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Abstract Extrinsic cues trigger the local translation of specific mRNAs in growing axons via cell

surface receptors. The coupling of ribosomes to receptors has been proposed as a mechanism

linking signals to local translation but it is not known how broadly this mechanism operates, nor

whether it can selectively regulate mRNA translation. We report that receptor-ribosome coupling is

employed by multiple guidance cue receptors and this interaction is mRNA-dependent. We find

that different receptors associate with distinct sets of mRNAs and RNA-binding proteins. Cue

stimulation of growing Xenopus retinal ganglion cell axons induces rapid dissociation of ribosomes

from receptors and the selective translation of receptor-specific mRNAs. Further, we show that

receptor-ribosome dissociation and cue-induced selective translation are inhibited by co-exposure

to translation-repressive cues, suggesting a novel mode of signal integration. Our findings reveal

receptor-specific interactomes and suggest a generalizable model for cue-selective control of the

local proteome.

Introduction
mRNA localization and local translation are major determinants of the local proteome

(Zappulo et al., 2017). This seems particularly important for morphologically complex cells such as

neurons, where the axonal sub-compartment and its growing tip, the growth cone, often far away

from the cell body, rapidly perform specialized functions (Holt and Schuman, 2013). During neuro-

nal wiring, specific interactions between extrinsic cues and receptors mediate guidance of axons to

their proper target area and axon branching in this area (Stoeckli, 2018; Manitt et al., 2009;

Marshak et al., 2007; Cioni et al., 2013). The rapid axonal responses to several guidance cues

require local protein synthesis (Jung et al., 2012; Campbell and Holt, 2001). For example, attrac-

tive guidance cues, such as Netrin-1, trigger axonal translation of mRNAs encoding proteins that

facilitate actin assembly, whereas repulsive cues trigger the local synthesis of cytoskeletal proteins

involved in actin disassembly (Leung et al., 2006; Wu et al., 2005; Piper et al., 2006). This cue-spe-

cific mode of translation enables growth cones to steer differentially – towards or away – from the

source of such cues (Lin and Holt, 2007; Lin and Holt, 2008). Unbiased detection of newly synthe-

sized proteins in the axon compartment has revealed further complexity showing that different guid-

ance cues stimulate the regulation of distinct signature sets of >100 axonal nascent proteins within

just 5 min, many of which are not cytoskeletal-related (Leung et al., 2006; Yao et al., 2006;

Wu et al., 2005; Cagnetta et al., 2018; Cioni et al., 2018). Several mechanisms are known to
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control different aspects of axonal translation, including microRNA regulation (Bellon et al., 2017),

mRNA modification (Yu et al., 2018), modulation of the phosphorylation of eukaryotic initiation fac-

tors (Cagnetta et al., 2019), RNA-binding protein (RBP) phosphorylation (Sasaki et al., 2010;

Lepelletier et al., 2017; Hüttelmaier et al., 2005) and receptor-ribosome coupling

(Tcherkezian et al., 2010). The latter is a particularly direct and attractive mechanism to link cue-

specific signalling to differential mRNA translation. However, this mechanism has been shown only

for the Netrin-1 receptor, deleted in colorectal cancer (DCC), in commissural axon growth cones and

HEK293 cells (Tcherkezian et al., 2010). It is unknown whether receptor-ribosome coupling is a

widespread mechanism used by different receptors and in different cell types, and whether it regu-

lates selective local translation.

Here, we show in the axonal growth cones of retinal ganglion cells (RGCs) that receptor-ribosome

coupling is used by several different guidance receptors known to trigger local protein synthesis

(DCC, Neuropilin-1 and Robo2, but not EphB2), indicative of a common mechanism. Interestingly,

the receptor-ribosome interaction is mRNA-dependent and immunoprecipitation (IP) reveals that

distinct receptors associate with specific RNA-binding proteins (RBPs) and subsets of mRNAs. Upon

cue-stimulation, ribosomes dissociate from their receptors within 2 min and receptor-specific mRNAs

are selectively translated. We also find that co-stimulation with EphrinA1 blocks the Netrin-1-induced

DCC receptor-ribosome dissociation and selective translation in axons, suggesting a new regulatory

mechanism for integrating different signals. Together, this study provides evidence that receptor-

ribosome coupling is a common mechanism across different receptors and cell types, and suggests

that receptor-specific interactomes act as a hub to regulate the localized and selective cue-induced

mRNA translation.

Results

Multiple guidance cue receptors interact with ribosomes
In retinal axons, Netrin-1 and Sema3A mediate growth cone steering and branching (Campbell and

Holt, 2001; Manitt et al., 2009; Campbell et al., 2001). Specifically, the rapid chemotropic

responses to Netrin-1 and Sema3A are mediated, at least in part, by local translation (Campbell and

Holt, 2001). The Netrin-1 receptor, DCC, was previously reported to associate with ribosomes in

spinal commissural axon growth cones (Tcherkezian et al., 2010). We first asked whether the inter-

action of DCC with ribosomes is conserved in a different system and cell type, and explored the pos-

sibility that the Sema3A receptor, Neuropilin-1 (Nrp1), also interacts with ribosomes in this system.

To do this, we performed immunoprecipitation (IP) of endogenous DCC and Nrp1 from Xenopus

laevis embryonic brains and eyes followed by mass-spectrometry (LC-MS/MS) analysis of eluted sam-

ples. Each IP was performed in triplicate and after raw data processing using MaxQuant software,

we determined statistically significant interactors of DCC and Nrp1 compared to an IgG control pull-

down using label-free (LFQ) intensities and Perseus software analysis (Figure 1A). Gene-ontology

(GO) enrichment analysis revealed that ‘structural constituent of ribosomes’ appeared as the most

prominently enriched category in both DCC and Nrp1 pulldowns, indicating that both receptors can

interact with ribosomal proteins (Figure 1B). Specifically, 75 out of 79 ribosomal proteins (94.9%)

were detected in the DCC and Nrp1 pulldowns. Of these, 51 and 33 RPs were identified as statisti-

cally enriched interactors for Nrp1 and DCC, respectively, compared to IgG control pulldowns.

There was no bias towards small or large ribosomal subunit proteins (Figure 1A, red dots). The GO

analysis also revealed the presence of other groups shared between the receptors, such as ‘vesicle-

mediated transport’ (Figure 1B). Interestingly, some categories of proteins were enriched for only

one of the receptors, for example the ‘phosphoprotein phosphatase activity’ GO term was signifi-

cantly enriched only in the DCC pulldown and the ‘barbed-end actin filament capping’ GO term was

enriched only in the Nrp1 pulldown (Figure 1B). To confirm the interaction between receptors and

ribosomal proteins, we performed Western blot (WB) analysis after IP and validated that both DCC

and Nrp1 interact with small (40S) and large (60S) ribosomal subunit proteins (Figure 1C–D). These

interactions appear to be conserved, as endogenous IP from the human neuronal cell line SH-SY5Y,

which expresses both DCC and Nrp1, also shows ribosomal protein co-precipitation after pulldown

of the endogenous receptor (Figure 1—figure supplement 1A–B).
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Figure 1. Multiple guidance cue receptors interact with ribosomes. (A) Volcano plots showing statistically enriched proteins in DCC-IP and Nrp1-IP

samples identified by permutation-based FDR-corrected t-test based on three biological replicates. The LFQ intensity of the DCC or Nrp1 pulldowns

over IgG pulldowns are plotted against the -log10 p-value. FDR < 0.05; S0 = 2. (B) Gene enrichment analysis of statistically enriched proteins in the

DCC and Nrp1 pulldown samples. The values in each circle denotes protein count. (C–F) Western blot validation of RP co-immunoprecipitation with

Figure 1 continued on next page
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In addition to DCC and Nrp1, Roundabout 2 (Robo2) triggers local protein synthesis after binding

to the guidance cue Slit2 (Piper et al., 2006). Therefore, we asked whether Robo2 also interacts

with ribosomal proteins. WB after IP from Xenopus embryonic brains and eyes or SH-SY5Y cells

showed that Robo2 also interacts with ribosomal proteins of both subunits (Figure 1E, Figure 1—

figure supplement 1C). We then looked at EphB2, as growth cone collapse mediated by EphrinB,

the ligand for this receptor, is not mediated by local protein synthesis (Mann et al., 2003). In this

case, we could not detect co-IP of ribosomal proteins with EphB2 in Xenopus embryonic brains and

eyes, indicating that not all guidance receptors interact with ribosomal proteins (Figure 1F), and

suggesting that only receptors that require local protein synthesis for their action on growth cones

are coupled to ribosomes.

To confirm that receptors bind to ribosomes or ribosomal subunits and not free ribosomal pro-

teins, we isolated RNA after IP and performed quantitative-RT-PCR (qPCR) for 18S (40S small ribo-

somal subunit) and 28S (60S large ribosomal subunit) ribosomal RNA (rRNA), which should be

present only in intact ribosomal subunits in the cytoplasm. Consistent with the WB results, DCC,

Nrp1 and Robo2, but not EphB2, exhibit a significant enrichment of both 18S rRNA and 28S rRNA

compared to an IgG control pulldown in Xenopus brains (Figure 1G–J), and in SH-SY5Y cells in the

case of DCC and Nrp1 (Figure 1—figure supplement 1D–E). Collectively, these findings reveal that

multiple receptors known to trigger local protein synthesis can associate with ribosomal subunits.

