - 1 M KCl. Finally, the peak fractions from heparin were concentrated and purified by size

exclusion chromatography over a Hiprep 16/60 Sephacry S-300 HR column equilibrated in Sizing

Buffer supplemented with 5 mM MgOAc and 10 mM ATP. Peak fractions were pooled, concentrated

in a 10K Amicon Ultra-15 concentrator (Millipore), flash frozen in liquid nitrogen, and stored at �80˚

C.

Cloning, expression, and purification of HsFUS
Full-length human FUS was cloned into QB3 Macrolab vector 438A with an N-terminal His6-eGFP

tag with intervening TEV consensus sequence. Bacmid DNA was generated by transformation of the

expression vector into DH10bac cells and the resulting bacmid transfected into Sf9 cells for genera-

tion of baculovirus which was amplified twice to generate high-titer virus. High5 cells were infected

with virus for two days and then harvested and frozen for later purification. One liter of infected cells

was resuspended with 40 mL of Lysis Buffer (50 mM Tris pH 7.5, 1 M KCl, 30 mM Imidazole, 10%

glycerol, 200 mM PMSF, 1x cOmplete EDTA-free Protease Inhibitor Cocktail (Sigma-Aldrich)), 1 mM

BME) and lysed by sonication. The lysate was then centrifuged at 30,000 xg for 1 hr and the clarified

lysate passed through an aPES 0.45 mm bottle-top filter unit. The protein was then passed over a 5

mL HisTrap HP column (GE Healthcare), washed with 10 CV of Nickel Wash Buffer (50 mM Tris pH

7.5, 1 M KCl, 30 mM Imidazole, 10% glycerol, 200 mM PMSF, 1 mM BME), and eluted with 3 CV of
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Nickel Elution Buffer (50 mM Tris pH 7.5, 1 M KCl, 300 mM Imidazole, 10% glycerol, 1 mM BME).

The protein was then concentrated with a 10K Amicon Ultra-15 concentrator (Millipore) and diluted

into Storage Buffer (50 mM Tris pH 7.5, 1 M KCl, 150 mM Imidazole, 10% glycerol, 1 mM BME) prior

to aliquoting, snap freezing in liquid nitrogen, and storing at �80˚C.

Cloning, expression, and purification of DmMcm2-7
The DmMcm2-7 complex was expressed and purified from High5 insect cells co-infected with a sin-

gle virus for each subunit. The coding region for MCM3-7 were cloned into pFastbac1 (Thermo-

Fisher). MCM3 was cloned with an N-terminal FLAG tag (DYKDDDDK, ThermoFisher). The coding

sequence for MCM2 was cloned into QB3 Macrolab vector 4C to generate an N-terminal His6-MBP

fusion. Each vector was transformed into DH10bac cells to generate bacmid DNA that was trans-

fected (Cellfecin II) into Sf9 cells and amplified twice to generate high-titer virus prior to infection of

High5 cells for protein expression. Infected High5 cells were grown for 2 days and then the cells

were pelleted and froze at �80˚C for later processing. The cells were resuspend in Lysis Buffer (25

mM HEPES pH 7.5, 15 mM KCl, 10% glycerol, 0.08% Tween-20, 2 mM EDTA, 2 mM EGTA, 800 mM

PMSF, 1x cOmplete EDTA-free Protease Inhibitor Cocktail (Sigma-Aldrich)) and lysed by dounce

homogenization. After lysis, the lysate was incubate for 10 min on ice and the solution adjusted to

[KCl]=100 mM. The lysate was clarified by centrifugation for 15 min at 30,000 xg and was then incu-

bated for two hours with ANTI-FLAG M2 Affinity Agarose Gel (Sigma-Aldrich, A2220). The resin was

then washed with 40 CV of Flag Wash Buffer (25 mM HEPES pH 7.5, 200 mM KAcetate, 10% glyc-

erol, 2 mM EDTA, 2 mM EGTA, 800 mM PMSF) and eluted by competitive elution in Flag Wash

Buffer supplemented to 200 ug/mL Flag peptide and 250 ug/mL human insulin as a carrier (Sigma-

Aldrich). The protein was then passed over a 2 mL amylose column (NEB) and washed with 3 CV of

Flag Wash Buffer. The protein was eluted with 3 CV Flag Wash Buffer supplemented to 20 mM malt-

ose. The His6-MBP tag was removed with an overnight digestion with TEV protease (QB3 Macrolab).

