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Abstract Single-cell RNA sequencing has spurred the development of computational methods

that enable researchers to classify cell types, delineate developmental trajectories, and measure

molecular responses to external perturbations. Many of these technologies rely on their ability to

detect genes whose cell-to-cell variations arise from the biological processes of interest rather than

transcriptional or technical noise. However, for datasets in which the biologically relevant

differences between cells are subtle, identifying these genes is challenging. We present the self-

assembling manifold (SAM) algorithm, an iterative soft feature selection strategy to quantify gene

relevance and improve dimensionality reduction. We demonstrate its advantages over other state-

of-the-art methods with experimental validation in identifying novel stem cell populations of

Schistosoma mansoni, a prevalent parasite that infects hundreds of millions of people. Extending

our analysis to a total of 56 datasets, we show that SAM is generalizable and consistently

outperforms other methods in a variety of biological and quantitative benchmarks.

DOI: https://doi.org/10.7554/eLife.48994.001

Introduction
Single-cell RNA sequencing (scRNAseq) datasets typically contain tens of thousands of genes,

although many of them may not be informative for differentiating between cell types or states. Fea-

ture selection is thus commonly used to select a subset of genes prior to downstream analyses, such

as manifold reconstruction and cell clustering (Crow et al., 2018; Satija et al., 2015; Vallejos et al.,

2015). However, current approaches have two major limitations.

First, feature selection methods filter genes based on arbitrarily or empirically chosen thresholds,

small changes in which may result in different gene sets (Vallejos et al., 2017). In addition, the selec-

tion of features typically operates under the assumption that genes with highly variable expression

between individual cells capture biologically meaningful variation. Because single-cell transcriptomes

are inevitably contaminated by a combination of random transcriptional and technical noise

(Grün et al., 2014), the variation in biologically relevant genes may be hard to distinguish from the

background noise, especially when the differences between cell populations are subtle. Resolving

these differences, or ‘signals’, is essential to study a variety of biological problems, including identi-

fying cell subtypes (Olsson et al., 2016; Treutlein et al., 2014; Lönnberg et al., 2017;

Fincher et al., 2018; Baron et al., 2016; Schwalie et al., 2018) and quantifying the effects of molec-

ular perturbations to otherwise homogeneous populations of cells (Lane et al., 2017). In such data-

sets, only a small fraction of the genes, and therefore only a small fraction of the total variation, may

contain the signals relevant for distinguishing cell types or cell states. Choosing these features with-

out a priori knowledge remains an unmet computational challenge.
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The second limitation is that existing methods have been almost exclusively benchmarked on

well-annotated, gold standard datasets with clearly distinguishable cell types (Wang et al., 2017;

Kiselev et al., 2017; Duò et al., 2019; Bahlo et al., 2018). These datasets are not informative for

distinguishing the performance between methods, because the differences between cell types are

relatively straightforward to detect. However, evaluating the performance of feature selection and/

or dimensionality reduction methods on datasets with more subtle signals is difficult as their ground

truth labels are typically ambiguous or nonexistent.

To overcome the shortcomings of current feature selection approaches, here, we introduce the

Self-Assembling Manifold (SAM) method, an unsupervised, ‘soft feature selection’ algorithm that

iteratively rescales gene expressions to refine a nearest neighbor graph of cells until the graph con-

verges to a stable solution. At each iteration, SAM assigns more weight to genes that are spatially

variable across the constructed graph, and this weighted gene expression is then used to improve

the next nearest neighbor assignment. SAM presents two advantages: it rescales all genes according

to their weights, solving the problem of thresholding, and it prioritizes genes that are variable across

the intrinsic manifold of the data rather than selecting genes that are variable across individual cells.

In order to better distinguish the performance between methods, we define a network sensitivity

measure to identify datasets with subtle signals. With limited annotations in most high-sensitivity

datasets, we introduce unsupervised graph-based metrics to quantify the degree of structure within

the reconstructed manifolds for comparison between methods. In addition, we perform benchmark-

ing using known ground truth labels on simulated datasets spanning a wide range of sensitivities by

eLife digest New technologies have enabled scientists to closely examine the activity of

individual cells. One increasingly popular technique to do this is called single-cell RNA-sequencing

and it relies on the fact that although all cells in an organism carry the same DNA, different cell

types use different genes. This technique is powerful but can struggle to identify meaningful

distinctions between cell types, especially when the differences are subtle.

In single-cell RNA-sequencing, the messenger RNA (mRNA) copied from each gene is collected

and counted, and usually the more a gene is copied the more active it is. Differences in gene activity

(also called gene expression) between two cells often imply that they are different types of cells.

However, since only an infinitesimal amount of mRNAs can be collected from a single cell, the

counting is often inaccurate. In addition, the transient changes in gene expression can make cells of

the same type have different gene expressions. These factors make it challenging to determine what

genes are informative for distinguishing between cell types.