Guidance cue receptors associate with ribosomes in a mRNA-
dependent manner
We next examined the co-sedimentation profiles of DCC and Nrp1 in Xenopus embryonic brains

and eyes after sucrose gradient purification of ribosomes in order to see if the receptors were mostly

associated with ribosomal subunits, monosomes or polysomes. Consistent with previous findings

(Tcherkezian et al., 2010), DCC was prominent in 40S, 60S and 80S fractions but not in polysomal

fractions (Figure 2—figure supplement 1A). Nrp1, however, was found in 40S, 60S and 80S frac-

tions, as well as in polysomal fractions (Figure 2—figure supplement 1A), suggesting a possibly dif-

ferent association mechanism or a different translational status of the receptor-bound ribosomes.

Both DCC and Nrp1 were also present in ribosome-free fractions indicating that not all receptor

molecules are associated with ribosomes (Figure 2—figure supplement 1A,C). EDTA treatment,

which dissociates the monosomes/polysomes into separate ribosomal subunits (Simsek et al.,

2017), shifted both DCC and Nrp1 to lighter fractions, supporting a valid association with ribosomes

(Figure 2—figure supplement 1B,C).

We used qPCR to investigate this association further. When IP samples were treated with EDTA

before elution, the enrichment of 18S and 28S rRNA after receptor pulldown was significantly

decreased for both DCC and Nrp1 (Figure 2A). A possible explanation for this decrease is that DCC

and Nrp1 interact mainly with 80S ribosomes (Tcherkezian et al., 2010). Another possibility is that

the binding of ribosomes to receptors is mRNA-dependent. To test the latter hypothesis, we treated

the receptor pulldown samples with RNase A/T1, which digests mRNAs and releases any factors

bound to ribosomes via mRNA (Simsek et al., 2017). The concentration of RNase A/T1 used here

largely preserves the integrity of ribosomes, as evidenced by the co-sedimentation profiles that

show successful conversion of polysomes into monosomes, increasing the monosomal (80S) peak

(Figure 2—figure supplement 1D), though we cannot exclude that it may still partially cleave rRNA.

The significant decrease in the co-precipitation of 18S and 28S rRNA with receptors in these condi-

tions suggests that mRNA is important for the association of 80S ribosomes with receptors

(Figure 2A). Consistent with these results, Western blot analysis of IP samples treated with RNase

A/T1 or EDTA after pulldown confirms the decrease in ribosomal proteins for both DCC and Nrp1

Figure 1 continued

DCC, Nrp1 and Robo2 but not with EphB2. Each Western blot was repeated 2 to 4 times, representative images are shown. (G–J) Relative 18S and 28S

ribosomal RNA abundance after control (IgG) pulldown or receptors pulldowns shows enrichment of rRNA in DCC, Nrp1, and Robo2 but not EphB2

pulldowns (unpaired two-tailed t-test; three biological replicates). Bars indicate means, error bars indicate standard deviation; *p<0.05.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Multiple guidance cue receptors interact with ribosomes in SH-SY5Y cells.
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Figure 2. Receptor-ribosome coupling is mRNA dependent and DCC and Nrp1 bind to specific RBPs and mRNAs. (A) Relative 18S and 28S ribosomal

RNA abundance after control (IgG) pulldown or receptors pulldowns with or without EDTA or RNase A/T1 treatments (two-way ANOVA with

Bonferroni’s multiple comparisons test; three biological replicates; Bars indicate mean, error bars indicate standard deviation; ***p<0.0001). (B) Western

blot analysis and quantification of ribosomal proteins after DCC and (C) Nrp1 pulldowns. (two-way ANOVA with Bonferroni’s multiple comparisons test;

Figure 2 continued on next page
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(Figure 2B,C), while the amounts of DCC and Nrp1 that precipitated were unaffected by the treat-

ment conditions (Figure 2B–C). Together, these results suggest that the interaction of receptors

with ribosomes is likely mediated through mRNA.

DCC and Nrp1 bind to specific RNA-binding proteins
The mRNA-dependency of the receptor-ribosome interaction could be explained by mRNAs directly

mediating the binding of receptors to ribosomes. Another possibility is that RNA binding proteins

are key intermediaries in this binding and that mRNAs have a secondary role. Our MS analysis

revealed that several RBPs are significantly enriched after DCC or Nrp1 pulldown (Figure 2D). Of 22

RBPs pulled down with DCC and 37 RBPs pulled down with Nrp1, only 11 are shared between the

two receptors (Figure 2D). Several RBPs are significantly enriched in only one of the two receptor

IPs. For example, Staufen1 is significantly enriched after Nrp1 IP, but not DCC IP, whereas

hnRNPA2B1 is only detected after DCC IP (Figure 2D). This preferential RBP-receptor binding in

axonal growth cones was also seen using dual immunocytochemistry with antibodies against DCC

and Nrp1 and the RBPs Staufen1 and hnRNPA2B1 (Figure 2E–F). DCC co-localized with hnRNPA2B1

to a higher degree than with Staufen1 (Figure 2E). Conversely, Nrp1 showed a higher degree of co-

localization with Staufen1 compared to hnRNPA2B1 (Figure 2F). RNAse A/T1 treatment was then

used to test whether mRNA affects these associations. Western blot quantification after pulldown

showed that the interaction of Staufen1 with Nrp1 was partly decreased by RNAse A/T1 treatment,

suggesting that mRNA may stabilize the interaction between receptors and RBPs (Figure 2—figure

supplement 1E). Together with our evidence implicating mRNA in the association of receptors with

ribosomes, these results are consistent with a model in which receptors associate with specific RBPs,

which bind specific mRNAs, and these mRNAs, in turn, recruit ribosomes.

DCC and Nrp1 bind to specific subsets of mRNAs
Next, we examined if and which mRNAs can associate with DCC and Nrp1 by performing RNA-

sequencing (RNA-seq) on RNAs isolated after DCC and Nrp1 IP. We used a human neuronal cell

line, SH-SY5Y, for these experiments in order to rule out that any detected difference in the mRNAs

is due to the expression of DCC and Nrp1 in different cell types. Co-precipitation of RNA was

observed in DCC and Nrp1 pulldowns but not in IgG control pulldowns (Figure 2—figure supple-

ment 1F). A distance matrix analysis revealed that the experimental replicates clustered together for

each receptor and we observed a distinct signature of detected mRNAs between DCC, Nrp1 or

whole lysate input samples (Figure 2—figure supplement 1G). Differential expression analysis

revealed that DCC and Nrp1 each differentially bind to specific subsets of mRNAs, with 541 mRNAs

differentially binding between DCC and Nrp1 (158 mRNAs for DCC versus 383 mRNAs for Nrp1)

(Figure 2G). Of the highly abundant detected mRNAs (FPKM >100 and FPKM >1000), ~41%

and ~70% respectively were differential between DCC and Nrp1, whilst with the low abundant

detected mRNAs (FPKM 1–10), only ~5% were differential between DCC and Nrp1. GO enrichment

analysis of both all and only high abundance (FPKM >100) differentially expressed mRNAs showed

the receptor-specific enrichment of mRNAs involved in different processes (Figure 2—figure

Figure 2 continued

three biological replicates; Bars indicate mean, error bars indicate standard deviation; **p<0.01; ***p<0.0001). (D) Hierarchically-clustered heatmap of

detected RBPs after DCC and Nrp1 pulldown. LFQ intensities are plotted for each IP-MS replicate. (E) Mander’s overlap coefficients analysed using

dual immunohistochemistry of DCC and Staufen1 or hnRNPA2B1 in axonal growth cones (unpaired two-tailed t-test; three biological replicates;

individual data points are shown, error bars indicate SEM; p=0.03913). (F) Mander’s overlap coefficients analysed using dual immunohistochemistry

Nrp1 and Staufen1 or hnRNPA2B1 in axonal growth cones (unpaired two-tailed t-test; three biological replicates; individual data points are shown, error

bars indicate SEM; p=0.00161). (G) Volcano plot showing differential expression analysis for DCC and Nrp1 pulldowns. (H) Enrichment analysis plot of

known RBP targets of Staufen1 and hnRNPA2B1 detected in RNA-sequencing data after DCC and Nrp1 pulldown (individual data points are shown,

error bars indicate standard deviation, Mann-Whitney test, Wilcoxon rank sum test DCC versus Nrp1; p=0.001511).

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Spreadsheet containing all Manders Overlap Coefficient values for each axonal growth cone in Figure 2E and F.

Source data 2. Spreadsheet containing RNA-sequencing analysis of DCC and Nrp1 bound mRNAs and GO analysis of high abundant (FPKM >100)

detected mRNAs for DCC and Nrp1.

Figure supplement 1. Polysome fractionation analysis, RNase sensitivity of Nrp1-Staufen1 interaction and additional RNA-seq analyses.
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supplement 1H,I and Figure 2—source data 2). For the high abundance mRNAs, GO terms that

were associated with the mRNAs pulled down with DCC included ‘cell-cell adhesion’ and ‘protein

targeting, while ‘translation’ and ‘small GTPase mediated signal transduction’ were associated with

Nrp1.

