
*For correspondence:

nuol@bcm.edu (NL);

svobodak@janelia.hhmi.org (KS)

Competing interest: See

page 25

Funding: See page 25

Received: 21 May 2019

Accepted: 16 November 2019

Published: 18 November 2019

Reviewing editor: John

Huguenard, Stanford University

School of Medicine, United

States

Copyright Li et al. This article

is distributed under the terms of

the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

Spatiotemporal constraints on
optogenetic inactivation in cortical circuits
Nuo Li1,2*, Susu Chen2, Zengcai V Guo2,3, Han Chen3, Yan Huo3,
Hidehiko K Inagaki2, Guang Chen1, Courtney Davis1,2, David Hansel4,
Caiying Guo2, Karel Svoboda2*

1Department of Neuroscience, Baylor College of Medicine, Houston, United States;
2Janelia Research Campus, Ashburn, United States; 3School of Medicine, Tsinghua
University, Beijing, China; 4Center of Neurophysics, Physiology and Pathologies,
CNRS-UMR8119, Paris, France

Abstract Optogenetics allows manipulations of genetically and spatially defined neuronal

populations with excellent temporal control. However, neurons are coupled with other neurons

over multiple length scales, and the effects of localized manipulations thus spread beyond the

targeted neurons. We benchmarked several optogenetic methods to inactivate small regions of

neocortex. Optogenetic excitation of GABAergic neurons produced more effective inactivation

than light-gated ion pumps. Transgenic mice expressing the light-dependent chloride channel

GtACR1 produced the most potent inactivation. Generally, inactivation spread substantially beyond

the photostimulation light, caused by strong coupling between cortical neurons. Over some range

of light intensity, optogenetic excitation of inhibitory neurons reduced activity in these neurons,

together with pyramidal neurons, a signature of inhibition-stabilized neural networks (’paradoxical

effect’). The offset of optogenetic inactivation was followed by rebound excitation in a light dose-

dependent manner, limiting temporal resolution. Our data offer guidance for the design of in vivo

optogenetics experiments.

Introduction
The cerebral cortex consists of dozens of distinct areas (Dong, 2008; Felleman and Van Essen,

1991; Paxinos and Watson, 1997). Each brain region in turn contains multiple cell types

(Rudy et al., 2011; Tasic et al., 2018; Zeng and Sanes, 2017). An important goal in neuroscience is

to link dynamics in neural circuits to neural computation and behavior. Much of what we know about

localization of cortical function comes from loss-of-function studies. Classically, lesions (Lash-

ley, 1931; Mishkin and Ungerleider, 1982; Newsome and Wurtz, 1988), pharmacological inactiva-

tion (Guo et al., 2017; Hikosaka and Wurtz, 1985; Krupa et al., 1999), or cooling (Long and Fee,

2008; Ponce et al., 2008) have been used to silence activity in small (>1 mm3) regions of tissue. The

development of optogenetics has allowed rapid and reversible silencing of neuronal activity (Dei-

sseroth, 2015). Concurrently, there has been significant progress in creating genetic access to spe-

cific neuronal populations (Luo et al., 2018). Various transgenic Cre driver mouse lines target

subtypes of cortical neurons (Gerfen et al., 2013; Gong et al., 2007; Harris et al., 2014;

Taniguchi et al., 2011). Together with Cre-dependent reporter lines that endogenously express

optogenetic effector proteins (Madisen et al., 2015; Madisen et al., 2012; Zhao et al., 2011), and

viral delivery methods (Atasoy et al., 2008; Chatterjee et al., 2018; Deverman et al., 2016;

Dimidschstein et al., 2016; Luo et al., 2018; Tervo et al., 2016; Wickersham et al., 2007), these

technologies have advanced the precision with which manipulation experiments can be carried out.

Optogenetic loss-of-function experiments rely on two schemes (Wiegert et al., 2017). ’Direct

photoinhibition’ involves light-gated Cl-/H+ pumps that hyperpolarize neurons (Brown et al., 2018;
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Chow et al., 2010; Chuong et al., 2014; Han and Boyden, 2007; Zhang et al., 2007) and light-

gated Cl- channels that produce hyperpolarization and shunting inhibition (Berndt et al., 2014;

Govorunova et al., 2015; Wietek et al., 2014). Direct photoinhibition silences genetically-defined

neuronal populations. A second scheme is ‘ChR-assisted photoinhibition’, which relies on activation

of excitatory channelrhodopsins (ChR) expressed in GABAergic neurons. Photostimulation of the

GABAergic neurons potently inhibits local pyramidal neurons and thereby removes excitatory output

from the photoinhibited brain region (Cardin et al., 2009; Guo et al., 2014b; Olsen et al., 2012).

ChR-assisted photoinhibition has been applied in transgenic mice (such as VGAT-ChR2-EYFP) that

express ChR2 in GABAergic neurons (Zhao et al., 2011); this does not require complex crosses and

Cre-mediated expression can be used for other genetic labels. Alternatively, specific variants of ChR

(e.g. ChR2 vs. red-shifted variants; Hooks et al., 2015; Klapoetke et al., 2014; Lin et al., 2013) can

be targeted to specific GABAergic neurons (e.g. PV vs. Sst neurons) using interneuron-specific Cre

lines.

Both direct photoinhibition and ChR-assisted photoinhibition have been widely used in mice to

reveal the involvement of brain areas and neuronal populations in specific phases of behavior

(Goard et al., 2016; Guo et al., 2015; Guo et al., 2014b; Hanks et al., 2015; Kwon et al., 2016;

Li et al., 2015; Li et al., 2016; Mathis et al., 2017; Morandell and Huber, 2017; Resulaj et al.,

2018; Sachidhanandam et al., 2013). However, neural circuits have local and long-range connec-

tions (Harris and Shepherd, 2015; Hooks et al., 2011; Hooks et al., 2013; Kato et al., 2017;

Lefort et al., 2009; Mao et al., 2011; Ozeki et al., 2009; Xue et al., 2014). Strong and nonlinear

coupling between neurons, in addition to the photostimulus itself, can affect the spatial and tempo-

ral patterns in changes of activity. As a result, unexpected effects of optogenetic manipulations are

common. For example, activating and inhibiting Sst+ and PV+ neurons can produce complex and

asymmetric effects on excitatory neuron stimulus selectivity in visual cortex (Adesnik et al., 2012;

Atallah et al., 2012; Lee et al., 2012; Wilson et al., 2012) and auditory cortex (Phillips and Hasen-

staub, 2016; Seybold et al., 2015). The effect depends on brain state (Phillips and Hasenstaub,

2016), nonlinearity (Phillips and Hasenstaub, 2016), connectivity of the neural circuits

(Seybold et al., 2015), or strength and duration of the light manipulation (Atallah et al., 2014; El-

Boustani et al., 2014; Lee et al., 2014). Theoretical studies of networks of excitatory and inhibitory

neurons predict counterintuitive responses of neural circuits to perturbations. For example, excita-

tion of cortical interneurons can cause a decrease in activity of the same interneurons (’paradoxical

effect’), which arises from the interplay between recurrent excitation and inhibition (Kato et al.,

2017; Sanzeni, 2019; Litwin-Kumar et al., 2016; Ozeki et al., 2009; Pehlevan and Sompolinsky,

2014; Rubin et al., 2015; Sadeh et al., 2017; Tsodyks et al., 1997).

Optogenetic manipulations of a brain region can also impact activity of downstream regions in

complex ways. Activity in a brain region can be robust to perturbation of one strongly connected

brain region. For example, inactivating one side of anterior lateral motor cortex has little effect on

activity in the contralateral hemisphere, despite abundant interhemispheric connections (Li et al.,

2016). Perturbation of other connected brain regions can have dramatic effects. For example, inacti-

vating thalamus causes a rapid and complete collapse of cortical activity (Guo et al., 2017;

Reinhold et al., 2015). Perturbation experiments using behavior as readout must be interpreted in

terms of measured changes in neuronal activity throughout the circuit. The direct and indirect effects

of circuit manipulations on neuronal activity are rarely measured, particularly in vivo.

We characterized several optogenetic methods to locally silence somatosensory and motor cor-

tex, either using direct photoinhibition or ChR-assisted photoinhibition. In addition, we measured

the wavelength-dependent spread of light and its effects on the spatial spread of inactivation. Many

light-gated opsins (such as ChR2) are excited by blue light. But blue light is highly scattered and

absorbed by blood (Chow et al., 2010; Stujenske et al., 2015; Wiegert et al., 2017; Yizhar et al.,

2011; Yona et al., 2016). Red light is less subject to hemoglobin absorption (Svoboda and Block,

1994), and thus can propagate further and produces less local heating (Liu et al., 2015;

Stujenske et al., 2015; Wiegert et al., 2017). Red-shifted opsins (e.g. ReaChR [Lin et al., 2013],

Chrimson [Klapoetke et al., 2014], Jaws [Chuong et al., 2014]) could enable noninvasive manipula-

tions of deep brain regions. However, direct measurements of light propagation in the intact brain is

scarce (Guo et al., 2014b; Ranganathan et al., 2018; Yizhar et al., 2011; Yona et al., 2016), and

measurements of the distribution of light intensity in vivo are missing. We directly measured the
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spatial profile of light intensity in cortex at two commonly used wavelengths (blue and orange, 473

and 594 nm) using a photobleaching assay (Guo et al., 2014b).