To address this problem, Tarashansky et al. have developed a computational approach called

Self-Assembling Manifold (or SAM for short) to identify differences in gene expression that can lead

to a better classification of cell types. First, SAM groups the cells randomly and looks for genes with

different expression patterns between the groups. By looking at differences between groups instead

of differences between individual cells, SAM is ‘averaging out’ individual differences within groups.

SAM then uses the resulting information to re-classify the cells and start the process over again,

taking the new groups and finding differences between them. SAM repeats these steps until the

classification stops changing and becomes stable. SAM does not require any existing knowledge

about cell types or gene expression, meaning it is unbiased and widely applicable. To test the

usefulness of the algorithm, Tarashansky et al. used SAM to identify new cell types in the medically

important parasitic worm Schistosoma mansoni, which infects hundreds of millions of people

worldwide every year.

SAM can tell cell types apart better than existing approaches, and it can find meaningful

differences in systems with a lot of meaningless variability as demonstrated by evaluating SAM’s

performance on 55 other datasets. The potential applications of this approach are many, including

the creation of detailed cell atlases recording the different types of cells throughout entire

organisms.

DOI: https://doi.org/10.7554/eLife.48994.002
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introducing increasing levels of noise to well-annotated datasets. These analyses reveal that SAM

consistently improves feature selection and cell clustering.

To demonstrate the utility of SAM in practice, we provide an in-depth analysis of two datasets

that are challenging to analyze using existing methods: stem cells in a human parasitic worm, Schis-

tosoma, and activated macrophages (Lane et al., 2017). We show that SAM can capture novel biol-

ogy undetectable by other methods and validate these results with experimental evidence.

Results

The SAM algorithm
The SAM algorithm begins with a random k-nearest neighbor (kNN) graph and averages the expres-

sion of each cell with its k nearest neighbors: C ¼ 1

k
NE, where N is the directed adjacency matrix and

E is the gene expression matrix (Figure 1a). For each gene i, SAM computes a spatial dispersion fac-

tor of the averaged expressions Ci, which measures variation across neighborhoods of cells rather

than individual cells (Materials and methods). These dispersions are used to calculate the gene

weights, which then rescale the expression matrix: Ê ¼ E
ffiffiffiffiffiffiffi

WD

p
, where WD is a diagonal matrix with

gene weights along the diagonal. Using the rescaled expressions Ê, we compute a pairwise cell dis-

tance matrix and update the assignment of each cell’s k-nearest neighbors accordingly. This cycle

continues until the gene weights converge.

To demonstrate the implementation and utility of SAM, below we analyze a challenging dataset

comprised of a few hundred relatively homogeneous stem cells isolated from Schistosoma mansoni

(Figure 1—figure supplement 1), a widespread human pathogen (Hoffmann et al., 2014). Using a

protocol we have established previously (Wang et al., 2018), these cells were collected by sorting

dividing cells from juvenile parasites harvested from their mouse hosts at 2.5 weeks post infection.

At this stage, the parasites use an abundant stem cell population (~15–20% of the total number of

cells) for rapid organogenesis and growth (Wang et al., 2013; Wang et al., 2018). Testing several

existing methods (Wang et al., 2017; Kiselev et al., 2017; Satija et al., 2015), we found that they

were not able to identify distinct cell populations in this dataset. In contrast, SAM finds a stable solu-

tion independent of initial conditions (Figure 1b). A graph structure with clearly separated cell popu-

lations self-assembles through the iterative process (Figure 1c). In parallel, the gene weights

converge onto the final weight vector. Eventually, only a small fraction of genes (~1%) are strongly

weighted and useful for separating cell clusters, reflecting the inherent difficulty of analyzing this

dataset.

Figure 1d shows that SAM iteratively improves a series of graph characteristics, including the net-

work-average clustering coefficient (NACC), modularity, and Euclidean norm of the spatial disper-

sions (Materials and methods). The NACC and modularity quantify the degree of structure within the

graphs – graphs with high NACC and modularity have regions of high density separated by regions

of low density. The dispersion quantifies the spatial organization of gene expression – the higher the

spatial dispersion the less uniformly distributed the gene expressions are along the graph. The final

graph metrics are independent of initial conditions, which can start from a random graph or the out-

put of an existing manifold reconstruction algorithm (e.g. Seurat, Satija et al., 2015). Importantly,

we verified that SAM does not artificially boost these metrics in data that lack inherent structure:

when applying SAM to a randomly shuffled expression matrix, none of these metrics increased from

the random initial conditions.