Finally, the sample was purified by size exclusion chromatography over a Superose6 5/150 GL equili-

brated and run in Protein Buffer (50 mM HEPES pH 7.5, 300 mM KGlutamate, 10% glycerol, 1 mM

BME). Concentrated Mcm2-7 was aliquoted, flash frozen in liquid nitrogen, and then stored at 80˚C.

Cloning, expression, and purification of DmCDK1/CycA complex
The DmCDK1/CycA complex was expressed in High5 insect cells co-infected with two viruses, one

encoding CDK1 and the other CycA. Full-length CDK1 was cloned into QB3 Macrolab vector 4C for

expression with a TEV-cleavable His6-MBP tag and full-length CyclinA was cloned into QB3 Macro-

lab vector 4B for expression with a TEV-cleavable His6 tag. Viruses were generated in Sf9 cells by

Cellfectin II transfection of bacmid DNA (derived from DH10bac cells) which were then amplified for

two rounds in Sf9 cells.

Two liters of cells co-infected with CDK1 and CycA were resuspended in 80 mL of Lysis Buffer (50

mM HEPES pH 7.5, 300 mM KCl, 30 mM Imidazole, 10% glycerol, 200 mM PMSF, 1x cOmplete

EDTA-free Protease Inhibitor Cocktail (Sigma-Aldrich), 1 mM BME) and lysed by sonication. The

lysate was then clarified by centrifugation at 30,000 xg for 1 hr and the supernatant filtered through

an aPES 0.45 mm bottle-top filter unit. The supernatant was then passed over a 5 mL HisTrap HP col-

umn (GE Healthcare), washed with ten CV of Nickel Wash Buffer (50 mM HEPES pH 7.5, 300 mM

KCl, 30 mM Imidazole, 10% glycerol, 200 mM PMSF, 1 mM BME), and finally eluted with a 10 CV lin-

ear gradient from 30 to 500 mM Imidazole. Peak fractions were pooled and passed over an 8 mL

amylose column (NEB), washed with 5 CV of Amylose Wash Buffer (50 mM HEPES pH 7.5, 300 mM

KCl, 10% glycerol, 1 mM BME), and eluted with 3 CV of Amylose Elution Buffer (Amylose Wash

Buffer supplemented to 20 mM maltose). The affinity tags were then removed with an overnight

digestion at 4˚C with TEV added at a 1:10 (w:w) ratio. After an additional nickel affinity step to

remove uncleaved protein, CDK1/CycA was concentrated and the holocomplex separated from free

CDK1 by size exclusion chromatography on a Superose 6 Increase 10/300 GL column (GE Health-

care). Peak fractions were analyzed by SDS-PAGE analysis and fractions where CDK1 and CycA co-

eluted were pooled, concentrated with a 10K Amicon Ultra-15 concentrator (Millipore), flash frozen

in liquid nitrogen, and stored at �80˚C.
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DNA pull-down assays
A random oligonucleotide of sixty basepairs was produced and annealed with a complementary oli-

gonucleotide in Annealing Buffer (50 mM HEPES pH 7.5, 50 mM KCl). This oligonucleotide is

referred to throughout the paper as ‘dsDNA’ and has sequence:

5’-GAAGCTAGACTTAGGTGTCATATTGAACCTACTATGCCGAACTAGTTACGAGCTATAAAC

�3’. For DNA pull down assays, dsDNA was produced with a 5’ biotin label (biotin-dsDNA, IDT). To

generate DNA-coupled agarose beads, high capacity streptavidin agarose resin (Pierce) was first

washed with Annealing Buffer and then 25 mM biotin-dsDNA was added to the beads and incubated

for 1 hr at room temperature; control beads were generated by adding Annealing Buffer alone. Fol-

lowing coupling, the beads were washed three times with Annealing Buffer. To assay DNA binding,

the beads were first washed three times with Assay Buffer (50 mM HEPES pH 7.5, 150 mM KGluta-

mate, 10% glycerol, 1 mM BME) and then 10 mM Cdt1 or Cdc6 was added to control and DNA cou-

pled beads (Cdc6 binding was assessed in the presence and absence of 500 mM ATP). The beads

were incubated with protein for 1 hr at room temperature and then washed three times with 10x vol-

ume of Assay Buffer before resuspending and boiling the beads in Laemmmli sample buffer and

assessing bound proteins by SDS-PAGE analysis and Coomassie staining.

Fluorescence polarization DNA-binding assays
Fluorescence polarization readings were taken on a BioTek Synergy using 384-well black bottom

plates (Greiner) and detection of Cy5-labeled dsDNA (Cy3-dsDNA). Ten 15 uL reactions were pre-

pared in Assay Buffer (50 mM HEPES pH 7.5, 150 mM KGlutamate, 10% glycerol, 1 mM BME) con-

taining 50 nM Cy3-dsDNA and a serial dilution of Cdt1 from 1 mM to 0.5 nM. The reactions were

incubated 10 min at room temperature and then polarization measured relative to a control. The

mean and standard deviation of three independent experiments were plotted as a function of pro-

tein concentration and the data fit in Prism with a Hill equation to determine the dissociation

constant.

Electrophoretic mobility shift assay (EMSA)
EMSA gels were imaged on an Odyssey imaging system (LI-COR) through detection of an IRDye800

fluorescent tag appended to the 5’ end dsDNA (IRDye800-dsDNA, IDT). Ten 20 mL reactions were

prepared in Assay Buffer (50 mM HEPES pH 7.5, 150 mM KGluatmate, 10% glycerol, 1 mM BME)

containing 25 nM IRDye800-dsDNA and a serial dilution of Cdt1 from 3 mM to 0.2 nM. The reactions

were incubated for 45 min and then 5 mL of each sample was run on a 5% native PAGE gel at 100 V

for 1 hr.

Determination of embryonic Cdt1 concentration
D. melanogaster embryos (Bloomington stock 32045) were collected at 2 hr intervals from age 2–16

hr, dechorionated in 100% bleach for 60 s, and washed extensively with H2O. For each time-point,

the number of dechorionated embryos was counted and then resuspended with 1 mL of 1x Laemmli

sample buffer for every one embryo. Samples were next homogenized with a micro-pestle (Sigma,

Z359947), heated for 5 mins at 95˚C, and then clarified with a 3 min centrifugation at 13,000 xg

before transferring the supernatant to a new tube. The lysate from each time-point was fractionated

on a 4–20% Bio-Rad TGX gel (alongside a dilution series of recombinant Cdt1 as a standard) and

then transferred to a nitrocellulose membrane. After blocking with 5% BSA, the membrane was

probed with an affinity purified anti-DmCdt1 antibody (1/1,000, laboratory of M. Botchan) followed

by incubation with a secondary IRDye800 CW Donkey anti-Rabbit antibody (1,/10,000, LI-COR, 926–

32213). Blots were imaged with a LI-COR Odyssey imager. A standard curve was generated from

the intensity values of the recombinant Cdt1 dilution series and the per-embryo Cdt1 concentration

calculated based on the reported volume of a D. melanogaster embryo (Markow et al., 2009).