We found that the spatial resolution of optogenetic silencing is approximately one millimeter,

with silencing spreading further than the photostimulation light. The length scale of photoinhibition

is caused by strong coupling within cortical circuits: loss of activity in a focal region withdraws input

to other layers and surrounding regions, resulting in loss of activity in both excitatory and inhibitory

populations in the surround, as predicted by network models (Litwin-Kumar et al., 2016;

Rubin et al., 2015; Sadeh et al., 2017; Tsodyks et al., 1997). Offset of the photostimulus was typi-

cally followed by rebound excitation, which limits the temporal resolution of photoinhibition. Our

data outline spatial and temporal constraints of optogenetics manipulations in vivo and provide

guidance to the design of loss-of-function experiments.

Results

Optogenetic inactivation
We examined eight different optogenetic methods to inactivate cortical activity in awake mice

(Table 1, Figure 1A).

For ChR-assisted photoinhibition we photostimulated excitatory opsins in GABAergic interneur-

ons to drive inhibition in nearby pyramidal neurons. We used transgenic mice that expressed ChR2

in GABAergic neurons (VGAT-ChR2-EYFP), or in parvalbumin-positive (PV) interneurons (PV-IRES-Cre

X Ai32), or in somatostatin-positive (Sst) interneurons (Sst-IRES-Cre X Ai32). In addition, we photosti-

mulated a red-shifted channelrhodopsin (ReaChR) in PV neurons (PV-IRES-Cre X ReaChR)

(Hooks et al., 2015; Lin et al., 2013). We also induced photoinhibition with a Cre-dependent ChR2

virus in PV-IRES-Cre mice. For direct photoinhibition we photostimulated inhibitory opsins in pyrami-

dal neurons, including the ion pumps Archaerhodopsin (Arch, Emx1-IRES-Cre X Ai35D) and Jaws

(Emx1-IRES-Cre X Camk2a-tTA X Ai79) (Chow et al., 2010; Chuong et al., 2014; Madisen et al.,

2015).

Table 1. A list of photoinhibition methods tested in this study.

Methods Mouse (JAX #) Reagents Wavelength Brain region

ChR-assisted photoinhibition

ChR2 in all GABAergic neurons VGAT-ChR2-EYFP or Slc32a1-
COP4*H134R/EYFP (014548)

473 nm Somatosensory cortex, ALM

ChR2 in PV expressing neurons PV-IRES-Cre or
Pvalb-IRES-Cre (008069)
x Ai32 (012569)

473 nm Somatosensory cortex

ChR2 in Sst neurons Sst-IRES-Cre (013044)
x Ai32 (012569)

473 nm Somatosensory cortex

ReaChR in PV neurons PV-IRES-Cre (008069)
x R26-CAG-LSL-ReaChR-mCit
(026294)

594 nm ALM

ChR2 virally delivered to local PV neurons PV-IRES-Cre (008069) AAV2/1-CAG-FLEX-
ChR2-tdTomato-WPRE
(UPenn Viral Core, AV-1-
ALL864)

473 nm Somatosensory cortex

Direct photoinhibition

Arch in excitatory neurons Emx1-IRES-Cre (005628)
x Ai35D (012735)

594 nm Somatosensory cortex

Jaws in excitatory neurons Emx1-IRES-Cre (005628)
x Ai79D (023529)
x Camk2-tTA (003010)

594 nm Somatosensory cortex

GtACR1 (somatic targeting) (Mahn et al.,
2018) in excitatory neurons

Emx1-IRES-Cre (005628)
x R26-CAG-LNL-GtACR1-ts-FRed-
Kv2.1 (033089)

473 nm,
635 nm

Somatosensory cortex, primary
motor cortex, ALM
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Figure 1. Optogenetic inactivation and cell-type specific recording. (A) Summary of inactivation methods. ChR-assisted photoinhibition was induced by

photostimulating excitatory opsins in various GABAergic interneurons. Direct photoinhibition was achieved by photostimulating inhibitory opsins in

pyramidal neurons. (B) Cell-type classification based on spike waveform. Left, spike waveforms for putative FS neurons (gray) and putative pyramidal

neurons (black) in two different cortical areas. Right, histogram of trough-to-peak spike durations (top) and relationship to baseline spike rate (bottom).

Figure 1 continued on next page
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We measured neural activity in the vicinity of the photostimulus using silicon probe recordings.

Measurements were performed in somatosensory cortex and motor cortex; these two cortical

regions are examples of sensory and frontal cortex, which differ in laminar connectivity

(Hooks et al., 2011) and in their connections with thalamus (Hooks et al., 2013) (Materials and

methods). In both brain areas the distribution of single-unit spike width was bimodal (Figure 1B).

Units with narrow spikes were putative fast spiking (FS) neurons and likely expressed parvalbumin

(Cardin et al., 2009; Guo et al., 2014b; Olsen et al., 2012; Resulaj et al., 2018). Neurons with

wide spikes were likely mostly glutamatergic pyramidal neurons, and we refer to this population as

putative pyramidal neurons.

These classifications were consistent with spike rate changes observed during photostimulation

(Figure 1C–D). In mice expressing excitatory opsins in FS GABAergic neurons (VGAT-ChR2-EYFP,

PV-IRES-Cre X Ai32, and PV-IRES-Cre X ReaChR mice), FS neurons were activated by photostimula-

tion, whereas putative pyramidal neurons were inhibited (Figure 1D). In VGAT-ChR2-EYFP mice a

subset of FS neurons were inhibited rather than excited, likely caused by activation of other GABAer-

gic neurons that were photostimulated in these mice. In Sst-IRES-Cre X Ai32 mice, both FS neurons

and putative pyramidal neurons were inhibited, consistent with Sst neurons inhibiting both PV and

pyramidal neurons (Lee et al., 2013; Pfeffer et al., 2013). Sst neurons were rare in extracellular

recordings, with only two neurons showing clear photostimulus-induced increases in spike rate. Puta-

tive Sst neurons could not be unambiguously separated from either FS neurons or putative pyrami-

dal neurons based on their spike waveforms (Figure 1D) (Yu et al., 2019). In Emx1-IRES-Cre X

Ai35D and Emx1-IRES-Cre X Camk2a-tTA X Ai79 mice, optogenetic hyperpolarization of pyramidal

neurons reduced activity of putative pyramidal neurons and FS neurons. The inhibition of FS neurons

was likely caused by withdrawal of excitatory input from pyramidal neurons.

We measured the light sensitivity of different optogenetic inactivation methods by computing the

’relative spike rate’: the spike rate of putative pyramidal neurons during inactivation, averaged

across neurons, divided by the baseline spike rate (Materials and methods). Near the center of the

photostimulus (<0.4 mm from laser center), ChR-assisted photoinhibition in transgenic mice pro-

duced strong inactivation, with >80% of reduction in spike rate for putative pyramidal neurons with

low laser powers (0.5–1.5 mW, Figure 1E). The powers used here are far below the levels that pro-

duce heating in tissue and non-specific effects on neural activity (Christie et al., 2012; Owen et al.,

2019; Stujenske et al., 2015). ChR2 virus mediated photoinhibition in PV-IRES-Cre mice produced

slightly weaker silencing. Arch and Jaws-mediated photoinhibition required roughly 10-fold higher

laser power to achieve similar silencing compared to ChR-assisted photoinhibition (Figure 1E). For

Arch-mediated photoinhibition, temporally-modulated photostimuli were more effective in silencing

activity than constant photostimuli at the same average power (Figure 1F).

We also photoactivated the Guillardia theta anion channel rhodopsin 1 (GtACR1) to hyperpolarize

and shunt the membranes of pyramidal neurons (Govorunova et al., 2015). We generated a Cre

reporter mouse, expressing a soma localized GtACR1 (Mahn et al., 2018) driven by the CAG

Figure 1 continued

Neurons were classified into putative GABAergic fast spiking (FS) neurons and pyramidal neurons based on spike width (Materials and methods).

Neurons that could not be classified (brown) were excluded from analysis. (C) Silicon probe recordings during photostimulation in a VGAT-ChR2-EYFP

mouse. Top, a putative FS neuron. Bottom, a putative pyramidal neuron. Right, corresponding spike waveforms. (D) Effects of photostimulation on cell

types defined by spike waveform. Dots correspond to individual neurons. Spike rates of each neuron during photostimulation were normalized to its

baseline (‘relative spike rate’, Materials and methods). Neurons with significant spike rate changes (p<0.05, two-tailed t-test) are highlighted by circles.