Although these results rely on mRNA populations expressed in SH-SY5Y cells, which may differ

from mRNAs binding to these receptors in Xenopus RGC axons, we compared mRNAs that prefer-

entially bind to DCC or Nrp1 (Figure 2G) with known mRNA targets of several RBPs (Staufen1,

hnRNPA2B1, Elavl1 and Fxr1), which were identified by previous CLIP studies in other systems

(Lebedeva et al., 2011; Martinez et al., 2016; Sugimoto et al., 2015; Ascano et al., 2012). In par-

ticular, we focused on Staufen1 and hnRNPA2/B1 because our proteomic analysis revealed that

Staufen1 is enriched after Nrp1 pulldown compared to DCC pulldown and hnRNPA2B1 was only

detected after DCC pulldown (Figure 2D). The analysis revealed significant enrichment of known tar-

gets of Staufen1 and hnRNPA2B1 in Nrp1 versus DCC pulldown, respectively (Mann-Whitney U test,

Wilcoxon rank sum test; p=0.001511) (Figure 2H). Overall, the known targets of the 4 RBPs tested

(Staufen1, hnRNPA2B1, Elavl1 and Fxr1) can account for 41.1% of the significantly enriched DCC-

precipitated RNAs and for 43.1% of the significantly enriched Nrp1-precipitated mRNAs. Collec-

tively, the results support a model where receptor-specific RBPs mediate the differential association

of mRNAs to receptors.

Receptor-ribosome coupling occurs in RGC axonal growth cones
As our IP experiments were performed in whole brain lysates (Figure 1), we next searched for evi-

dence that these interactions occur in retinal growth cones. To begin to address this, we cultured

eye primordia from Xenopus embryos and performed immunocytochemistry and expansion micros-

copy (Chen et al., 2015) on retinal axons using antibodies against the intracellular domain of DCC

and a ribosomal protein (Figure 3A). DCC and RPL5/uL18 partially co-localized in retinal growth

cones and filopodia (Figure 3A, white arrowheads). Similarly, RPS3A/eS1 co-localized with Nrp1 in

retinal growth cones (Figure 3B, white arrowheads). Quantification of co-localization in expanded

growth cones indicated a positive association between DCC and RPL5/uL18 (Pearson’s

correlation = 0.4316 ± 0.011, n = 73) and Nrp1 and RPS3A/eS1 (Pearson’s

correlation = 0.6727 ± 0.014, n = 72) (Figure 3—figure supplement 1A). To show close association

of receptors and ribosomes in axonal growth cones, we employed the Proximity Ligation Assay

(PLA) (Söderberg et al., 2006), modified for use on retinal axons (Yoon et al., 2012), which reports

signal when the spatial coincidence of two proteins of interest is closer than 40 nm by using the

respective antibodies. As a negative control, PLA was performed using the anti-DCC antibody and

an IgG control antibody. This control generated a very low amount of background PLA signal

(Figure 3C, Figure 3—figure supplement 1B), while we detected abundant PLA signal between

DCC and RPL5/uL18, in line with previous findings (Konopacki et al., 2016), as well as with RPS4X/

eS4 or RPL10A/uL1 (Figure 3C, Figure 3—figure supplement 1B). Similarly, Nrp1 generated abun-

dant PLA signal together with RPS3A/eS1 or RPS23/uS12, with no detectable PLA signal in the nega-

tive control (Nrp1-IgG PLA) (Figure 3D). Given that EphB2 IP does not show any interaction with

ribosomal proteins in Xenopus brain and eyes (Figure 1F,J), we tested whether this is conserved in

retinal growth cones. Consistent with the IP results (Figure 1F,J) and with the EphB2-induced local

protein synthesis independent growth cone collapse (Mann et al., 2003), PLA between EphB2 and

RPL5/uL18 generated almost no detectable signal compared to DCC-RPL5/uL18 or Nrp1-RPS3A/

eS1 in growth cones (Figure 3E). To provide further evidence, we performed electron microscopy

on unstimulated axonal growth cones, and we observed a remarkable abundance of ribosomes in

growth cones (Figure 3F). Strikingly, ribosomes could be seen aligned in rows underneath the

plasma membrane (Figure 3F, Figure 3—figure supplement 1C–E), particularly in the regions in

closest contact with the culture substrate. Indeed, we observed rows of ribosomes within 50 nm of

the plasma membrane in 20 out of 22 axonal growth cones, and the presence of single ‘isolated’

ribosomes in the other two growth cones (Figure 3F, Figure 3—figure supplement 1C). The aver-

age distance between two neighboring ribosomes close to the plasma membrane in growth cones

was significantly larger than the distance between ribosomes in the cell soma (58.12 ± 19.68 nm,

n = 93 from 10 growth cones versus 23.05 ± 3.07 nm, n = 158 from five soma, p<0.00001)

(Figure 3G, Figure 3—figure supplement 1C,E), indicative of and consistent with monosomes bind-

ing to the intracellular portions of transmembrane receptors, such as DCC or Nrp-1.
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Figure 3. DCC and Nrp1 are in close proximity to ribosomes in axonal growth cones in a cue-dependent manner. (A) Expansion imaging shows partial

co-localization of DCC and (B) Nrp1 with ribosomal proteins (Scale bars, 5 mm). (C) Representative proximity ligation assay signal in axonal growth

cones between DCC and RPL5/uL18, RPS4X/eS4 or IgG control (Scale bars, 5 mm). (D) Representative proximity ligation assay signal in axonal growth

cones between Nrp1 and RPS3A/eS1, RPS23/uS12 or IgG control (Scale bars, 5 mm). (E) Representative PLA signal in axonal growth cones between

Figure 3 continued on next page
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Dissociation of ribosomes from receptors is triggered by extrinsic cues
and requires endocytosis
Tcherkezian et al. (2010) showed that ribosomes uncoupled from the DCC receptor in response to

extracellularly applied Netrin-1, stimulating local translation, suggesting a mechanism for the precise

spatiotemporal control of the proteome in subcellular compartments. Previous work has also shown

that stimulation with the guidance cues Netrin-1 and Sema3A that bind DCC and Nrp1, respectively,

triggers the remodelling of the axonal proteome within 5 min (Cagnetta et al., 2018). Therefore, we

first asked whether the association between receptors and ribosomal proteins is cue-sensitive.

Remarkably, the PLA signal between DCC and the ribosomal proteins RPL5/uL18 and RPS4X/eS4

decreased significantly in retinal axon growth cones after 2 min of Netrin-1 stimulation (Figure 3H),

suggesting a rapid dissociation of ribosomes from the receptor. It should be noted that, whereas

DCC protein level does not change in response to 5 min Netrin-1 stimulation, both RPL5/uL18 and

RPS4X/eS4 are up-regulated in response to 5 min Netrin-1 stimulation (Cagnetta et al., 2018), indi-

cating that the decrease in the PLA signal in response to Netrin-1 may be underestimated. In con-

trast to the DCC-RP PLA signal, the PLA signal between DCC and the RBP hnRNPA2B1 did not

decrease after 2 min of Netrin-1 stimulation, indicating that the receptor-RBP interaction is not

affected by cue stimulation (Figure 3—figure supplement 1F).

Extracellular Sema3A at a concentration of 150 ng/ml, which is known to affect local axonal trans-

lation (Manns et al., 2012; Nédelec et al., 2012), also triggers a significant decrease in the Nrp1-

RPS3A/eS1 and RPS23/uS12 PLA signal within 2 min (Figure 3I). Interestingly, when Sema3A is pre-

sented extracellularly at a higher concentration (700 ng/ml), it induces growth cone collapse that is

independent of protein synthesis (Nédelec et al., 2012; Manns et al., 2012). Puromycylation of

newly synthesized proteins in axon-only cultures and subsequent visualization and quantification of

immunofluorescence using an anti-puromycin antibody (Schmidt et al., 2009) in the presence of 700

ng/ml Sema3A shows no increase in global translation in growth cones (Figure 3—figure supple-

ment 1G). In line with this finding, stimulation with 700 ng/ml Sema3A does not cause a rapid

decrease in the Nrp1-RPS3A/eS1 PLA signal (Figure 3—figure supplement 1H). This suggested

that the dissociation of ribosomes from Nrp1 in response to Sema3A is intimately linked to rapid

and local protein synthesis. Importantly, the detected decrease in PLA signal is not due to changes

in Nrp1, RPS3A/eS1 and RPS23/uS12 protein levels as these do not change in response to 5 min

Sema3A stimulation (Cagnetta et al., 2018).

Next, we tested the specificity of the cue-induced dissociation of RPs from receptors by quantify-

ing the PLA signal between DCC and RPL5/uL18 after Sema3A stimulation and the PLA signal

between Nrp1 and RPS23/uS12 after Netrin-1 stimulation. In neither case did we observe a decrease

Figure 3 continued

EphB2 and RPL5/uL18 (left) and quantification of PLA signal in axonal growth cones compared to DCC-RPL5/uL18 or Nrp1-RPS23/uS12 (right) (Mann-

Whitney test; three biological replicates; bars indicate mean, error bars indicate SEM, ***p<0.0001; Scale bars, 5 mm). (F) EM image of an unstimulated

axonal growth cone showing ribosomes aligned in a row (red arrows) under plasma membrane (PM). Inset shows the growth cone at lower

magnification; the red box indicates the area shown in higher magnification. The section glances through the extreme surface of growth cone, where it

attaches to the culture dish, giving rise to areas that lack subcellular structure. (G) Distribution frequency of the inter-ribosome distance in nm of

ribosomes in axonal growth cones (n = 20) or in RGC soma (n = 5). All distances larger than 100 nm were pooled together. (H, I, J, K) Quantification of

PLA signal in cue-stimulated axonal growth cones relative to control (unpaired two-tailed t-test; bars indicate mean, error bars indicate SEM;

***p<0.0001; *p=0.0423; for n.s. in J p=0.3522; for n.s. in K, p=0.885). (L) Relative PLA quantification of DCC and RPL5/uL18 compared to control after

Dynasore pre-treatment (50 mM for 20 min), Netrin-1, or Netrin-1 + Dynasore (one-way ANOVA with Bonferroni’s multiple comparisons test; bars

indicate mean, error bars indicate SEM; p=0.001027 for Control vs. Netrin-1, p=0.000402 for Netrin-1 vs Netrin-1 + Dynasore, p=0.590377 for Control vs.