Assaying liquid–liquid phase separation
Multiple methods were used to assay for phase separation. For the turbidity assays, 20 mM DmCdt1

was combined with 20 mM dsDNA in microcentrifuge tubes; as controls, samples were prepared that

contained only DmCdt1 or dsDNA. After mixing, the solution became immediately turbid and the

tubes were imaged on an Epson Perfection V700 scanner. We asked whether this was a reversible
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process by adding concentrated KCl (4 M) to a final concentration of 400 mM to the Cdt1/DNA mix-

ture and again imaging the sample. To determine the source of the turbidity, 7 mL of each sample

was spotted on a slide, covered with a coverslip, and imaged on a wide-field microscope equipped

with DIC optics at a magnification of 63x with an oil immersion objective. For assaying droplet for-

mation by fluorescence microscopy, samples were prepared by mixing protein with Cy5 or Cy3-

labeled dsDNA (Cy5- or Cy3-dsDNA) and incubating 2 min prior to spotting 7 mL on a glass slide

and covering with a glass coverslip. Subsequently, the samples were imaged on a Zeiss LSM 710

inverted confocal microscope using a 63x oil immersion objective and appropriate filter sets. For

multi-color fluorescent imaging, control samples were imaged to ensure no crosstalk was observed

between channels. Multi-color droplet recruitment assays were completed by first preparing drop-

lets with ORC and Cy5-dsDNA. Subsequently, fluorescently-tagged proteins were spiked into each

reaction and imaged. Quantitation of protein recruitment to preformed ORC droplets was com-

pleted in FIJI (Schindelin et al., 2012). First, regions of interest (ROI) for ORC/Cy5-dsDNA droplets

were generated with the auto-threshold function and then the signal intensity for the eGFP channel

was measured within these regions, form which a mean and standard deviation was calculated.

Finally, depletion assay samples were prepared by mixing protein with an equimolar amount of

dsDNA and incubating the samples for 30 min at room temperature. After incubation, the samples

were centrifuged for 10 min at 16,000 xg and the supernatant removed for separation by SDS-PAGE

analysis and subsequent Coomassie or Silver staining; in all cases, a protein load control was also

assessed that had not been centrifuged. Depletion experiments that assayed the effect of DNA

length and sequence on initiator phase separation were completed at 2 mM protein concentrations

and 0.03 mg/mL of the following generated-randomly dsDNA oligonucleotides:

Name Sequence

15mer: CACAGCGTACTCACA

25mer: CACAGACGCACCAGTTTACACTCAG

50mer: CATGCATACACGAGCTGCACAAACGAGAGTGCTTGAACTGGACCTCTAGT

60mer: GAAGCTAGACTTAGGTGTCATATTGAACCTACTATGCCGAACTAGTTACGAGCTATAAAC

10% GC: CATTTAATAATTTTGTAATAAAAATTAAGAAAATAATAATAATTATAAATACTATCGTAT

25% GC: AAATGTTTCTTACAATAAAACGATCAAGTACATTTTTATAAAAGGTGATAGAGATTTACG

50% GC: GATACTTGGGCTTGATCTCGCCCCGACACCTGCAAACCTCAACTGCCTTAGATTATATGG

75% GC: GGTGGTGTCGGGTCAGGGCGGCCCCGCGACCAGTCGTGTGCCTTCCCGAGCTCCGTCCGG

Disorder and complexity calculations
The per-residue disorder score was calculated using the online DISOPRED3 disorder prediction

server (Jones and Cozzetto, 2015) and N-terminal IDRs characterized by the longest contiguous

stretch of disordered residues (DISOPRED >0.5). For the comparison of initiator IDRs with HsFUS,

the isolated initiator N-terminal IDRs were compared to all residues of HsFUS with a disorder predic-

tion score >0.5 and heatmaps of the corresponding regions were generated in excel using condi-

tional formatting. These same regions were used to classify the IDRs according to amino acid type

(aromatic = F, W, Y; hydrophobic = A, G, I, L, M, P, V; hydrophilic = C, N, Q, S, T; charged = D, E,

H, K, R). The local compositional complexity was calculated for each amino acid in a 20-residue slid-

ing window and the average complexity score compared for predicted disordered and ordered

regions of the protein (Wootton and Federhen, 1993). The data are presented as a box plot of indi-

vidual residue scores, where the middle line of the box = the median value, the top line = the limit

of the upper quartile, the bottom line = the limit of the lower quartile, and the individual points rep-

resent outliers to the upper and lower extremes of the data, which are indicated as lines coming off

the box.