Gray, putative FS neurons; black, putative pyramidal neurons; brown, neurons that could not be classified. (E) Relative spike rate as a function of laser

power for different photoinhibition methods. Pyramidal neurons within 0.4 mm from laser center across all cortical depth. Mean ± s.e.m. across neurons,

bootstrap (Materials and methods). Two datasets (lines) are shown for VGAT-ChR2-EYFP: the line spanning 0.5–10.5 mW shows data from barrel cortex,

n = 153; the line spanning 0.1–1.5 mW shows data from ALM, n = 188; PV-IRES-Cre x Ai32, data from barrel cortex, n = 16; Sst-IRES-Cre x Ai32, data

from barrel cortex, n = 65; two datasets (lines) are shown for PV-IRES-Cre x ReaChR: the line spanning 0.5–10.5 mW shows data from barrel cortex,

n = 211; the line spanning 0.3–3 mW shows data from ALM, n = 55; PV-IRES-Cre, ChR2 virus injection, data from barrel cortex, n = 78; Emx1-IRES-Cre x

Ai35D, data from barrel cortex, n = 26; Emx1-IRES-Cre x Camk2a-tTA x Ai79, data from barrel cortex, n = 176. (F) Effect of photostimulus profile on

photoinhibition. Top, 40 Hz sinusoid photostimulus and constant photostimulus. Bottom, relative spike rate as a function of laser power for ChR-

assisted photoinhibition (left) and direct photoinhibition mediated by Arch (right). Pyramidal neurons within 0.4 mm from laser center across all cortical

depth. Mean ± s.e.m. across neurons, bootstrap (Materials and methods). 40 Hz sinusoid photostimulus is the standard photostimulus used in this

study.
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promoter targeted to the Rosa26 locus (Hooks et al., 2015; Madisen et al., 2010;

Muzumdar et al., 2007) (Figure 2A) (R26-CAG-LNL-GtACR1-ts-FRed-Kv2.1, JAX #033089). We

expressed soma localized GtACR1 in cortical excitatory neurons by crossing the reporter mouse to

Emx1-IRES-Cre. GtACR1 expression was targeted to the soma, but weak expression was still seen in

axons (Figure 2A and B). Under blue light (473 nm) illumination, GtACR1 produced the most potent

photoinhibition near the laser center, with >80% of the spikes silenced at 0.1 mW (Figure 2C). Previ-

ous studies have shown that GtACR1 and other Cl- channels induce spiking in axons, caused by a

positively shifted chloride reversal potential in the axon (Mahn et al., 2018; Messier et al., 2018).

Below 0.2 mW, photostimulation of soma localized GtACR1 induced little excitation (Mahn et al.,

2018; Messier et al., 2018) (Figure 2D). At higher laser powers, transient short-latency excitation

was apparent, which was likely due to axonal excitation. GtACR1 mediated photoinhibition could

also be induced using red light (Figures 2C, 635 nm) (albeit at higher light intensities), which could
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Figure 2. Direct photoinhibition with a GtACR reporter mouse. (A) Top, generation of the Cre-dependent GtACR reporter line. Construct includes loxP

sites, and GtACR1-ts-FRed-Kv2.1C with WPRE, driven by CAG promoter targeted to the Rosa26 locus. Bottom, cross to Emx1-IRES-Cre mice. GtACR1 is

expressed in cortical excitatory neurons. (B) Confocal images showing dense expression of GtACR1 in cortex and low levels of expression in the corpus

callosum, implying low trafficking of GtACR1 to axons. (C) Left, mean peristimulus time histogram (PSTH, 50 ms bin) for pyramidal neurons with blue

and red photostimuli. Dashed lines, photostimulus onset and offset. Pyramidal neurons within 0.4 mm from laser center across all cortical depth. Blue

light photostimulation, n = 335 neurons from ALM; Red light photostimulation, n = 285 neurons from ALM. Right, relative spike rate as a function of

laser power. Mean ± s.e.m. across neurons, bootstrap (Materials and methods). VGAT-ChR2-EYFP, Emx1-IRES-Cre x Ai35D, Emx1-IRES-Cre x Camk2a-

tTA x Ai79, data from Figure 1E are replotted here for reference. (D) Left, mean PSTH (1 ms bin) at the onset of the photostimulation. Same data as in

(C). Axonal excitation was induced at 0.8 mW laser power for blue light photostimulation. Right, relative spike rate during the first 20 ms of

photostimulation onset.
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facilitate photoinhibition of deep brain regions. Expression of GtACR1 appears to be the most sensi-

tive method for inactivation, although attention has to be paid to avoid axonal excitation.

Spatial profile of light intensity
To characterize the spread of inactivation we first measured the spatial profile of the photostimulus,

that is, the light intensity in the tissue. At the surface of the brain the photostimulus was a stationary

collimated laser beam with an approximately Gaussian profile (diameter at 4s, 400 mm) (Materials

and methods). In the brain, light is scattered and absorbed, primarily by blood. As a substitute for

light intensity we measured the three-dimensional profile of photobleaching of fluorescent proteins

in transgenic mice. Because neurons are large (100’s of micrometers) and fluorescent proteins diffuse

rapidly in the cytoplasm (Swaminathan et al., 1997), we used fluorescent proteins targeted to neu-

ronal nuclei. We measured the spatial distribution of fluorescence after prolonged light exposure,

which caused pronounced photobleaching at the center of the photostimulus. For blue light (473

nm), we used transgenic mice expressing GFP in the nuclei of cortical excitatory neurons (Rosa-LSL-

H2B-GFP crossed to Emx1-IRES-Cre) (He et al., 2012). For orange light (594 nm), we used trans-

genic mice expressing mCherry (Rosa-LSL-H2B-mCherry crossed to Emx1-IRES-Cre) (Peron et al.,

2015).

Blue light induced photobleaching in a confined region near the photostimulus (Figure 3A). Pho-

tobleaching increased with the light dose (Figure 3B). We measured photobleaching by averaging

the fluorescence change (DF/ F0) within a small region near the photostimulus center relative to the

baseline fluorescence in regions far away from the laser center (F0, Figure 3C). At our illumination

conditions, photobleaching is a linear process. The rate of photobleaching is therefore proportional

to light intensity and the relationship between DF/ F0 and the light dose (light intensity x time) is

exponential (Figure 3C). Calibration experiments allowed us to infer the spatial profile of light inten-

sity in tissue, which is independent of light dose (Figure 3D, Materials and methods). Light intensity

attenuated rapidly as a function of depth, to less than 20% at 500 mm below the surface of the brain

(Figure 3D; depth at half max, 300 mm). Laterally, light intensity dropped off to 50% at 135 mm

(Figure 3D). These data show that blue light is confined in cortical tissue, consistent with simulations

(Stujenske et al., 2015).

In contrast to blue light, orange light propagated much further (depth at half max, 846 mm), pene-

trating all layers of cortex and illuminating a cubic millimeter of volume (Figure 3E–G), 28 times

larger than for blue light. Because orange light (594 nm) is still absorbed by hemoglobin

(Svoboda and Block, 1994), longer wavelength light (e.g. 630 nm) will likely penetrate still deeper

into tissue than orange light.

We note that the photobleaching experiments are relatively noisy and have limited dynamic

range (Figure 3B,F). As a result, our measurement likely misses a long tail in light intensity that is still

able to activate light gated channels. For example, at high powers FS interneurons can be activated

up to 1.5 mm from the laser center, even with blue light (see below and Figure 5B,C,D).

Spatial profile of optogenetic inactivation
We measured photoinhibition across cortical layers when photostimulating GABAergic neurons

using blue or orange light (Figure 4A–B). Recordings were made from the whisker representation

area of the somatosensory cortex (barrel cortex) near the center of the photostimulus. Photostimula-

tion of ChR2 in GABAergic neurons produced nearly uniform inhibition of pyramidal neurons across

cortical layers (Figure 4A, VGAT-ChR2-EYFP, Sst-IRES-Cre X Ai32, and PV-IRES-Cre X Ai32), despite

limited penetration of blue light in tissue (Figure 3). Photoinhibition removed the majority of spikes

(>80%) in a column across a wide range of laser powers (1.5–14 mW), indicating that photoinhibition

is an effective method for local inactivation.

A notable exception was seen at low laser powers (0.5 mW) in Sst-IRES-Cre X Ai32 mice. Selective

excitation of Sst neurons produced a disinhibition of excitatory neurons around layer 4 (Figure 4A,

, Sst-IRES-Cre X Ai32). This disinhibition in layer four was likely mediated by Sst neurons that inhibit

PV neurons. Activation of Sst neurons therefore removed a major source of inhibition onto excitatory

neurons (Xu et al., 2013). Thus, driving inhibition can effectively drive excitatory neurons

(Pfeffer et al., 2013; Yu et al., 2019) highlighting the complexities of optogenetic manipulations in

actual neural networks.
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Figure 3. Spatial profile of light in the cortex. (A) Photobleaching was induced in a transgenic mouse line expressing GFP in the nuclei of excitatory

neurons (Rosa-LSL-H2B-GFP crossed to Emx1-IRES-Cre; Materials and methods). Left, coronal section showing an example photobleaching site. Light

dose, 200 mW x min. The photostimulus was a laser beam with a Gaussian profile (diameter at 4s, 0.4 mm) at the brain surface. Right, a confocal image

showing a region highlighted by the dash line. GFP intensity was measured in regions of interest (ROI) around individual nuclei (circles). Color indicates

Figure 3 continued on next page
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Photostimulation of GABAergic neurons using orange light also induced uniform inhibition across

cortical layers (Figure 4B, PV-IRES-Cre X ReaChR). Despite different propagation of blue and orange

light in tissue (Figure 3), ChR-assisted photoinhibition was remarkably similar for both illumination

wavelengths. At moderate laser power (1.5 mW), blue light excited FS neurons mainly in superficial

layers (Figure 4C). Yet, loss of activity was present in both superficial and deep layers (see Discus-

sion). Direct photoinhibition of excitatory neurons using GtACR1 or Jaws also inhibited activity

across all layers (Figure 4D–F). Remarkably, the profile of silencing mediated by GtACR1 was also

similar for blue and red light (Figure 4D–E), despite profound wavelength-dependent differences of

light propagation in tissue (and much higher power levels required at the longer excitation

wavelength).