Dynasore, p=0.384848 for Control vs Netrin + Dynasore). For all PLA experiments, numbers in bars indicate total number of growth cones quantified

from at least three independent experiments.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Spreadsheet containing PLA counts and relative comparisons from each axonal growth cone in Figure 3E, all inter-ribosome distances

and distribution shown in Figure 3G, and all normalized PLA count values for each axonal growth cone in Figure 3H–L.

Figure supplement 1. DCC and Nrp1 are in close proximity to ribosomes in axonal growth cones in a cue-dependent manner.

Figure supplement 1—source data 1. Spreadsheet containing all Pearson’s correlation values for each expanded growth cone in Figure 3—figure

supplement 1A, all normalized PLA count values for each axonal growth cone in Figure 3—figure supplement 1F and H, and all normalized puromy-

cin intensity values for each axonal growth cone in Figure 3—figure supplement 1G.
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in PLA signal, confirming the ligand-receptor specificity of the cue-induced RP dissociation

(Figure 3J–K).

The receptor-RP dissociation in response to an extrinsic cue suggests that this may occur on the

plasma membrane but it is also possible that the dissociation happens intracellularly. Indeed, DCC

and Nrp1 receptors are known to be rapidly endocytosed after cue stimulation (1–2 min) in growth

cones (Piper et al., 2005) and we have recently identified the presence of ribosomal proteins on

axonal endosomes which serve as platforms for local translation (Cioni et al., 2019), raising the pos-

sibility that the observed dissociation between receptors and ribosomes may also take place on

endosomes. Therefore, we asked whether endocytosis plays a role in the cue-induced dissociation of

ribosomes from receptors. Indeed, we found that treatment with the inhibitor of endocytosis Dyna-

sore, a small GTPase inhibitor targeting dynamin (Macia et al., 2006), completely blocked the

Netrin-1-induced decrease in PLA signal between DCC and RPL5/uL18, indicating that endocytosis

is required for the receptor-ribosome dissociation (Figure 3L).

Together, these findings suggest that the rapid cue-specific dissociation of ribosomes in response

to extracellular guidance cues is shared among different receptors, is tightly linked to cue-induced

local translation-dependent responses, and requires endocytosis.

Integration of multiple cues can affect the cue-induced selective
translation of receptor-specific mRNAs
During axon pathfinding and branching, axons encounter multiple cues, such as EphrinB2 and

Netrin-1,and can integrate these cues by forming a complex between their respective receptors in a

ligand-dependent manner (Morales and Kania, 2017; Dudanova and Klein, 2013; Poliak et al.,

2015). The cue EphrinA1 has been reported to decrease local translation in hippocampal axons

(Nie et al., 2010) and the rapid local translation of the Translationally controlled tumor protein

(Tctp), which is up-regulated by Netrin-1 (Gouveia Roque and Holt, 2018). Therefore, we asked

whether co-stimulation with EphrinA1 and Netrin-1 alters the dissociation of ribosomes from DCC.

To address this question, we co-stimulated retinal axons with Netrin-1 and EphrinA1 and examined

receptor-ribosome coupling using the PLA approach. Whereas Netrin-1 induces a decrease in the

DCC-RPL5/uL18 PLA signal within 2 min, both Ephrin-A1 stimulation alone and co-stimulation with

Netrin-1 and EphrinA1 do not decrease the DCC-RPL5/uL18 PLA signal, indicating that the Netrin-1-

induced dissociation of ribosomes from DCC is blocked by co-stimulation with EphrinA1

(Figure 4A). By contrast, co-stimulation with EphrinA1 and Sema3A does not block the Sema3A-

induced decrease in the Nrp1-RPS23/uS12 PLA signal (Figure 4—figure supplement 1A). These

results reveal that integration of guidance cues can alter the receptor-ribosome dissociation, possi-

bly by structural changes of the interacting receptors (Morales and Kania, 2017; Dudanova and

Klein, 2013; Poliak et al., 2015).

Our data showing that EphrinA1 blocks the Netrin-1-induced ribosome dissociation from DCC,

suggest that EphrinA1 may inhibit the axonal translation induced by Netrin-1. To test this hypothe-

sis, we examined the effect of cue integration of Netrin-1 and EphrinA1 on both global and selective

local translation in growth cones. In the culture conditions used in this study (Höpker et al., 1999),

both Netrin-1 and EphrinA1 decrease global local translation in axons as measured by the puromycy-

lation assay in axon-only cultures (Figure 4B–C). Consistent with this result, both cues decrease

pERK1/2 levels (Figure 4—figure supplement 1B), an upstream activator of the TOR signalling path-

way, which is known to regulate axonal protein synthesis (Campbell and Holt, 2003).

Despite the decrease in global axonal translation, previous work has revealed that Netrin-1 can

induce the rapid selective translation of specific mRNAs (Cagnetta et al., 2018; Shigeoka et al.,

2019). The IP-RNA-seq data in human SH-SY5Y cells had revealed that DCC associates with mRNAs

encoding b-catenin (ctnnb1) and hnRNPH1 (hnrnph1) significantly more than with Nrp1. Interestingly,

ctnnb1 and hnrnph1 mRNAs have been detected in Xenopus retinal axons (Shigeoka et al., 2019)

and are selectively synthesised in response to 5 min Netrin-1 stimulation, but not Sema3A

(Cagnetta et al., 2018), indicating that receptor-specific mRNAs can underlie the cue-induced selec-

tive translation. To further test this, we examined whether these mRNAs associate with DCC also in

Xenopus brain and eyes by carrying out IP followed by qPCR. The results showed significant enrich-

ment of ctnnb1 and hnrnph1 mRNAs in DCC pulldown compared to an IgG pulldown, thus confirm-

ing their association with DCC (Figure 4D). Finally, quantification of immunofluorescence confirmed

that both b-catenin and hnRNPH1 protein levels increase in response to 5 min Netrin-1 stimulation,
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Figure 4. EphrinA1 co-stimulation blocks Netrin-1 induced receptor-ribosome dissociation and selective translation. (A) Relative PLA quantification of

DCC and RPL5/uL18 compared to control after Netrin-1, EphrinA1, or co-stimulation (one-way ANOVA with Bonferroni’s multiple comparisons test; bars

indicate mean, error bars indicate SEM; **p<0.01). (B, C) Puromycin QIF relative to control after Netrin-1, EphrinA1 or co-stimulation (one-way ANOVA

with Bonferroni’s multiple comparisons test; bars indicate mean, error bars indicate SEM; ***p<0.0001). (D) Relative mRNA quantification after DCC IP

Figure 4 continued on next page
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but not Sema3A (Figure 4E–H), in line with previous axonal translation findings (Cagnetta et al.,

2018).

Similar to b-catenin and hnRNPH1, RPS14/uS11 mRNA is present in Xenopus retinal axons

(Shigeoka et al., 2019) and is up-regulated in response to 5 min Netrin-1 stimulation, but not

Sema3A (Cagnetta et al., 2018), as confirmed by quantification of immunofluorescence (Figure 4—

figure supplement 1E). However, rps14 mRNA was not detected to be associated with DCC in SH-

SY5Y cells. Therefore, we asked whether this is due to interspecies differences (human (SH-SY5Y)

versus Xenopus), or whether rps14 is selectively translated via a DCC interactome-independent

mechanism. To address this question, we carried out IP followed by qPCR in Xenopus brain and

eyes, which confirmed rps14 association to DCC (Figure 4—figure supplement 1C). Our findings

that Netrin-1, but not Sema3A, induces the translation of mRNAs bound to DCC point towards a

model where receptor-specific mRNA interactomes act as a hub for rapid cue-specific selective

translation.

Finally, we examined the effect of EphrinA1 co-stimulation on the Netrin-1-induced selective

translation up-regulation of b-catenin, hnRNPH1 and RPS14/uS11. Quantification of immunofluores-

cence showed that EphrinA1 stimulation alone does not affect b-catenin and RPS14/uS11 protein

levels (Figure 4E–H; Figure 4—figure supplement 1D) and decreases hnRNPH1 protein level in

axonal growth cones (Figure 4G–H). Co-stimulation with Netrin-1 and EphrinA1 blocks the Netrin-1-

induced increase of all three proteins (Figure 4E–H; Figure 4—figure supplement 1D). Together,

the results show that integration of the EphrinA1 and Netrin-1 signals inhibits the Netrin-1-induced

selective translation, possibly by inhibiting DCC-ribosome dissociation (Figure 4A).

Discussion
We provide evidence for a receptor-ribosome coupled mechanism by which extrinsic cues cause

rapid and selective changes in the local proteome. In support of this model, we show that multiple

guidance cue receptors interact with ribosomes, that the interaction between receptors and ribo-

somes depends on mRNA and rapidly decreases within 2 min of cue stimulation. Moreover, we find

that receptors bind to distinct subsets of RBPs and mRNAs, and that cue stimulation induces the

selective axonal translation of several receptor-specific mRNAs. Finally, we show that the integration

of multiple cues can alter receptor-ribosome dissociation and selective translation.