MCM recruitment assays
Loading reactions were prepared that contained DmORC (125 nM), DmCdc6 (125 nM), DmCdt1

(125 nM), DmMcm2-7 (250 nM), ATP (1 mM), MgOAc (4 mM), and plasmid (pBluescript) DNA (5 nM)
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in Assay Buffer (50 mM HEPES pH 7.5, 150 mM KGlutamate, 10% glyerol, 1 mM BME). The reactions

were incubated for 30 min at 27˚C and then centrifuged for 15 min at 18,000 xg to pellet the con-

densed phase. The supernatant was then removed for analysis and the pellet washed with a 10-fold

volumetric excess of Assay Buffer. The centrifugation step was then repeated, the supernatant aspi-

rated, and the pellet resuspended in Protein Buffer (50 mM HEPES pH 7.5, 300 mM KGlutamate,

10% glycerol, 1 mM BME). Finally, the supernatant and/or pelleted material was analyzed by SDS-

PAGE analysis and silver stain or blotting (flag-tag on MCM3). Anti-FLAG primary antibody (Sigma-

Aldrich F7425) was used at a 1/1,000 dilution and an IRDye800 CW Donkey anti-Rabbit secondary

used at 1/10,000. Blots were imaged on a LI-COR Odyssey imager. To assess the contribution of

ATP, OCC, or ORC, Cdc6, and Cdt1 separately, the individual reagents were removed from the

loading reactions and the experiment completed as described. Blots were quantitated using FIJI

(Schindelin et al., 2012).

Drosophila genetics
The full genomic coding region of D. melanogaster Orc1 including 200 basepairs of downstream

regulatory sequence and approximately 1000 basepairs of upstream regulatory sequence was ampli-

fied by PCR from OregonR genomic DNA and cloned into the pattB vector with an N-terminal eGFP

tag (eGFP-Orc1). To generate eGFP-Orc1WalkerAB, the same procedure was used but PCR was uti-

lized to incorporate two point mutations: K604A (Walker A) and D684A/E685A (Walker B); PCR was

similarly used to generate eGFP-Orc1DIDR, which contains a deletion of the Orc1 N-terminal disor-

dered domain (deletion of residues 249–548). Transgenes were generated by injection (GenetiVision

Corporation) for site specific PhiC31 integration at location P23L68A4 on the third chromosome.

Homozygous lines were generated to confirm viability and were then balanced and crossed to flies

carrying the Orc14739 null allele (Park and Asano, 2008) to determine each transgene’s capacity to

rescue lethality in flies homozygous for Orc14739.

For imaging of embryos by lattice light-sheet microscopy it was desirable to have not only Orc1

tagged with eGFP, but to also be able to visualize histones. We therefore used a recombination

cross between flies homozygous for eGFP-Orc1 or eGFP-Orc1WalkerAB and flies containing a His2A-

RFP transgene, also residing on the second chromosome. Recombinants containing both eGFP-

Orc1/eGFP-Orc1WalkerAB and His2A-RFP were identified by eye color.

Lattice light-sheet imaging of D. melanogaster embryos
Embryos were collected from collection cages after a 90 min laying period. Embryos were dechorio-

nated in 100% bleach for 90 s and placed on the surface of a 5 mm diameter glass coverslip using a

fine haired paintbrush. The coverslip surface was made adhesive by applying a small drop of home-

made glue solution (prepared by dissolving a roll of double-sided scotch tape in heptane overnight)

(Mir et al., 2018).