We next characterized the lateral extent of photoinhibition by varying the location of the photo-

stimulus relative to the recording site (Figure 5A). In VGAT-ChR2-EYFP mice, FS neurons near the

laser center were activated in a dose-dependent manner (Figure 5B). The lateral spread of FS neu-

ron excitation was dependent on laser power (at 0.5 mW, half-max width, 0.15 mm; at 14 mW, 1.5

mm, Figure 5B). These measurements show that a long tail in the light intensity profile can activate

light gated channel more than 1 mm from the center of the laser, even for blue excitation light.

Photoinhibition of pyramidal neurons extended 1 mm beyond the activation profile of FS neurons

(Figure 5B). For example, at 0.5 mW, pyramidal neuron activity was reduced even 1 mm away from

the laser center where FS neurons were not activated. This spread of photoinhibition extends

beyond typical sizes of dendritic and axonal arbors of GABAergic neurons (Jiang et al., 2015) and

dendritic arbors of pyramidal neurons (Oberlaender et al., 2012; Oswald et al., 2013;

Shepherd et al., 2005; Yamashita et al., 2018). In VGAT-ChR2-EYFP mice, ChR2 was expressed in

all GABAergic neurons. We considered the possibility that the spread of photoinhibition was medi-

ated by a specific subtype of GABAergic neuron. Among GABAergic interneurons, PV neurons have

the most compact dendritic and axonal arbors (Jiang et al., 2015). We thus tested whether selec-

tively photostimulating PV neurons would produce more spatially-restricted photoinhibition. How-

ever, a similarly broad photoinhibition profile was induced in PV-IRES-Cre X Ai32 mice (Figure 5C).

We next sought to produce a broader photoinhibition by using orange light to illuminate a larger

cortical volume in transgenic mice expressing ReaChR in PV neurons. However, the resulting photo-

inhibition profile was similar to those produced by photostimulating ChR2 in PV neurons using blue

light (Figure 5D).

We examined other methods of optogenetic inactivation. First, photoinhibition by selective exci-

tation of Sst neurons induced similarly broad photoinhibition (Figure 5E). Next, direct photoinhibi-

tion of pyramidal neurons using light-gated ion pumps (Emx1-IRES-Cre X Ai35D mice or Emx1-IRES-

Cre X Camk2a-tTA X Ai79 mice) induced similarly broad photoinhibition (Figure 5F and G). ChR-

assisted photoinhibition in a different brain region (anterior lateral motor cortex, ALM) also pro-

duced similarly broad spatial spread regardless of the method used to drive photoinhibition

(Figure 5H–I, blue light photostimulation in VGAT-ChR2-EYFP mice, or orange light photostimula-

tion in PV-IRES-Cre X ReaChR mice). Across all methods, the fractional reduction in spike rate near

the laser center approximately predicted the lateral spread of photoinhibition (Figure 5J). These

data (Figures 4 and 5) indicate that, for relatively localized photostimuli, the spatial resolution of

photoinhibition laterally and axially is shaped by interactions between spatially extended activation

of GABAergic interneurons with intrinsic properties of cortical circuits.

Figure 3 continued

ROI fluorescence intensity. (B) Photobleaching assay measuring the spread of blue light in the neocortex. Photobleaching was induced with different

light doses (as indicated). Dots, individual nuclei. Color indicates ROI fluorescence intensity. (C) Left, ROI fluorescence intensity as a function of lateral

distance from the laser center (data from light dose 200 mW x min, at 0.2 mm depth). F0, baseline ROI intensity, computed by averaging all ROIs far

away from the laser center. DF, ROI fluorescence intensity change caused by photobleaching, computed by averaging all ROIs near the laser center and

subtracting F0 (Materials and methods). Right, photobleaching (DF/ F0) at various light doses. Line, exponential fit to DF/ F0 as a function of light dose.

(D) The estimated spatial profile of blue light in tissue. DF/ F0 was converted to light intensity using the exponential fit in (C) (see Material and

methods). Light intensity is shown as a function of lateral distance (top) and cortical depth (right), along the yellow dashed lines. Mean ± s.e.m. across

ROIs, bootstrap (Materials and methods). The color map shows the spatial profile estimated from the 200 mW x min light dose data. Estimates from

other light doses produced similar spatial profiles. (E) - (G) Same as (A) - (D), but for orange light (594 nm) measured with photobleaching of mCherry

(Material and methods).
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Higher spatial resolution (i.e. complete removal of spikes from smaller tissue volumes) is desirable

for experiments investigating small brain regions. If the length scale of inactivation arises from intrin-

sic properties of cortical circuits, it would pose a fundamental constraint on the spatial resolution of

neuronal inactivation. Our results suggest that silencing a small area also reduces activity in
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Figure 4. Photoinhibition across cortical layers. (A) Left, schematics, ChR-assisted photoinhibition using blue light. Right, relative spike rate across
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Figure 5. Spatial profile of photoinhibition. (A) Silicon probe recording at different lateral distances from photostimulus. (B) Relative spike rate versus

lateral distance from the photostimulus center for three laser powers (0.5, 1.5, 14 mW). Blue light photostimulation in barrel cortex of VGAT-ChR2-EYFP

mice. Top, FS neurons (n = 18). Bottom, pyramidal neurons (n = 111). Neurons were pooled across cortical depths. Mean ± s.e.m. across neurons,

bootstrap (Materials and methods). (C) Same as (B), but for blue light photostimulation in barrel cortex of PV-IRES-Cre x Ai32 mice (FS neurons, n = 5;

Figure 5 continued on next page
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surrounding brain areas over more than a millimeter (Figure 5J). Considering the size of the mouse

brain (10 mm long) this constraint on resolution is substantial. We looked for conditions that could

break the relationship between photoinhibition strength and spatial spread. We tested the spatial

spread of direct photoinhibition induced by GtACR1. In three different cortical regions, GtACR1-

mediated photoinhibition also produced broad photoinhibition (Figure 6A), but the spatial spread

was smaller than that produced by other photoinhibition methods (Figure 6B). For example, at 90%

spike rate reduction near the laser center, the half-max radius of photoinhibition was 0.8 mm, com-

pared to >1 mm for other methods (Figure 6B).

Figure 5 continued

pyramidal neurons, n = 16). (D) Same as (B), but for orange light photostimulation in barrel cortex of PV-IRES-Cre x R26-CAG-LSL-ReaChR-mCitrine

mice (FS neurons, n = 10; pyramidal neurons, n = 82). (E) Same as (B), but for blue light photostimulation in barrel cortex of Sst-IRES-Cre x Ai32 mice.

Pyramidal neurons only (n = 65). (F) Same as (E), but for orange light photostimulation in barrel cortex of Emx1-IRES-Cre x Ai35D mice (n = 26). (G)

Same as (E), but for orange light photostimulation in barrel cortex of Emx1-IRES-Cre X Camk2a-tTA X Ai79 mice (n = 174). (H) Same as (E), but for blue
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Figure 6. Spatial profile of direct photoinhibition in GtACR reporter mouse. (A) Relative spike rate versus lateral distance from the photostimulus center

for various laser powers. Pyramidal neurons only. Blue light (437 nm) photostimulation in barrel cortex, n = 198; blue light photostimulation in motor

cortex, n = 236; blue light photostimulation in ALM, n = 335; red light (635 nm) photostimulation in ALM, n = 236. Neurons were pooled across cortical

depths. Mean ± s.e.m., bootstrap across neurons. (B) Photoinhibition strength versus spatial spread. Relative spike rate is the average across all

pyramidal neurons near laser center (<0.4 mm, all cortical depths). Spatial spread is the distance at which photoinhibition strength is half of that at the

laser center (‘radius, half-max’). Each circle represents data from one photostimulation power. Lines connect all circles of one method. VGAT-ChR2-

EYFP, Emx1-IRES-Cre x Ai35D, Emx1-IRES-Cre x Camk2a-tTA x Ai79, data from Figure 5J replotted here for reference.
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We next sought to limit the spatial spread of ChR-assisted photoinhibition by directly limiting the

spatial profile of interneuron activation. Transgenic mice express ChR in all GABAergic neurons.