Based on the candidate receptors tested here, we suggest that whether or not a particular recep-

tor shows receptor-ribosome coupling is related to whether or not the receptors regulate local trans-

lation upon ligand binding. Future studies are needed to determine whether receptor-ribosome

coupling is restricted to axon guidance receptors and neurons. Interestingly, a previous study has

reported the association of a chemokine receptor, CXCR4, with eukaryotic initiation factor 2B

(eIF2B), which decreases upon ligand binding in a pre-B cell line (Palmesino et al., 2016). In addi-

tion, several adrenergic receptor subtypes have been reported to associate with eIF2B at the plasma

membrane (Klein et al., 1997). This raises the intriguing possibility that coupling of translational

Figure 4 continued

of hnrnph1 and ctnnb1 mRNA (unpaired t-test with Welch’s corrections on dCT values; three biological replicates; bars indicate mean, error bars

indicate SEM; *p=0.02 for hnrnph1; **p=0.0018 for ctnnb1). (E, F) b-Catenin QIF relative to control after Netrin-1, EphrinA1, Sema3A or Netrin-1 and

EphrinA1 co-stimulation (one-way ANOVA with Bonferroni’s multiple comparisons test; bars indicate mean, error bars indicate SEM; ***p<0.0001). (G,

H) hnRNPH1 QIF relative to control after Netrin-1, EphrinA1, Sema3A or Netrin-1 and EphrinA1 co-stimulation (one-way ANOVA with Bonferroni’s

multiple comparisons test; bars indicate mean, error bars indicate SEM; ***p<0.0001; *p=0.0164). Scale bars, 5 mm. For all QIF experiments, numbers in

bars indicate amount of growth cones quantified collected from at least three independent experiments.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Spreadsheet containing all normalized PLA count values for each axonal growth cone in Figure 4A, all normalized puromycin intensity

values for each axonal growth cone in Figure 4C, all normalized ß-Catenin intensity values for each axonal growth cone in Figure 4F and all normalized

hnRNPH1 intensity values for each axonal growth cone in Figure 4H.

Figure supplement 1. EphrinA1 co-stimulation blocks Netrin-1 induced receptor-ribosome dissociation and selective translation of rps14.

Figure supplement 1—source data 1. Spreadsheet containing all normalized PLA count values for each axonal growth cone in Figure 4—figure sup-

plement 1A, all normalized pERK1/2 intensity values for each axonal growth cone in Figure 4—figure supplement 1B and all normalized RPS14 inten-

sity values for each axonal growth cone in Figure 4—figure supplement 1D and E.
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Figure 5. Model diagram depicting the proposed interactions between receptors, RBPs, mRNAs and ribosomes under basal and cue stimulation

conditions.
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machinery with receptors extends to other cell types and is a widespread mechanism to rapidly

transduce local translation downstream of extracellular signals.

Previous studies have shown that the RBP zipcode binding protein 1 (ZBP1) can be phosphory-

lated upon cue stimulation, thereby regulating local translation in axons by possibly releasing the

bound mRNAs (Hüttelmaier et al., 2005; Sasaki et al., 2010; Lepelletier et al., 2017). DCC and

Nrp1 each differentially bind to RBPs and mRNAs, thus providing a way to rapidly achieve cue-

induced selective translation. We observed an enrichment of known mRNA targets for RBPs

detected specifically in DCC and Nrp1 pulldowns respectively, suggesting a role for RBPs in mediat-

ing the differential binding of mRNAs to receptors and their cue-induced selective translation. This

hypothesis is supported by the enrichment of the RBP hnRNPA2B1 and ctnnb1 mRNA (encoding b-

catenin) specifically in DCC but not Nrp1 pulldown, as hnRNPA2B1 has been reported to control the

translation of b-catenin (Stockley et al., 2014), which is selectively translated in response to Netrin-

1, but not Sema3A in retinal axons (Cagnetta et al., 2018), in accord with the data reported here.

Our RNA-seq analysis reveals a receptor-specific enrichment of 100–400 mRNAs suggesting

that a large number of mRNAs may be regulated by specific receptors and their ligands

(Figure 2G). This idea is consistent with our previous proteomics study in Xenopus retinal axons

showing that the translation of more than 100 mRNAs is regulated within 5 min in response to

Netrin-1 and Sema3A (Cagnetta et al., 2018). It should be noted that, as our RNA-seq data are

obtained from the human cell line SH-SY5Y, the number, and exact identity, of receptor-associ-

ated mRNAs may be different in axons. This is exemplified by the absence of rps14 mRNA

enrichment in SH-SY5Y cells, which was detected in Xenopus brains (Figure 4—figure supple-

ment 1C). In addition, it is possible that not all detected mRNAs interact with DCC and Nrp1 at

the plasma membrane as a portion of these mRNAs could also be associated with receptors on

endocytic vesicles that are known to contain DCC and Nrp1. Our results point to a model in

which different subsets of mRNAs interact via specific RBPs with either DCC or Nrp1, and are

released, together with ribosomes, upon specific cue stimulation and thus become available for

subsequent translation (Figure 5). To fully understand and validate our model, it will be key to

investigate the complex inter-dependency of these interactions.

It should be noted that, in addition to RBPs and mRNAs, several other molecules characterize

the receptor-specific interactome. For example, eIF3d, an initiation factor previously shown to

regulate specialized translation initiation, is significantly enriched specifically after Nrp1 IP, but

not DCC IP, thus raising the interesting possibility that differential binding to initiation factors

may contribute to cue-induced selective translation (Lee et al., 2016). Intriguingly, a recent study

revealed that an untranslated mRNA can associate with and regulate the signalling of the TrkA

receptor in axons via its axon-enriched long 3’UTR (Crerar et al., 2019). It will be interesting to

investigate whether any of the DCC and Nrp1 targets identified in our study also play a struc-

tural role, for example by regulating the receptor-ribosome association and/or the downstream

signalling and local translation.

During axon guidance and branching, axons can encounter a combination of extracellular signals

and ample evidence shows that the integration of multiple cues results in different outcomes than

those of each single cue (Dudanova and Klein, 2013; Morales and Kania, 2017). Here, we tested

the effect of cue integration on receptor-ribosome coupling and found that EphrinA1 blocks the

Netrin-1-induced ribosome dissociation from DCC, but not the Sema3A-induced ribosome dissocia-

tion from Nrp1. In addition, EphrinA1 blocks the Netrin-1-induced selective increase in translation of

several mRNAs. The mechanism by which EphrinA1 affects the coupling of DCC to ribosomes is

unknown. One possibility is that, upon co-stimulation of EphrinA1 and Netrin-1, the DCC and Eph

receptors may form a complex, thereby altering the receptor structure and association to ribosomes,

which could be consistent with a previous study revealing a ligand-dependent interaction between

the receptors Unc5 and EphB2 (Poliak et al., 2015).

In conclusion, our findings show that coupling of the translational machinery to guidance cue

receptors at the plasma membrane of growth cones is a mechanism to rapidly and selectively control

the cue-induced regulation of the local proteome and suggest that this may be a general principle

that applies to membrane receptors more broadly.
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Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Biological
sample
(Xenopus laevis)

Xenopus laevis NASCO Cat# LM00715 (male);
RRID:XEP_Xla100;
Cat# LM00535
(female);
RRID:XEP_Xla

Cell line
(Homo-sapiens)

SH-SY5Y ATCC Cat# CRL-2266;
RRID:CVCL_0019

Antibody anti-RPS3A
(Rabbit polyclonal)

Abcam Cat# ab194670;
RRID:AB_2756396

ICC/PLA (1:100)
WB (1:1000)

Antibody Anti-Neuropilin-1
(Rabbit monoclonal)

Abcam Cat# ab81321;
RRID:AB_1640739

ICC/PLA (1:100)
WB (1:2000)
IP (5 mg)

Antibody Anti-Neuropilin-1
(Mouse monoclonal)

Proteintech Cat# 60067–1-Ig;
RRID:AB_2150840

ICC (1:100)

Antibody Anti-DCC
(mouse monoclonal

BD Biosciences Cat# 554223;
RRID:AB_395314

ICC/PLA (1:100)
WB (1:1000)
IP (5 mg)

Antibody Anti-RPL5
(rabbit polyclonal

Proteintech Cat# 15430–1-AP;
RRID:AB_2238681

ICC/PLA (1:100)

Antibody Anti-RPS4X
(Rabbit polyclonal)

Proteintech Cat# 14799–1-AP;
RRID:AB_2238567

PLA (1:100)
WB (1:1000)

Antibody Anti-RPL10A
(Rabbit polyclonal)

Proteintech Cat# 16681–1-AP;
RRID:AB_2181281

PLA (1:100)
WB (1:500)

Antibody Anti-RPS23
(mouse monoclonal)

Abcam Cat#: ab57644;
RRID:AB_945314

PLA (1:100)
WB (1:1000)

Antibody Anti-RPS26
(Rabbit polyclonal

Proteintech Cat# 14909–1-AP;
RRID:AB_2180361

WB (1:500)

Antibody Anti-Robo2
(goat polyclonal)

R and D Systems Cat# AF3147;
RRID:AB_2181857

WB (1:250)

Antibody Anti-EphB2
(mouse monoclonal)

Santa Cruz Cat# sc130068;
RRID:AB_2099958

WB (1:100)
IP (5 mg)

Antibody Anti-EphB2
(mouse monoclonal)

Thermo Fisher Scientific Cat# 37–1700;
RRID:AB_2533302

PLA (1:100)

Antibody Anti-Staufen1
(Rabbit polyclonal)

Abcam Cat# ab73478;
RRID:AB_1641030

ICC (1:100)
WB (1:500)

Antibody Anti-hnRNPA2B1
(Rabbit polyclonal)

Abcam Cat# ab31645;
RRID:AB_732978

ICC/PLA (1:100)

Antibody Anti-RPS14
(Rabbit polyclonal)

Abcam Cat# ab174661 ICC (1:100)