Imaging was performed using a custom built Lattice Light-Sheet Microscope as previously

described (Chen et al., 2014; Mir et al., 2018; Mir et al., 2017). For all experiments a 40 beam

square lattice pattern was used with a minimum and maximum excitation numerical aperture of 0.44

and 0.55 respectively. The lattice pattern was dithered in the x direction over a 5 mm range in 0.1

mm steps over the duration of each exposure to generate a uniform excitation pattern. Z-stacks were

acquired by synchronously scanning the excitation sheet using a galvo-mirror, and the detection

objective using a piezo stage over a 25 mm range in 0.250 mm increments. A 488 nm laser was used

to excite eGFP (eGFP-Orc1 or eGFP-Orc1WalkerAB) with an exposure time of 50 ms at each slice and

a 561 nm laser was to excite RFP (His2A-RFP) with an exposure time of 10 ms at each slice. During

Z-stack acquisition an image was acquired for both channels at each z-position before moving to the

next. The time interval between each stack was 5.67 s. The excitation laser powers were set to 375

mW and 335 mW for the 488 nm and 561 nm lines respectively as measured at the back focal plane

of the excitation objective. Images were recorded using two Hamamatsu ORCA-Flash 4.0 digital

CMOS cameras. A long-pass dichroic (Semrock FF-560) nm was placed between the two cameras to

separate emission wavelengths of above and below 560 nm, and a bandpass emission filter was

placed in front of each camera (Semrock FF01-525/50 for eGFP and Semrock FF01-593/46 for RFP).
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Once an embryo of suitable age was found (typically starting in nuclear cycle 12 as determined by

examining the His2A-RFP channel) it was continuously imaged as described above until the comple-

tion of the mitosis preceding nuclear cycle 14.

Images of mitotic events, from metaphase to the completion of telophase were analyzed by first

segmenting out chromatin using the His2A-RFP channel (Figure 5—video 3). Segmentation was per-

formed using a custom script written in MATLAB R2017B (Mir, 2019; copy archived at https://

github.com/elifesciences-publications/Parker_2019_MitosisAnalysis). Briefly, first a 3D median filter

was applied, followed by 3D Gaussian filtering to each z-stack. A locally adaptive threshold was then

calculated, which was then used to generate a binary mask. The binary mask was then filtered by

removing regions connected to a border so that only completely imaged nuclei were analyzed, and

then filtered for size to remove segmentation errors. A label matrix was then generated from the

binary mask for each time point. An implementation of the Hungarian algorithm for tracking (Simple

Tracker - File Exchange - MATL...) was then applied to the centroid positions of the individual nuclei

in the label matrices to track them through time. The mean intensity values for each nuclei through

time were then calculated. Fold enrichment over the background value was calculated for each chan-

nel. We found that the local maxima in the eGFP-ORC1 channel intensity corresponded exactly to

early telophase in each nucleus (Figure 5) and this peak was then used to align each individual trace

for averaging. Data from all cleavage events for each line were averaged together as no difference

was found between traces from the 13th and 14th divisions in either the eGFP-ORC1 or eGFP-Orc1-
WalkerAB lines (Figure 5—figure supplement 1). A total of 88 and 100 nuclei were analyzed for the

eGFP-Orc1 and eGFP-Orc1WalkerAB mutants respectively.

Imaging Orc1 cellular dynamics in Drosophila S2 cells
Drosophila S2 cells were maintained as adherent cells at 27˚C in ESF 921 medium supplemented to

1% FBS and 1x penicillin-streptomycin at a passage number less than twenty. For transfections, S2

cells were seeded in 6-well dishes at a density of 3 � 106 cells/well. The medium was replaced 24 hr

later and the cells were transfected (Effectene, Qiagen) with two plasmids, one expressing mCherry-

tagged DmHistone2A (pCopia_mCherry-H2A was a gift from the lab of Dr. Gary Karpen, UC Berke-

ley) and another expressing eGFP-tagged Orc1 (pCopia_eGFP-Orc1) (400 ng of each plasmid was

used for transfections). pCopia_eGFP-Orc1 was generated by separately PCR amplifying eGFP and