Even a small photostimulus activates interneurons over a larger volume due to light scattering

(Figures 4C and 5B–D). To limit activation of interneurons we injected small volumes of Cre-depen-

dent ChR2 virus in PV-IRES-Cre mice (Cardin et al., 2009; Lee et al., 2012; Lien and Scanziani,

2013; Pafundo et al., 2016). The virus injection localized the expression of ChR2 (diameter of

expression, 500 mm, Figure 7A). Silicon probe recordings (Figure 7B) confirmed that photostimula-

tion excited FS neurons only at the infection site (Figure 7C). In the surrounding regions, FS neuron

spike rates were even slightly suppressed (e.g. Figure 7C, at 400 mm away). Photoinhibition of pyra-

midal neurons extended additional several hundred micrometers, with neurons suppressed even 800

mm away from the photostimulus center. At 90% spike rate reduction at the infection site, the half-

max radius of photoinhibition was approximately 0.5 mm (Figure 7D). Thus, limiting the spatial
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Figure 7. ChR-assisted photoinhibition using virus injection can achieve submillimeter spatial resolution. (A) Schematics, confined ChR2 expression in

PV neurons and silicon probe recording at different distances from the expression site. (B) Silicon probe recording in barrel cortex during

photostimulation. The right shank of the silicon probe was painted with DiI to label the recording tracks. Coronal section showing viral expression of

ChR2-tdTomato, electrode and photostimulus locations. The photostimulus was aligned to the virus injection site. (C) Relative spike rate versus lateral

distance from the photostimulus center for different laser powers. Top, putative FS neurons (n = 14). Bottom, pyramidal neurons (n = 78). Neurons were

pooled across cortical depths. (D) Same as Figure 5J, but with virus injection data added.
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extend of interneuron excitation reduced photoinhibition spread. Overall these results suggest that

optgogenetic inactivation methods have a fundamental resolution on the order of 1 mm (Figure 8).

Strong coupling between cortical neurons and the paradoxical effect
What underlies the spread of photoinhibition? Cortical neurons are coupled with each other. Activity

reduction in a small region in the vicinity of the photostimulus withdraws input to the surrounding

regions, reducing activity in the surround. Consistent with this interpretation, in regions surrounding

the photostimulation site, a concurrent decrease in activity was observed in both FS neurons and

pyramidal neurons, even with ChR-assisted photoinhibition (Figure 9, arrows). Activity decreased in

proportion in FS and pyramidal neurons relative to their baseline activity.

In standard models of cortical circuits, networks are stabilized by inhibition to prevent runaway

excitation (Rubin et al., 2015; Tsodyks et al., 1997; van Vreeswijk and Sompolinsky, 1996). These

inhibition-stabilized networks (ISN) exhibit paradoxical effects. Selective excitation of interneurons

paradoxically decreases interneuron activity together with excitatory neurons (Litwin-Kumar et al.,

2016; Pehlevan and Sompolinsky, 2014; Rubin et al., 2015; Sadeh et al., 2017; Tsodyks et al.,

1997). Because of recurrent excitatory connectivity in cortical circuits, the effects on excitatory neu-

ron spike rates are amplified, which causes a large reduction in excitation of inhibitory interneurons.

We tested this prediction in the somatosensory cortex. In mice expressing ReaChR in PV neurons,

we used orange light to illuminate a large part of the cortex (2 mm beam diameter at 4s at the sur-

face of the brain) to drive excitation in nearly all PV neurons across cortical layers (Figure 10A). Pyra-

midal neurons monotonically decreased their activity as a function of light intensity (Figure 10B).

The majority of recorded excitatory neurons were in layer 5. Interestingly, FS neurons also decreased

their activity, roughly in proportion despite being excited by ReaChR. As a function of light intensity,

activity in FS neurons continued to decrease until most of the pyramidal neuron activity was silenced

(Figure 10B, at 0.4 mW/mm2). At higher light intensities the FS neuron activity increased. This

increase was likely driven by an increased photocurrent. In addition, the network also transitioned to

a regime with little coupling due to lack of excitatory activity. These data are consistent with the
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Figure 8. Summary of spatial resolution for all photoinhibition methods. Half-max radius of photoinhibition when the activity reduction at laser center is

90%. Data based on Figures 5J, 6B and 7D when relative pyramidal neuron spike rate is 0.1. Error bars show 90% confidence interval, bootstrap

(Materials and methods). Estimated radius of light is based on data in Figure 3D and G.
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paradoxical effect predicted by cortical circuit models stabilized by inhibition (Tsodyks et al., 1997).

However, the detailed dependence of the activity of excitatory and FS neurons as a function of the

strength of the photostimulus remains to be explained.
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Figure 9. Proportional activity decrease in pyramidal and FS neurons during ChR-assisted photoinhibition. (A) Relative spike rate versus lateral distance

from the photostimulus center for PV-IRES-Cre x Ai32. Data from Figure 5C replotted with activity shown on a log scale. FS neurons (gray) and

pyramidal neurons (black). The arrows point to regions in the photostimulus surround where activity of FS neurons and pyramidal neurons decrease in

proportion (paradoxical effect). (B) Same as (A) but for PV-IRES-Cre x ReaChR. Data from Figure 5D.
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Temporal profile of optogenetic inactivation
We examined the dynamics of photoinhibition. For ChR-assisted photoinhibition, the kinetics of ChR

determined the dynamics of the interneurons (Figure 11A). For example, in mice expressing ChR2

(VGAT-ChR2-EYFP), FS neuron activity was time-locked to the photostimulus. In mice expressing

ReaChR (PV-IRES-Cre x ReaChR), which has slower off kinetics compared to ChR2 (Lin et al., 2012),

FS neuron activity was not time-locked to the photostimulus and was strongly attenuated over pro-

longed photostimulation. Despite the different interneuron dynamics, the photoinhibition of pyrami-

dal neurons was similarly (Figure 11A). A subset of FS neurons were excited throughout the

photostimulation (Figure 11B, 0.8–1 s). Other FS neurons were suppressed by photostimulation on

average; however, a subset of these inhibited FS neurons were transiently excited by the photosti-

mulus, followed by inhibition (Figure 11B, compare 0–10 ms to 0.8–1 s), implying that these neurons

were also expressing ChR. These data suggest that prolonged photostimulation (>20 ms) triggered

spikes in a subset of FS interneurons, which in turn reduced activity in other FS neurons and pyrami-

dal neurons.

For ChR-assisted photoinhibition, the photoinhibition lagged FS neuron excitation by 3 ms (Mate-

rials and methods; at >1.5 mW, FS excitation onset, 1.1 ± 0.2 ms). Photoinhibition was detectable

4.0 ± 1.7 ms after photostimulation onset (mean ± s.e.m., based on t-test of spike counts against

baseline) and reached a maximum at 18.4 ± 1.6 ms (‘photoinhibition onset’, Figure 11C). ChR2-

assisted photoinhibition has a slightly faster onset (14.6 ms) than ReachR-assisted photoinhibition

(18.8 ms; p<0.001, bootstrap, one-tailed test, Materials and methods). Direct hyperpolarization of

pyramidal neurons using Arch produced even more rapid photoinhibition onset (5 ms, Figure 11C).

Photoinhibition onset was progressively delayed at increasing distance from the laser center

(Figure 11D–E). Photoinhibition at 2 mm away lagged the photoinhibition at the laser center by 10

ms (Figure 11E). This suggests a gradual spread of photoinhibition, consistent with the interpreta-

tion that coupling between cortical neurons mediated the photoinhibition spatial spread.

The temporal profile of photoinhibition offset was limited by rebound activity. Removal of photo-

inhibition elevated spike rate above baseline (‘rebound activity’), which decayed to baseline over

hundreds of milliseconds (Figure 12A). Rebound activity depended on both photostimulus duration

and intensity (Figure 12B). For short photostimulation durations, rebound activity was moderate

regardless of photostimulus intensity (Figure 12C, e.g. at 500 ms duration, rebound activity was

10% of baseline for 1.5–7 mW). For long photostimulation durations, rebound activity was substan-

tial even at low laser power (Figure 12C, e.g. following a 4 s duration, rebound spike rate was >30%

of baseline spike rate even at 1.5 mW). At moderate photostimulation duration (1 s), all photoinhibi-

tion methods produced some rebound activity regardless of photoinhibition strength (Figure 12D,

Pearson’s correlation, r = �0.2, p=0.29). The rebound activity could be caused by recovery from syn-

aptic depression in silenced excitatory neurons, synaptic depression in activated FS neurons, or per-

turbed intracellular ion concentrations accumulated over prolonged duration of photostimulation

(Mahn et al., 2016; Wiegert et al., 2017).

In summary, photoinhibition onset was rapid (10 ms), but the offset was limited by rebound activ-

ity. Attenuating the photostimulus gradually (100 ms) or reducing the photostimulus durations can

both reduce rebound activity (Figure 12). These factors impose constraints on the temporal resolu-

tion of photoinhibition.

Discussion
We examined optogenetic methods to locally silence neural activity in the mouse neocortex. ChR-

assisted photoinhibition was more effective at lower light intensities (1.5 mW) in suppressing local

pyramidal neurons than direct photoinhibition using the light-gated ion pumps Arch and Jaws. This

power is unlikely to produce heating or other non-specific effects on neural activity (Christie et al.,

2012; Owen et al., 2019; Stujenske et al., 2015). A soma-localized Cl- channel, GtACR1

(Govorunova et al., 2015; Mahn et al., 2018), produced the most potent silencing. However, tran-

sient excitation was induced over some range of laser power (0.3 mW or higher), which was likely

due to axonal excitation, since soma targeting is not perfect. Potent silencing without excitation was

still achieved over a large range of laser powers (0.05–0.3 mW). We generated a reporter mouse

that expresses the soma-localized GtACR1 (Mahn et al., 2018) under the control of Cre-
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recombinases. This transgenic mouse is a useful tool to silence activity in genetically defined neuron

populations.