Antibody Anti-ß-Catenin
(Rabbit polyclonal)

Sigma-Aldrich Cat# C2206;
RRID:AB_476831

ICC (1:500)

Antibody Anti-hnRNPH1 Abcam Cat# ab154894 ICC (1:500)

Antibody Anti-IgG (Rabbit) Abcam Cat# ab37415;
RRID:AB_2631996

PLA (1:100)
IP (5 mg)

Antibody Anti-IgG1 (Mouse) R and D Systems Cat# MAB002;
RRID:AB_357344

PLA (1:100)
IP (5 mg)

Antibody Anti-IgG2b (Mouse) R and D Systems Cat# MAB004;
RRID:AB_357346

IP (5 mg)

Antibody Anti-IgG (Goat) R and D Systems Cat# AB-108-C;
RRID:AB_354267

IP (5 mg)

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Antibody Anti-Puromycin-Alexa
Fluor 488
conjugate
(mouse monoclonal)

Millipore Cat# MABE343-AF488;
RRID:AB_2736875

ICC (1:200)

Antibody Anti-RPL19
(mouse monoclonal)

Abcam Cat#ab58328;
RRID:AB_945305

WB (1:1000)

Antibody Anti-FxR Gift from
Dr. Edward
Khandjan,
University of
Quebec

N/A WB (1:1000)

Antibody Anti-pERK1/2 Cell Signaling Cat# 9101;
RRID:AB_331646

ICC (1:250)

Antibody Goat-anti-rabbit
Alexa Fluor 568

Abcam Cat# ab150077;
RRID:AB_2630356

ICC (1:1000)

Antibody Goat-anti-mouse
Alexa Fluor 568

Abcam Cat# ab150117;
RRID:AB_2688012

ICC (1:1000)

Antibody Goat-anti-mouse-HRP Abcam Cat# ab6789;
RRID:AB_955439

WB (1:15000)

Antibody Goat-anti-rabbit-HRP Abcam Cat#: ab97080;
RRID:AB_10679808

WB (1:15000)

Commercial
assay or kit

RNeasy mini kit Qiagen Cat# 74104

Commercial
assay or kit

SuperScript III
First-strand
Synthesis kit

Thermo Fisher Scientific Cat# 18080051

Commercial
assay or kit

Quantitect SYBR
green PCR kit

Qiagen Cat# 204143

Commercial
assay or kit

KAPA
HyperPrep kit

Roche Cat# KK8503

Commercial
assay or kit

NextSeq 500/550
high output v2
kit (150 cycles)

Illumina Cat# FC-404–2002

Commercial
assay or kit

Duolink In situ
PLA Detection
reagents green

Sigma-Aldrich Cat# DUO92014

Commercial
assay or kit

Duolink In situ
PLA Detection
reagents red

Sigma-Aldrich Cat# DUO92008

Commercial
assay or kit

Duolink In situ
PLA probe
Anti-Rabbit PLUS

Sigma-Aldrich Cat# DUO92002

Commercial
assay or kit

Duolink In situ
PLA probe
Anti-Mouse MINUS

Sigma-Aldrich Cat# DUO92004

Chemical
compound,
drug, reagent

Cycloheximide Sigma Aldrich Cat# C4859

Chemical
compound,
drug, reagent

RNase A Ambion Cat# EN0531

Chemical
compound,
drug, reagent

RNase T1 Ambion Cat# EN0541

Continued on next page

Koppers et al. eLife 2019;8:e48718. DOI: https://doi.org/10.7554/eLife.48718 16 of 27

Research article Developmental Biology Neuroscience

https://scicrunch.org/resolver/AB_2736875
https://scicrunch.org/resolver/AB_945305
https://scicrunch.org/resolver/AB_331646
https://scicrunch.org/resolver/AB_2630356
https://scicrunch.org/resolver/AB_2688012
https://scicrunch.org/resolver/AB_955439
https://scicrunch.org/resolver/AB_10679808
https://doi.org/10.7554/eLife.48718


Continued

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Chemical
compound,
drug, reagent

Puromycin Sigma-Aldrich Cat# P8833

Chemical
compound,
drug, reagent

Recombinant
mouse Netrin-1

R and D systems Cat# 1109-N1

Chemical
compound,
drug, reagent

Recombinant
human Sema3A

R and D systems Cat# 1250-S3

Chemical
compound,
drug, reagent

Dynasore Sigma-Aldrich Cat# D7693

Chemical
compound,
drug, reagent

SUPERase In
RNAse inhibitor

Ambion Cat# AM2696

Software,
algorithm

Volocity PerkinElmer Version 6.0.1;
RRID:SCR_002668

Software,
algorithm

GraphPad Prism GraphPad v.5;
RRID:SCR_002798

Software,
algorithm

R Other v.3.2.2;
RRID:SCR_001905

https://www.r-
project.org

Software,
algorithm

MATLAB Mathworks v.R2016b;
RRID:SCR_001622

Software,
algorithm

HISAT2 Other v.2.1.0;
RRID:SCR_015530

https://ccb.jhu.edu/software/
hisat2/index.shtml

Software,
algorithm

Cufflinks Other v.2.2.1;
RRID:SCR014597

http://cole-trapnell-
lab.github.io/cufflinks/

Embryos
Xenopus laevis embryos were fertilized in vitro and raised in 0.1x Modified Barth’s Saline (8.8 mM

NaCl, 0.1 mM KCl, 0.24 mM NaHCO3, 0.1 mM HEPES, 82 mM MgSO4, 33 mM Ca(NO3)2, 41 mM

CaCl2) at 14–20˚C and staged according to the tables of Nieuwkoop and Faber (1994). All animal

experiments were approved by the University of Cambridge Ethical Review Committee in compli-

ance with the University of Cambridge Animal Welfare Policy. This research has been regulated

under the Animals (Scientific Procedures) Act 1986 Amendment Regulations 2012 following ethical

review by the University of Cambridge Animal Welfare and Ethical Review Body (AWERB). All ani-

mals used in this study were below stage 45.

Cell line culture
Human neuroblastoma SH-SY5Y cells (ATCC; Cat# CRL-2266), free of mycoplasma, were cultured in

Dulbecco’s minimal essential medium (DMEM) containing antibiotics, L-glutamine and 10% fetal

bovine serum (FBS).

Primary Xenopus retinal cultures
Eye primordia were dissected from Tricaine Methanesulfonate (MS222) (Sigma-Aldrich) anesthetized

embryos at stage 35/36 (or stage 32 for EM) and cultured on 10 mg/ml poly-L-lysine- (Sigma-Aldrich)

and 10 mg/ml laminin- (Sigma-Aldrich) coated dishes in 60% L-15 medium (Gibco) at 20˚C for 24 hr

before performing immunohistochemistry or proximity ligation assay, or for 48 hr before the puro-

mycilation assay. Where indicated in the figures and figure legends, cultures were treated with

Netrin-1 (600 ng/ml, R and D systems, 1109-N1), Sema3A (150 or 700 ng/ml, R and D systems,

1250-S3), or Dynasore (50 mM, Sigma-Aldrich, D7693).
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Immunoprecipitation
SH-SY5Y cells or Xenopus brains and eyes dissected from stage 40/41 embryos were lysed in lysis

buffer (20 mM Tris-HCl, pH 7.4, 150 mM NaCl, 10 mM MgCl2 and 10% glycerol supplemented with

100 mg/ml cycloheximide (Sigma-Aldrich), EDTA-free protease inhibitors (Roche, 11873580001),

phosphatase inhibitors (Thermo Fisher Scientific, A32957) and SuperRNAse In RNAse inhibitor

(Ambion, AM2696)). Tissues or cells were lysed for 30 min at 4˚C and centrifuged for 5 min at 800 g

at 4˚C to remove unlysed cells and nuclei and then 15 min at 16000 g at 4˚C. The resulting superna-

tant was incubated with magnetic Dynabeads pre-coupled with antibodies using the Dynabeads anti-

body coupling kit (Thermo Fisher Scientific, 14311D) for 1.5 hr at 4˚C on a rotor. The following

antibodies were used: mouse-anti-DCC (BD Biosciences, 554223); rabbit-anti-Nrp1 (Abcam,

ab81321); goat-anti-Robo2 (R and D systems, AF3147); mouse-anti-EphB2 (Santa Cruz, sc130068) or

an isotype control: rabbit IgG (Abcam, ab37415); mouse IgG1 (R and D systems, MAB002); mouse

IgG2b (R and D systems, MAB004); goat IgG (R and D systems, AB-108-C). Beads were then washed

three times in lysis buffer and processed for protein or RNA isolation. For EDTA and RNase A/T1

treatment pulldowns, immunoprecipitated samples (samples after incubation of supernatant with

antibody-coupled beads) were equally divided into three tubes (tube 1: normal washes as above,

tube 2: EDTA treatment washes, tube 3: RNase A/T1 treatment washes). For EDTA treatment, immu-

noprecipitated samples were washed with EDTA wash buffer (20 mM Tris-HCl, pH 7.4, 150 mM

NaCl, 25 mM EDTA and 10% glycerol supplemented with EDTA-free protease inhibitors (Roche,

11873580001), phosphatase inhibitors (Thermo Fisher Scientific, A32957) for three times before elu-

tion. For RNase A/T1 treatment, immunoprecipitated samples were washed three times for 3 min at

RT with RNase A/T1 wash buffer (20 mM Tris-HCl, pH 7.4, 150 mM NaCl, 10 mM MgCl2% and 10%

glycerol supplemented with 100 mg/ml cycloheximide (Sigma-Aldrich), EDTA-free protease inhibitors

(Roche, 11873580001), phosphatase inhibitors (Thermo Fisher Scientific, A32957), 10 mg/ml RNase A

(Ambion, EN0531) and 250U RNase T1 (Ambion, EN0541). After normal, EDTA, or RNase A/T1

washes, samples were processed for protein or RNA isolation.