Orc1, and using Gibson Assembly to clone into a ligation-independent cloning (LIC) site incorpo-

rated into the parental pCopia vector (pCopia-LIC). pCopia_eGFP-Orc1 was then used as a template

for around-the-horn mutagenesis to generate Orc1 deletions in the BAH domain (Orc1DBAH, deletion

of amino acids 1–186) and the disordered domain (Orc1DIDR, deletion of amino acids 248–549). Two

sequential rounds of around-the-horn mutagenesis was used to generate an Orc1 construct with

mutations in the Walker A (K604A) and Walker B (D684A/E685A) motifs (Orc1WalkerAB). The transfec-

tion mixture was removed 16 hr post-transfection and replaced with fresh medium. After an addi-

tional 24 hr incubation, the cells were prepared for imaging by gently resuspending the cells and

transferring them to a 35 mm Nunc glass bottom tissue culture dish (ThermoFisher) where they were

allowed to adhere for 20 min. After this time, the medium was gently aspirated to remove sus-

pended cells and replaced with fresh ESF 921.

Image stacks were collected on a Zeiss LSM 710 inverted confocal microscope using a 40x oil

immersion objective (NA = 1.4) and filter sets for mCherry and eGFP. Samples were scanned at low

magnification (20x) using mCherry-H2A signal to identify mitotic cells (<1% of cell population). When

metaphase cells were identified they were positioned at the center of the field of view and magnifi-

cation increased (40x objective with 3x digital zoom). To assess Orc1 dynamics a z-stack (1 mm

spaced images over the entire cell volume) was collected every 1.5 min from metaphase through

cytokinesis. Images were processed using FIJI. First, each stack of slices was summed and a gaussian

blur (radius = 1) filter applied. Subsequently, the average background intensity was subtracted from

each channel and an ROI generated for each time point by auto-thresholding the mCherry-H2A

channel. The eGFP-Orc1 intensity was measured for each ROI and the fold-change in intensity rela-

tive to metaphase intensity was calculated for each time point. We report the average and standard

deviation of the maximum fold-change in Orc1 chromosome intensity (observed in telophase) for at

least three individual mitotic cells of each transfected construct.
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Phosphorylation assays
The effect of initiator phosphorylation on phase separation was assessed by both the depletion assay

and fluorescence microscopy. For depletion assay analysis, phosphorylation reactions were prepared

by mixing 1 mM of either ORC, Cdc6, or Cdt1 with 200 nM CDK1/CycA in the presence and absence

of 5 mM MgOAc and 1 mM ATP in Protein Buffer (50 mM HEPES pH 7.5, 300 mM KGlutamate, 10%

glycerol, 1 mM BME). The phosphorylation reactions were incubated for 60 mins at room tempera-

ture and then, to set up the depletion assay, the reactions were mixed with dsDNA and incubated

for 30 min at room temperature. The final depletion assay reaction conditions include 500 nM initia-

tor, 125 nM CDK1/CycA, 2.5 mM MgOAc, 500 nM ATP, and 500 nM dsDNA in Assay Buffer (50 mM

HEPES pH 7.5, 300 mM KGlutamate, 10% glycerol, 1 mM BME). After incubation, the samples were

processed as previously described, assaying protein depletion by SDS-PAGE analysis and Silver

staining. For assaying the effect of phosphorylation by fluorescence microscopy, protein concentra-

tions were scaled up 4-fold for the phosphorylation reaction (4 mM ORC and 0.8 mM CDK1/CycA); all

other reaction conditions are as described. Subsequently, the phosphorylation reactions were

diluted 1:1 with equimolar Cy5-dsDNA in Assay Buffer, incubated for 2 min, and 7 mL were spotted

on a glass slide, covered with a glass coverslip, and imaged as described previously.
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