Photobleaching measurements show that blue light is highly confined in cortical tissue. Compari-

son of the lateral spread of blue light, and the corresponding lateral spread of photoexcitation of FS

neurons, suggests that the spread of light may not be the only determinant shaping the spatial

aspects of the network response. This view is further confirmed by the observation that blue light

and orange light produce similar spatial profiles of photoexcitation of FS neurons, despite the fact

that orange light spreads much further than blue light. It is likely that interactions between the

spread of light, the sizes of dendritic arbors, and the interplay between inhibition and recurrent exci-

tation shape the response of neurons to light.

Our photobleaching measurements show that blue light delivered to the surface of the cortex

results in an intensity distribution that decays rapidly as a function of depth in the cortex (Figure 3).

Only a small proportion of light propagates below the superficial cortical layers. Consistent with this

intensity distribution, at moderate laser powers (1.5 mW) photoinhibition in ChR2-EYFP mice was

limited to cortex, with no obvious silencing in subcortical regions immediately below cortex

(Guo et al., 2014b). However, higher light intensities in these mice can cause photoinhibition in the

hippocampus and striatum beneath cortical photostimulation sites (Babl et al., 2019). Silencing

mediated by red light is more likely to cause wide-spread direct optogenetic effects compared to

blue light, since red light penetrates deeper into the tissue (Lin et al., 2013). These findings high-

light the need for measurements of the spread of optogenetic effects. Depending on the applica-

tion, it may be possible to limit off-target silencing by using transgenic mouse lines with restricted

expression of Cre recombinase. For example, in our experiments expression of GTACR1 was limited

to cortex using Emx1-Cre mice.

We characterized the spatial profile of different photoinhibition methods. Photoinhibition

appeared uniform across the cortical depth and spread laterally over 1 mm or more, far beyond the

spatial spread of light (0.25–0.5 mm). The spatial extent of photoinhibition was similar in somatosen-

sory and motor cortex despite differences in microcircuits and connections with thalamus, and similar

across photoinhibition methods (Figures 5–8). The spatial profiles of photoinhibition, laterally and

along cortical layers, were also similar across different photostimulation wavelengths (473 vs. 594

nm), despite large differences in the spatial profiles of the photostimuli (i.e. light intensity)

(Figure 3).

Local infection with Cre-dependent, ChR2-expressing virus in PV-IRES-Cre mice produced the

smallest lateral spread in photoinhibition (radius, approximately 0.5 mm). Local expression of ChR

limited the excitation of FS interneurons to a small region (~200 um in radius, Figure 7C). Additional

lateral spread of photoinhibition was likely produced by the cortical circuit. Silencing activity in a

focal region caused a withdrawal of excitatory input to surrounding cortical regions (Kato et al.,

2017; Lefort et al., 2009; Ozeki et al., 2009; Sanzeni, 2019). For example, in regions surrounding

the viral injection site, photostimulation caused a decrease in activity of both FS neurons and pyrami-

dal neurons. Similar withdrawal of input could potentially explain the uniform photoinhibition across

layers (Hooks et al., 2011; Kiritani et al., 2012), particularly for blue light mediated ChR-assisted

photoinhibition (Figure 4A). Given the limited penetration of blue light in tissue at moderate laser

powers (1.5 mW), the direct effects of photostimulation on neurons were most pronounced in L2/3

(Figure 4C), yet pronounced photoinhibition was observed in deep layers. Future studies directly

recording inhibition onto neurons in the surround and deep layers could further clarify the underlying

network effect.

Our measurements of the spatial profiles of inactivation were obtained within single brain regions

(somatosensory or motor cortex). However the photostimuli were as far as 2.5 millimeters away and

therefore often in different cortical areas. The structure of long-range feedforward and feedback

connectivity likely shapes the spatial spread of inactivation. Feedforward projections target different

layers compared to feedback projections (Felleman and Van Essen, 1991; Mao et al., 2011). It is

also likely that the spatial spread of photoinhibition may be limited across boundaries between brain

areas that are not coupled by long-range axons. Future experiments examining the coupling

between brain regions contingent on long-range connectivity are still needed.

In both sensory and motor cortex, cortical neurons cannot maintain activity without thalamic drive

(Guo et al., 2017; Poulet et al., 2012; Reinhold et al., 2015). Conversely, silencing activity in cortex

reduces activity in the thalamus (Guo et al., 2017). Therefore, silencing a region in cortex likely
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decreased activity in the parts of thalamus targeted by the silenced region. Since corticothalamic

projections arise from the deep layers, and the direct effects of photostimulation is the strongest in

superficial layers (particularly with blue light), our data imply that intracortical connections might also

be required to maintain cortical activity, in addition to thalamocortical input. Resolving the relative

contributions of intracortical connections and thalamocortical input in the maintenance of cortical

activity will require additional experiments, guided by detailed circuit models (Guo et al., 2017;

Gutnisky et al., 2017).

Our data provide additional evidence for strong coupling between cortical neurons. Over some

range of photostimulus intensities, excitation of interneurons induced the ‘paradoxical effect’, where

activity decreased in both interneurons and excitatory neurons (Figure 10). Excitation of GABAergic

neurons reduces activity in nearby excitatory neurons, and thus reduced excitation to GABAergic

neurons. Paradoxical effects were also observed in other experiments. For example, at the center of

the laser, weak photostimulation (0.5 mW) of GABAergic neurons induced little increase or even a

decrease in FS neurons activity, yet, pyramidal neuron activity was silenced (Figure 9B). These obser-

vations are consistent with predictions of inhibition-stabilized networks, and they suggest that corti-

cal neurons operate in a regime with strong coupling (Kato et al., 2017; Lefort et al., 2009;

Ozeki et al., 2009; Pehlevan and Sompolinsky, 2014; Rubin et al., 2015; Tsodyks et al.,

1997; Sanzeni, 2019).

Previous studies manipulated cortical interneurons but did not find the paradoxical effect pre-

dicted by inhibition-stabilized network models (Atallah et al., 2012; Gutnisky et al., 2017;

Yu et al., 2016). One key difference is that we weakly photostimulated nearly all PV neurons in

superficial layers of transgenic mice. Previous studies used viral expression strategies that manipu-

lated only subsets of PV neurons. Theoretical analysis and simulations suggest that the paradoxical

effect is only induced when a large proportion of interneurons is excited (Gutnisky et al., 2017;

Sadeh et al., 2017). Another key difference is photostimulation power. Cortical networks escape the

paradoxical effect regime when most of the pyramidal neurons are silenced (Figure 10B), which

effectively removes coupling between excitatory neurons. Consistent with this prediction, the para-

doxical effect was only observed under weak photostimulation conditions that do not silence a

majority of pyramidal neurons (Figure 10).

Our data provide guidance for the design of in vivo optogenetic experiments. All the data here

were collected under awake non-behaving conditions, but our previous studies found little difference

in photoinhibition strength across behavioral conditions (Guo et al., 2014b; Li et al., 2016). ChR-

assisted photoinhibition and Cl- channel mediated directed photoinhibition are highly sensitive, pro-

ducing similarly complete silencing near the laser center across a large range of laser powers (photo-

inhibition, 1.5–10 mW, Figure 1E). However, we note that the spatial spread of photoinhibition

differed substantially across laser powers (Figures 5 and 6). Higher laser power removed spikes over

a larger cortical region. This power-dependent spatial spread produces graded loss-of-function

manipulations in vivo. For example, photoinhibiting the barrel cortex induced increasingly larger

behavioral effects with increasing laser power across a large power range (1.5–10 mW) (Guo et al.,

2014b).

Photoinhibition has been used extensively in loss-of-function studies to localize functions to spe-

cific brain regions. In the neocortex, the 1 mm length scale of photoinhibition poses a limit on the

spatial resolution of loss-of-function manipulations. Interpretation of photoinhibition effects must

take this spatial spread function into account. For example, silencing a brain region nearby to an

involved region could produce false-positive behavioral effects. One work-around could involve sys-

tematically mapping the photoinhibition effects (e.g. a behavioral effect) around a region of interest,

then deconvolve the known spatial spread function to recover the underlying region involved in

behavior (Li et al., 2016).

Although we explored several spatiotemporal stimuli, the possible parameter space for photosti-

mulus design is still sparsely explored. It is possible that sub-millimeter resolution of photoinhibition

could be achieved with direct photoinhibition using more sensitive optogenetic effectors and spa-

tially patterned illuminations. In addition, the spatial resolution of photoinhibition could differ across

brain regions. In many subcortical regions GABAergic neurons make long-range projections, reduc-

ing the spatial resolution of ChR2-assisted photoinhibition. On the other hand, recurrent and lateral

excitation is less pronounced in many subcortical regions compared to neocortex, promising better

spatial resolution when direct photoinhibition is used for photoinhibition.
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Photoinhibition has been used to probe the involvement of brain regions during specific behav-

ioral epochs (Guo et al., 2014b; Hanks et al., 2015; Li et al., 2015; Sachidhanandam et al., 2013).