For protein isolation, 1x NuPAGE LDS sample buffer (Thermo Fisher Scientific, NP0008) was

added to the beads, incubated for 5 min at 95˚C and the final protein eluate was collected after

magnetic separation of the beads. For RNA isolation, RLT buffer was added to the beads, vortexed

for 2 min and then separated from the beads on a magnetic stand.

Polysome fractionation
For density gradient fractionation, lysate was layered on a sucrose gradient (10–50%) in PLB buffer

(20 mM Tris-HCl, pH 7.4, 150 mM NaCl, 10 mM MgCl2, 100 mg/ml cycloheximide (Sigma-Aldrich),

0.5 mM DTT) and ultracentrifugation was performed using a Beckman SW-40Ti rotor and Beckman

Optima L-100 XP ultracentrifuge, with a speed of 35,000 rpm at 4˚C for 160 min. Fractionations and

UV absorbance profiling were carried out using Density Gradient Fractionation System (Teledyne

ISCO). Proteins were precipitated from each fraction using methanol-chloroform precipitation and

pellets were resuspended in 1x NuPAGE LDS sample buffer and used for Western blotting as

described below.

Western blot
Proteins were resolved by SDS-PAGE on NuPage 4–12% Bis-Tris gels (Invitrogen, NP0321) and trans-

ferred to nitrocellulose membrane (Bio-Rad). The blots were blocked in 5% milk in TBST-T for 60 min

at RT and then incubated with primary antibodies in 5% milk in TBS-T overnight at 4˚C. After wash-

ing three times with TBS-T the blots were incubated with HRP-conjugated secondary antibodies

(goat-anti-mouse HRP (Abcam, ab6789); goat-anti-rabbit HRP (Abcam, ab6721) for 1 hr at RT,

washed again for three times in TBS-T, followed by ECL-based detection (Pierce ECL plus, Thermo

Scientific, 32123). The following primary antibodies were used for Western blot analysis: mouse-anti-

DCC (BD Biosciences, 554223), rabbit-anti-neuropilin-1 (Abcam, ab81321), goat-anti-Robo2 (R and D

systems, AF3147), mouse-anti-EphB2 (Santa Cruz, sc130068), mouse anti-Rpl19/eL19 (Abcam,

ab58328), mouse anti-RPS23/uS12 (Abcam, ab57644), rabbit anti-RPS4X/eS4 (Proteintech, 14799–1-

AP), rabbit-anti RPL10A/uL1 (Proteintech, 16681–1-AP), rabbit-anti Rps26 (Proteintech, 14909–1-

AP), mouse-anti-Rps3A (Abcam, ab194670), mouse-anti-FxR (gift from dr. Khandjian), rabbit-anti-

Staufen1 (Abcam, ab73478).
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Quantitative RT-PCR
RNA was isolated from eluted samples using the RNeasy Mini kit (Qiagen, 74104) and reverse tran-

scribed into cDNA using random hexamers and the SuperScript III First-Strand Synthesis System

(Thermo Fisher Scientific, 18080051). The cDNA was used to prepare triplicate reactions for qRT-

PCR according to manufacturer’s instructions (QuantiTect SYBR Green PCR kit, Qiagen, 204143),

plates were centrifuged shortly and run on a LightCycler 480 (Roche) using the following PCR condi-

tions: denaturation for 15 s at 94˚C; annealing for 30 s at 60˚C; extension for 30 s at 72˚C. The levels

for each condition were corrected with their own input. The following primers were used for qPCR:

Xenopus 18S rRNA, 5’-GTAACCCGCTGAACCCCGTT-3’ and 5’-CCATCCAATCGGTAGTAGCG-
3’;
Xenopus 28S rRNA, 5’-CTGTCAAACCGTAACGCAGG-3’ and 5’-CTGACTTAGAGGCGTTCAG
TCA-3’.
human 18S rRNA, 5’-GTAACCCGTTGAACCCCATT-3’ and 5’-CCATCCAATCGGTAGTAGCG-3’;
human 28S rRNA, 5’-AACGGCGGGAGTAACTATGA-3’ and 5’-TAGGGACAGTGGGAATCTCG-3’.
Xenopus ctnnb1 mRNA, 5’-GACCACAAGTCGGGTGCTTA-3’ and 5’- CCAGACGTTGGCTTGAG
TCT-3’;
Xenopus hnrnph1 mRNA, 5’- GGTTGGAAAATCGTGCCAAATG-3’ and 5’- GCCTTTTCAGCTA
TTTCCTGTGAAG-3’;
Xenopus rps14 mRNA, 5’- GTGACTGACCTGTCTGGCAA-3’ and 5’- GCAACATCTTGTGCAGC-
CAA-3’.

Proximity ligation assay
These experiments were carried out according to the manufacturer’s protocol (Sigma-Aldrich, Duo-

link Biosciences) using Duolink In Situ Detection reagents (Sigma-Aldrich, DUO90214 or DUO92008).

After 24 hr, cultures were fixed in 2% formaldehyde/7.5% sucrose in PBS for 20 min at RT, washed

three times in PBS with 0.001% Triton-X-100, permeabilized for 5 min in 0.1% Triton-X-100 in PBS,

washed three times in PBS with 0.001% Triton-X-100, blocked with 5% heat-inactivated goat serum

in PBS for 45 min at RT and subsequently incubated with primary antibodies overnight at 4˚C. Pri-

mary antibodies were diluted at 1:100 for mouse anti-DCC (BD Biosciences, 554223), 1:100 mouse-

anti-EphB2 (Thermo Fisher Scientific, 37–1700) 1:100 for rabbit anti-RPL5/uL18 (Proteintech, 15430–

1-AP), 1:100 rabbit anti-RPS4X/eS4 (Proteintech, 14799–1-AP), 1:100 rabbit-anti RPL10A/uL1 (Pro-

teintech, 16681–1-AP), 1:100 for rabbit anti-neuropilin-1 (Abcam, ab81321), 1:100 mouse anti-

RPS3A/eS1 (Abcam, ab194670),1:100 mouse-anti-RPS23/uS12 (Abcam, ab57644), rabbit-anti-

hnRNPA2B1 (Abcam, ab31645), rabbit-IgG isotype control (Abcam, ab37415), mouse IgG1 isotype

control (MAB002, R and D Systems). After primary antibody incubation, dishes were washed twice

for 5 min with 0.002% Triton X-100 in PBS and incubated with anti-rabbit-PLUS (Sigma-Aldrich,

DUO92002) and anti-mouse-MINUS (Sigma-Aldrich, DUO92004) PLA probes for 1 hr at 37˚C, with

ligase for 30 min at 37˚C and with the polymerase mix with red fluorescence for 100–140 min at 37˚

C. The samples were subsequently mounted with the mounting medium (DUO82040, Duolink) and

imaged using a Nikon Eclipse TE2000-U inverted microscope equipped with an EMCCD camera.

The number of discrete fluorescent puncta from randomly selected isolated growth cones were

counted using Volocity software (Perkin Elmer).

Immunocytochemistry
After 24 hr, Xenopus retinal cultures were fixed in 2% formaldehyde/7,5% sucrose in PBS for 20 min

at RT. For the puromycilation assay, 48 hr old cultures were used, eyes were manually removed and

axons were treated with 10 mg/ml puromycin (Sigma-Aldrich, P8833) for 10 min at RT before fixation.

The fixed cultures were then washed three times in PBS with 0.001% Triton-X-100, permeabilized for

5 min at RT in 0.1% Triton-X-100 in PBS, washed again for three time in PBS with 0.001% Triton-X-

100 and blocked with 5% heat-inactivated goat serum in PBS for 45 min at RT. Primary antibodies

were incubated overnight at 4˚C, followed by Alexa Fluor-conjugated secondary antibodies for 60

min at RT in the dark. Cultures were mounted in FluorSave (Calbiochem, 345789). Primary antibodies

were used at the following dilutions: 1:100 for mouse anti-DCC (BD Biosciences, 554223), 1:100 for

rabbit anti-neuropilin-1 (Abcam, ab81321), 1:100 for mouse-anti-neuropilin-1 (Proteintech, 60067–1-

Ig), 1:100 for rabbit anti-RPL5/uL18 (Proteintech, 15430–1-AP), 1:100 mouse anti-RPS3A/eS1
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(Abcam, ab194670), 1:200 mouse-anti-puromycin-AlexaFluor-488 (Millipore, MABE343-AF488), rab-

bit-anti-Staufen1 (Abcam, ab73478), rabbit-anti-hnRNPA2B1 (Abcam, ab31645), 1:500 rabbit-anti-b-

Catenin (Sigma-Aldrich, C2206), 1:500 rabbit-anti-hnRNPH1 (Abcam, ab154894), rabbit-anti-RPS14/

uS11 (Abcam, ab174661), 1:250 rabbit-anti-pERK1/2 (Cell Signaling, 9101). Secondary antibodies

were diluted at: 1:1000 goat anti-rabbit Alexa Fluor 568 (Abcam, ab150077), 1:1000 goat anti-mouse

Alexa Fluor 568 (Abcam, ab150117).