Our results suggest that the temporal resolution of photoinhibition is limited by rebound activity

(Figure 12), which could potentially produce confounding behavioral consequences. Rebound activ-

ity could be partially alleviated by changes in photostimulus parameters (Figure 12C)

(Wiegert et al., 2017).

In many experiments, cell-type-specific manipulations produced multi-phasic network responses

both on local and downstream circuits over hundreds of milliseconds (Guo et al., 2017). These

results highlight that optogenetic circuit manipulations provide the most insights into functions of

specific neural dynamics when the primary effects of the perturbation and, equally importantly, the

effects on downstream brain areas are taken into account, ideally measured simultaneously in behav-

ing animals (Gao et al., 2018; Guo et al., 2017; Inagaki et al., 2019; Li et al., 2016).

Materials and methods

Animals
This study is based on data from 45 mice (age >P60, both male and female mice). 35 transgenic

mice were used to characterize photoinhibition, including 14 VGAT-ChR2-EYFP mice, 2 PV-IRES-Cre

x Ai32 mice, 3 Sst-IRES-Cre x Ai32 mice, 11 PV-IRES-Cre x R26-CAG-LSL-ReaChR-mCitrine mice, 1

Emx1-IRES-Cre x Ai35D mouse, 2 Emx1-IRES-Cre x Camk2a-tTa x Ai79 mice, and 2 Emx1-IRES-Cre x

R26-CAG-LNL-GtACR1-ts-FRed-Kv2.1 mice. 5 PV-IRES-Cre mice were used to drive photoinhibition

using Cre-dependent ChR2 virus injections. 1 Emx1-IRES-Cre x Rosa26-LSL-H2B-mCherry mouse and

1 Emx1-IRES-Cre x Rosa-CAG-LSL-H2B-GFP mouse (gift from Josh Huang, Cold Spring Harbor Labo-

ratory) were used for photobleaching experiments.

All procedures were in accordance with protocols approved by the Institutional Animal Care and

Use Committees at Baylor College of Medicine (protocol AN7012) and Janelia Research Campus

(protocol 14–115). All surgical procedures were carried out aseptically under 1–2% isoflurane anes-

thesia. Buprenorphine (0.5 mg/kg) or Sustained Release Buprenorphine (1 mg/kg) was used for pre-

and post-operative analgesia. Ketoprofen (5 mg/kg) or Sustained Release Meloxicam (4 mg/kg) was

used at the time of surgery and post-operatively to reduce inflammation.

Generation of transgenic GtACR mice
Targeting vector, Rosa26-CAG-LNL-GtACR1-ts-FusionRed-Kv2.1C-WPRE-polyA, was derived from

AAV.CamKIIa.GtACR1-ts-FRed-Kv2.1.WPRE (Mahn et al., 2018) and a standard Rosa26 backbone

(Dymecki and Kim, 2007; Madisen et al., 2012; Soriano, 1999). The targeting vector DNA was

electroporated into ES cells and the chimeric mice were generated using successfully targeted ES

cell clones. GtACR1 expression was evaluated both by native fluorescence and functional assays.

Rosa26-CAG-LNL-GtACR1-ts-FRed-Kv2.1 mice were submitted to The Jackson Laboratory (stock

#033089).

Surgery
Mice were prepared for photostimulation and electrophysiology with a clear-skull cap (Guo et al.,

2014b) and a headpost (Guo et al., 2014a). The scalp and periosteum over the dorsal surface of the

skull were removed. A layer of cyanoacrylate adhesive (Krazy glue, Elmer’s Products Inc) was directly

applied to the intact skull. A custom made headbar was placed on the skull (approximately over

visual cortex) and cemented in place with clear dental acrylic (Lang Dental Jet Repair Acrylic; Part#

1223-clear). A thin layer of clear dental acrylic was applied over the cyanoacrylate adhesive covering

the entire exposed skull, followed by a thin layer of clear nail polish (Electron Microscopy Sciences,

Part# 72180).

In some PV-IRES-Cre mice ChR2 was introduced by injecting 50 nL of AAV2/5-hSyn1-FLEX-

hChR2-tdTomato (Addgene plasmid 41015, Janelia Molecular Biology Shared Resource)

(O’Connor et al., 2013) into the barrel cortex (bregma posterior 1.5 mm, lateral 3.5 mm) at two

depths (400 and 800 mm), followed by implantation of the headbar. The injection was made through

the thinned skull using a custom, piston-based, volumetric injection system. Glass pipettes (Drum-

mond) were pulled and bevelled to a sharp tip (outer diameter of 30 mm) (Petreanu et al., 2009).
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Pipettes were back-filled with mineral oil and front-loaded with viral suspension immediately before

injection.

For silicon probe recordings, a small craniotomy was made over the recording site in mice already

implanted with the clear-skull cap and headpost (see Electrophysiology). The dental acrylic and bone

were thinned using a dental drill. The remaining thinned bone was carefully removed using a bent

forceps. A separate, smaller craniotomy (diameter, approximately 600 mm) was made through the

headpost bar for ground wires.

Photostimulation
Light from a 473 nm laser (DHOM-M-473–200, UltraLaser) or a 594 nm laser (Cobolt Inc, Colbolt

Mambo 100) or a 635 nm laser (MRL-III-635L-100mW, Changchun New Industries Optoelectronics

Technology) was controlled by an acousto-optic modulator (AOM; MTS110-A3-VIS, Quanta Tech;

extinction ratio 1:2000; 1ms rise time) and a shutter (Vincent Associates), coupled to a 2D scanning

galvo system (GVSM002, Thorlabs), then focused onto the brain surface (Guo et al., 2014b). The

laser at the brain surface had a Gaussian profile with a beam diameter of 400 mm at 4s. We tested

photoinhibition in barrel cortex (bregma posterior 1.5 mm, 3.5 mm lateral), anterior lateral motor

cortex (ALM, bregma anterior 2.5 mm, 1.5 mm lateral) and primary motor cortex (bregma anterior

0.5 mm, 1.5 mm lateral). Photoinhibition was similar across different regions.

To prevent the mice from detecting the photostimulus, a ‘masking flash’ (40 � 1 ms pulses at 10

Hz) was delivered using a LED driver (Mightex, SLA-1200–2) and 470 nm or 590 nm or 627 nm LEDs

(Luxeon Star). The masking flash began before the photostimulus started and continued through the

end of the epoch in which photostimulation could occur.

The standard photostimulus had a near sinusoidal temporal profile (40 Hz) with a linear attenua-

tion in intensity over the last 100–200 ms (duration: 1.3 s including the ramp). This temporal profile

was chosen to minimize rebound activity based on pilot experiments. In some cases, we also used a

constant photostimulus without ramp (Figure 1F). For photostimulation in Emx1-IRES-Cre x

Camk2a-tTa x Ai79 mice, the photostimulus duration was 400 ms, including a 100 ms ramp. In the

experiments presented in Figure 12 we also tested other photostimulus durations (0.5, 1, 2, and 4 s

including a 200 ms ramp). The photostimuli were delivered at approximately 7 s intervals. The power

and locations of photostimulation were chosen randomly. Because we used a time-varying photosti-

muli the power values reported here reflect the time-averaged power.

For photostimulation experiments testing the paradoxical effect (Figure 10), the laser at the brain

surface had a diameter of 2 mm at 4s. We tested paradoxical effect in barrel cortex (bregma poste-

rior 1.5 mm, 3.5 mm lateral). To calculate light intensity (mW/mm2) reported in Figure 10, laser

power was divided by the area of the laser beam: light intensity = power/2pr2, where r = 1 mm.

Photobleaching
We measured photobleaching in vivo to characterize the spatial profile of light intensity at two dif-

ferent wavelengths (473 nm and 594 nm, Figure 3). In transgenic mice expressing GFP (for 473 nm)

or mCherry (for 594 nm) in the nuclei of cortical pyramidal neurons, photobleaching was induced by

a stationary beam and prolonged (10 min) illumination at different laser powers through the clear-

skull cap. Nuclear fluorescence was imaged in fixed tissue sections using a confocal microscope

(Zeiss LSM 510). Multiple sections were imaged around each photobleaching site.

GFP or mCherry fluorescence was measured in regions of interest (ROIs) corresponding to indi-

vidual nuclei (Figure 3A). For each ROI, we calculated a DF by subtracting a baseline ROI intensity,

F0, from the mean fluorescence. F0 was computed as the average intensity of all ROIs > 700 mm

away from the laser center. For red (594 nm) light, photobleaching was relatively complete close to

the center of the photostimulus (Figure 3F); we therefore used only ROIs with a lateral distance of >

700 mm to compute F0. For low amount of bleaching (-DF/ F0<<1), DF/ F0=f(r) = - k I(r) T, where I(r)

is the light intensity in the tissue, and T is the duration of illumination. The constant k is related to

the bleaching cross section of the fluorescent molecule.

For best contrast the bleaching close to the center of the laser beam was greater than 50%. We

therefore measured DF/ F0 near the laser center (within 100 mm for GFP, 400 mm for mCherry) for dif-

ferent light doses (Figure 3C). The relationship between light dose and bleaching in general is expo-

nential, f(r) = �1 +exp(- k I(r) T). The distribution of light intensity was thus computed as I(r) = -
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constant * ln(f(r) + 1). The constant k was derived from empirical data (Figure 3C), with separate fits

for GFP (473 nm light) and mCherry (594 nm light). Figure 3D and G show the distribution of light

derived from f(r) at 200 mW x min light dose. We picked this power because of the high contrast

(i.e. large DF/ F0 near the laser center). Similar spatial profiles were obtained at lower light doses.

Electrophysiology
All recordings were carried out while mice were awake but non-behaving. Extracellular spiking activ-

ity was recorded using silicon probes. We used NeuroNexus probes with four shanks (at 200 or 400

mm spacing) and recording sites spaced 100 or 200 mm apart (eight sites per shank, P/N A4 � 8–5

mm-100-200-177, A4 � 8–5 mm-100-200-413, A4 � 8–5 mm-200-200-177, A4 � 8–5 mm-200-200-

413, and, A4 � 8–5 mm-100-400-177). Silicon probes were connected to a headstage (Intan Technol-

ogy) that multiplexed the 32-channel voltage recording into two analog signals (fabricated at Janelia

Farm Research Campus, Brian Barbarits, Tim Harris). The multiplexed analog signals were recorded

on a PCI6133 board at 312.5 kHz (National instrument) and digitized at 14 bit. The signals were

demultiplexed into the 32 voltage traces at the sampling frequency of 19531.25 Hz and stored for

offline analyses in a custom software spikeGL (C. Culianu, Anthony Leonardo, Janelia Farm Research

Campus). For recordings in Emx1-IRES-Cre x R26-CAG-LNL-GtACR1-ts-FRed-Kv2.1 mice, we used

64-channel Cambridge NeuroTech silicon probes (H2 acute probe, 250 mm spacing, 2 shanks). The

64-channel voltage signals were multiplexed, recorded on a PCI6133 board (National Instrument)

and digitized at 400 kHz (14 bit). The signals were demultiplexed into 64 voltage traces sampled at

25 kHz and stored for offline analysis. The headstage was mounted on a motorized micromanipula-

tor (MP-285, Sutter Instrument).

A 1 mm diameter craniotomy over the recording site was made prior to the recording sessions. In

PV-IRES-Cre mice prepared for ChR2 virus mediated photoinhibition, a larger craniotomy (2 mm x 1

mm) was made around the injection site. The position of the craniotomy was guided by stereotactic

coordinates for recordings in ALM (bregma anterior 2.5 mm, 1.5 mm lateral), motor cortex (bregma

anterior 0.5 mm, 1.5 mm lateral), or barrel cortex (bregma posterior 1.5 mm, 3.5 mm lateral).

Prior to each recording session, the tips of the silicon probe were brushed with DiI in ethanol

solution and allowed to dry. The surface of the craniotomy was kept moist with saline. The silicon

probe was positioned on the surface of the cortex and advanced manually into the brain at ~3 mm/s,

normal to the pial surface. The depth of the electrode tip ranged from 749 to 1000 mm below the

pial surface. The electrode depth was inferred from manipulator depth and verified with histology.

To minimize pulsation of the brain, a drop of silicone gel (3–4680, Dow Corning, Midland, MI) was

applied over the craniotomy after the electrode was in position. The tissue was allowed to settle for

several minutes before the recording was started.

Histology
After the conclusion of recording experiments, mice were perfused transcardially with PBS followed

by 4% PFA/0.1 M PB. The brains were fixed overnight and sectioned. Coronal sections (100 mm)

were cut and images of DiI labeled recording tracks were acquired on a macroscope (Olympus

MVX10). Electrode tracks were compared to the manipulator depth readings (Guo et al., 2014b). In

Figure 4, the definition of cortical layer boundaries in barrel cortex was based on mouse brain atlas

(O’Connor et al., 2010).

Data analysis
The extracellular recording traces were band-pass filtered (300–6 kHz). Events that exceeded an

amplitude threshold (four standard deviations of the background) were subjected to manual spike

sorting to extract single-units (Guo et al., 2014b).

Our final data set comprised of 2638 single units (barrel cortex, 1158; ALM, 1105; M1, 375). For

each unit, its spike width was computed as the trough to peak interval in the mean spike waveform

(Figure 1B). We defined units with spike width <0.35 ms as FS neurons (366/2638) and units with

spike width >0.45 ms as putative pyramidal neurons (2206/2638). Units with intermediate values

(0.35–0.45 ms, 36/2638) were excluded from our analyses.

To quantify the strength of inactivation, we derived a ‘relative spike rate’. Relative spike rate was

computed for either individual neurons (Figures 1D, 4C and 10B) or for the entire neuronal
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populations. For each neuron, we computed its spike rate during the photostimulus and its baseline

spike rate (500 ms time window before photostimulus onset). For relative spike rate of individual

neurons, each neuron’s spike rate with photostimulation was normalized by dividing its baseline

spike rate. For relative spike rate of the neuronal population, the spike rates with photostimulation

were first averaged across the population (without normalization) and then normalized by dividing

the averaged baseline spike rate. The ‘relative spike rate’ reports the total fraction of spiking output

under photostimulation.

To quantify the lateral spread of inactivation, we computed relative spike rate at different distan-

ces from the photostimulus, and the distance at which inactivation is half of max, that is its strength

at the photostimulus center (Figure 5J, ‘radius, half-max’). In Figure 8, we quantified the half-max

radius of photoinhibition when the relative spike rate is 0.1 at laser center (i.e. 90% activity reduc-

tion). Bootstrap was performed over neurons to establish 90% confidence intervals around the spa-

tial spread estimates in Figure 8. For each round of bootstrapping, repeated 2000 times, we

randomly sampled with replacement neurons in the dataset. We computed the half-max radius on

the resampled datasets. The bootstrap created a distribution of half-max radius estimates. The confi-

dence interval in Figure 8 encompassed 90% of the observed half-max radiuses from bootstrap.

To quantify the time course of inactivation, we computed the average population Peristimulus

Time Histogram (PSTH) aligned to photostimulus onset (Figure 11). To quantify the onset time of

inactivation, we estimated the time when the pyramidal neuron PSTH reached its minimum post

stimulus onset (18.4 ± 1.6 ms, mean ± s.e.m.). To quantify the earliest time inactivation occurred

(3.95 ± 1.7 ms), we estimated the first time bin (10 ms bin) in which the spike rate differed signifi-

cantly (p<0.05 two-tailed t-test) from baseline. To quantify photoinhibition lag from excitation of the

interneurons, we computed the earliest time bin in which FS neuron PSTH significantly deviated from

baseline spike rate (1.05 ± 0.2 ms) and subtracted this onset time from the photoinhibition onset

time (lag: 2.90 ms).

Bootstrap was performed over neurons to obtain standard error of the mean. For each round of

bootstrapping, repeated 1000–10000 times, we randomly sampled with replacement neurons in the

dataset. We computed the means of the resampled datasets. The standard error of the mean was

the standard deviation of the mean estimates from bootstrap.

Bootstrap was also used to evaluate whether ChR2-assisted photoinhibition had significantly

faster onset latency than ReaChR-assisted photoinhibition (Figure 11C). The neuronal dataset was

re-sampled with replacement, and the onset latencies were recalculated from the resampled data-

sets. The p-value reported is the fraction of times when bootstrap produced a resampled dataset in

which ReaChR-assisted photoinhibition had a faster onset latency than ChR2-assisted photoinhibi-

tion, (one-tailed test against the null hypothesis that ChR2-assisted photoinhibition had significantly

faster onset latency).

To quantify rebound activity, for each neuron, we computed spike rate in a 500 ms window after

photostimulus offset, subtract the baseline spike rate (computed in a 500 ms time window before

photostimulus onset), and normalized this spike rate difference to the baseline spike rate. The

rebound activity (i.e. activity increase from baseline) was quantified as the percentage of baseline

spike rate. The rebound activity was averaged across the recorded population (Figure 12C–D).

Statistics
The electrophysiology sample sizes are similar to sample sizes used in the field: more than 100 units

per brain region. No statistical methods were used to determine sample size. All key results were

replicated in multiple mice. Mice were allocated into experimental groups according to strain and

brain regions tested. Unless stated otherwise, the investigators were not blinded to allocation during

experiments and outcome assessment. During spike sorting, experimenters cannot tell photostimula-

tion conditions, so experimenters were blind to conditions. Statistical comparisons using t-tests and

bootstrap are described in detail in sections above.

Data and code availability
Rosa26-CAG-LNL-GtACR1-ts-FRed-Kv2.1 mice are available at The Jackson Laboratory (stock

#033089). Electrophysiology data and code used are available at Github (https://github.com/

Li et al. eLife 2019;8:e48622. DOI: https://doi.org/10.7554/eLife.48622 24 of 31

Research article Neuroscience

https://github.com/NuoBCM/PhotoinhibitionCharaterization
https://doi.org/10.7554/eLife.48622


NuoBCM/PhotoinhibitionCharaterization; copy archived at https://github.com/elifesciences-publica-

tions/PhotoinhibitionCharaterization).
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