Expansion microscopy
For expansion microscopy, RGCs explant cultures were immunostained with primary and secondary

antibodies as described above, followed by applying the expansion protocol for cultured cells

(Chen et al., 2015). Briefly, cultures were incubated in 0.25% glutaraldehyde in PBS for 20 min at RT

and then washed with PBS three times, before adding monomer solution (2M NaCl, 8.625% (w/w)

sodium acrylate, 2.5% (w/w) acrylamide, 0.1% (w/w) N,N‘-methylenebisacrylamide in PBS) for 2 min

at RT. Subsequently, monomer solution was mixed with 0.2% ammonium persulfate (APS) and 0.2%

Tetramethylethylendiamin (TEMED) and added to the samples. Gelation of the polymer occurred at

37˚C for 30 min, followed by digestion of the samples with digestion buffer (40 mM Tris (pH 8), 1

mM EDTA, 0.5% Triton-X-100, 0.8M guanidine NaCl, 8 U/ml Proteinase K in water) and incubated at

37˚C for 1 hr. To expand the samples, digestion buffer was removed and gels were placed in water

for several hours during which water was replaced every 30 min. Once gels detached from the glass

dish, they were transferred to a bigger dish to allow expansion. For imaging, expanded gels were

cut in pieces and transferred to poly-L-lysine coated glass bottom dishes. Imaging was performed

using a 60x/1.3 NA silicone oil objective lens on a Perkin Elmer Spinning Disk UltraVIEW ERS, Olym-

pus IX81 inverted microscope and the Volocity software. Images were processed by using Fiji (NIH)

and co-localisation analysis was carried out by using a purpose-written Matlab (The MathWorks)

code. For co-localisation analysis, images were multiplied with a mask of a focused area of interest

and the average background fluorescence was subtracted, before Pearson’s correlation coefficients

were computed.

Quantification of immunofluorescence
For the quantification of fluorescence intensity, isolated growth cones were randomly selected with

phase optics. For each experiment, the images were captured on the same day using the same gain

and exposure settings and pixel saturation was avoided. Using Volocity software (Perkin Elmer), a

region of interest (ROI) was defined by tracing the outline of each single growth cone using the

phase image and the mean pixel intensity per unit area was measured in the fluorescent channel.

The background fluorescence was measured in a ROI close to the growth cone that was free of

debree or other axons and this was substracted from the mean fluorescence value of the growth

cone. For the co-localization analysis of RBPs with receptors (Figure 2E–F), masks of the region of

interest of each imaged growth cone were automatically generated using a code written in the wol-

fram language in Mathematica (https://wolfram.com/mathematica). For this code, training data was

generated first by using hand traced outlines of 30 growth cones in two channel fluorescence images

using ImageJ (http://imagej.net) to generate 30 corresponding binary growth cone maps. We chose

the U-Net architecture (Ronneberger et al., 2015) to learn the growth cone segmentation similar as

done in Jakobs et al. (2019). For training, we split the dataset into 25 training images and five vali-

dation images and down sampled every image so that the short dimension was 600 pixels long. Dur-

ing training input images were heavily augmented to prevent overfitting by (i) random cropping to

256 � 256 pixel sizes, (ii) random rotations, (iii) random reflections, (iv) random background gra-

dients, (v) random noise, (vi) random nonlinear distortions. U-Net was with batch size eight and cross

entropy loss until the validation loss did not decrease any further for 10 consecutive epochs on a nVi-

dia 1080 Ti. The best performing network (using intersection over union benchmarking) was subse-

quently chosen to generate growth cone masks for our data. Masks were generated by first applying

the best U-Net to the downsampled image followed by upsampling. The resulting output images

were binarized by a morphological binarization algorithm with foreground threshold 0.3 that treats

any pixel that is connected to the foreground and has a value larger than 0.2 also as part of the

foreground.
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Mass-spectrometry
1D gel bands were transferred into a 96-well PCR plate. The bands were cut into 1 mm2 pieces,

destained, reduced (DTT) and alkylated (iodoacetamide) and subjected to enzymatic digestion with

chymotrypsin overnight at 37˚C. After digestion, the supernatant was pipetted into a sample vial and

loaded onto an autosampler for automated LC-MS/MS analysis.

All LC-MS/MS experiments were performed using a Dionex Ultimate 3000 RSLC nanoUPLC

(Thermo Fisher Scientific Inc, Waltham, MA, USA) system and a Q Exactive Orbitrap mass spectrom-

eter (Thermo Fisher Scientific Inc, Waltham, MA, USA). Separation of peptides was performed by

reverse-phase chromatography at a flow rate of 300 nL/min and a Thermo Scientific reverse-phase

nano Easy-spray column (Thermo Scientific PepMap C18, 2 mm particle size, 100A pore size, 75 mm

i.d. x 50 cm length). Peptides were loaded onto a pre-column (Thermo Scientific PepMap 100 C18, 5

mm particle size, 100A pore size, 300 mm i.d. x 5 mm length) from the Ultimate 3000 autosampler

with 0.1% formic acid for 3 min at a flow rate of 10 mL/min. After this period, the column valve was

switched to allow elution of peptides from the pre-column onto the analytical column. Solvent A was

water + 0.1% formic acid and solvent B was 80% acetonitrile, 20% water + 0.1% formic acid. The lin-

ear gradient employed was 2–40% B in 30 min.

The LC eluant was sprayed into the mass spectrometer by means of an Easy-Spray source

(Thermo Fisher Scientific Inc). All m/z values of eluting ions were measured in an Orbitrap mass ana-

lyzer, set at a resolution of 70000 and was scanned between m/z 380–1500. Data-dependent scans

(Top 20) were employed to automatically isolate and generate fragment ions by higher energy colli-

sional dissociation (HCD, NCE:25%) in the HCD collision cell and measurement of the resulting frag-

ment ions was performed in the Orbitrap analyser, set at a resolution of 17500. Singly charged ions

and ions with unassigned charge states were excluded from being selected for MS/MS and a

dynamic exclusion window of 20 s was employed.

Raw data were processed using Maxquant (version 1.6.1.0) (Cox and Mann, 2008) with default

settings. MS/MS spectra were searched against the X. laevis protein sequences from Xenbase (xlae-

visProtein.fasta). Enzyme specificity was set to trypsin/P, allowing a maximum of two missed clea-

vages. The minimal peptide length allowed was set to seven amino acids. Global false discovery

rates for peptide and protein identification were set to 1%. The match-between runs option was

enabled.

Label-free quantification (LFQ) analysis of proteomics data
To identify significant interactors, t-test-based statistics were applied on label-free quantification

(LFQ) intensity values were performed using Perseus software. Briefly, LFQ intensity values were log-

arithmized (log2) and missing values were imputed based on the normal distribution (width = 0.3,

shift = 1.8). Significant interactors of DCC or Nrp1 pulldowns compared to IgG pulldowns were

determined using a two-tailed t-test with correction for multiple testing using a permutation-based

false discovery rate (FDR) method.

RNA-sequencing
RNA was isolated from immunoprecipitated samples from SH-SY5Y cells as described above using

RLT buffer (Qiagen) containing b-mercaptoethanol and the RNeasy Mini kit (Qiagen) followed by in-

column DNase I treatment to remove genomic DNA contamination. RNA quality was analysed using

Agilent RNA 6000 Pico kit and reagents (Agilent, 5067–1514,1535,1513) on a Agilent 2100 Bioana-

lyzer (Agilent). cDNA was then amplified using a method developed for single cell transcriptomics

(Tang et al., 2009) with minor modifications (Shigeoka et al., 2016). The cDNA library preparation

was performed using a KAPA Hyperprep kit (Roche) and cDNA libraries were subjected to a RNA-

sequencing run on a Next-seq 500 instrument (Illumina) using the 150 cycles high output kit

(Illumina).

Bioinformatic analysis of RNA-sequencing data
The sequence reads were mapped using HISAT 2 version 2.1.0, and FPKM values were estimated

using Cufflinks version 2.2.1. Read counts for each gene were determined using HTSeq version

0.11.0. Differential expression analysis was performed using edgeR in R version 3.5.0 (FDR < 0.05).

The GO enrichment analysis was performed using topGO version 2.32.0. The mRNA targets of RBPs
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were obtained from previously published studies as listed in the main text. To analyse the enrich-

ment of Staufen1 and hnRNPA2B1 targets, all RBP targets that showed a significant difference

between DCC and Nrp1 pulldowns were first selected and the log2 fold change values between

DCC and Nrp1 were used for a Mann-Whitney U test (Wilcoxon rank sum test).

Electron microscopy of axonal growth cones
Cultured neurons were fixed at 37˚C for 45 min in 2.5% glutaraldehyde, sodium cacodylate buffer

0.1M pH7.4 containing 2 mM CaCl2 and 2 mM MgCl2. Samples were post-fixed for 15 min at RT in

1% osmium and embedded in epoxy resin. Ultrathin sections were imaged with a ZEISS EM 912

microscope. Ribosomes were identified based on size and shape. To quantify the inter-ribosome dis-

tance, the center-to-center distance was measured using ImageJ. For axonal growth cones, ribo-

somes were selected that were located within 50 nm of the plasma membrane and the distance to

its closest neighbor was quantified.

Statistical analysis
All experiments were performed in at least three independent biological replicates unless explicitly

stated otherwise. The order of data collection was randomized, and no data were excluded from

analysis. Statistical analysis was performed using GraphPad Prism, R or MATLAB. Statistical tests

used are described in the figure legends.

Data availability
RNA-sequencing data associated with this manuscript has been deposited on the GEO database

(identifier GSE135338). All proteomics data associated with this manuscript has been uploaded to

the PRIDE online repository (identifier: PXD015650).
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