SAM identifies novel subpopulations within schistosome stem cells
Visualizing the converged graph in two dimensions using Uniform Manifold Approximation and Pro-

jection (Becht et al., 2019), we find that cells can be separated into three main populations, with

Louvain clustering (Blondel et al., 2008) further splitting one of these clusters into two subpopula-

tions (Figure 2a). In contrast, other commonly used dimensionality reduction methods, such as prin-

cipal component analysis (PCA), Seurat (Satija et al., 2015), and SIMLR (Wang et al., 2017), failed

to distinguish these cell populations (see Materials and methods for the selection of algorithms for

comparison). Clustering the Seurat graph using Louvain clustering still results in a low-modularity

partition and poor correspondence to the SAM cluster assignments.
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Figure 1. The SAM algorithm. (a) SAM starts with a randomly initialized kNN adjacency matrix and iterates to refine the adjacency matrix and gene

weight vector until convergence. (b) Root mean square error (RMSE) of the gene weights (top) and the fraction of different edges of the nearest-

neighbor adjacency matrices (bottom) between adjacent iterations (blue) and between independent runs at the same iteration (orange) to show that

SAM converges to the same solution regardless of initial conditions. The differences between the gene weights and nearest-neighbor graphs from

independent runs are relatively small, indicating that SAM converges to the same solution through similar paths. (c) Graph structures and gene weights

of the schistosome stem cell data converging to the final output over the course of 10 iterations (i denotes iteration number). Top: nodes are cells and

edges connect neighbors. Nodes are color-coded according to the final clusters. Bottom: weights are sorted according to the final gene rankings. (d)

Figure 1 continued on next page
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Supplementary file 1 lists genes with high SAM weights, which includes most markers previously

implicated to be enriched in subsets of schistosome stem cells (Wang et al., 2013; Wang et al.,

2018). Figure 2b shows that the three populations include previously characterized d0-cells, which

specifically express an RNA binding protein nanos-2 (Smp_051920), and e-cells, which are marked by

the expression of eledh (eled, Smp_041540) (Wang et al., 2018). More importantly, SAM reveals a

novel stem cell population, m, comprising ~30% of all sequenced cells (m denotes muscle progenitors

as discussed below). While m-cells express ubiquitous stem cells markers (e.g. ago2-1, Smp_179320;

cyclin B, Smp_082490) and cell cycle regulators (Figure 2—figure supplement 1a) (Collins et al.,

2013; Wang et al., 2013; Wang et al., 2018), they are also strongly enriched for a large set of

genes, with a calcium binding protein (cabp, Smp_005350), an actin protein (Smp_161920), an

annexin homolog (Smp_074140), a helix-loop-helix transcription factor (dhand, Smp_062490), and a

phosphatase (dusp10, Smp_034500) as the most specific markers of this population in comparison

to other stem cells (Figure 2—figure supplement 1b).

Fluorescent in-situ hybridization (FISH) in conjunction with EdU labeling of dividing cells reveals

that m-cells (cabp+EdU+) are distributed near the parasite surface right beneath a layer of post-

mitotic differentiated cells that also express cabp (Figure 2c). Close to the parasite surface, there

are two major cell types intertwined in space: the skin-like tegumental cells and the body wall muscle

cells. However, m-cells express none of the recently identified markers in tegumental progenitors

(Wendt et al., 2018), suggesting that they may be associated with the muscle lineage. To test this

idea, we performed double FISH experiments and observed in post-mitotic cabp+ cells the coex-

pression of a set of canonical muscle markers (Witchley et al., 2013), including tropomyosin

(Smp_031770), myosin (Smp_045220), troponin (Smp_018250), and collagen (Smp_170340)

(Figure 2d). These results suggest that cabp may mark the parasite body wall muscles and m-cells

are likely muscle progenitors, although functional validation is required to support this observation.

Why the juvenile parasites maintain such an active pool of muscle progenitors will be an important

question for future studies.

In addition, SAM identifies two subpopulations among e-cells: ea-cells that are highly enriched for

an aschaete-scute transcription factor (astf, Smp_142120), and eb-cells that abundantly express

another basic helix-loop-helix protein (bhlh, Smp_087310) (Figure 2b, right panels). FISH experi-

ments confirm these cells to be in close spatial proximity but with no coexpression of astf and bhlh

(Figure 2e). Moreover, we observed with FISH that there are fewer astf+ cells in larger, more

matured juveniles, suggesting ea-cells are a dynamic population during development. To verify this

observation, we sequenced another ~370 stem cell from juveniles at a later developmental time

point (3.5 weeks post infection). After correcting for batch effects in the combined 2.5- and 3.5-

week datasets using the mutual nearest neighbors (MNN) algorithm (Haghverdi et al., 2018), we

find that d0-, m-, and eb-cells remain relatively constant throughout both time points, whereas ea-cells

comprise a significantly smaller fraction of the stem cells at 3.5 weeks (7%) compared to 21% at 2.5

weeks (Figure 2f). Taken together, these analyses demonstrate that SAM can identify experimentally

validated stem cell populations that are previously too subtle to separate using other methods but

are closely associated with the schistosome development.

The critical difference between SAM and other methods lies in how they select genes for manifold

reconstruction. SAM prioritizes genes with variable expressions across neighborhoods of cells rather

than individual cells as in other methods (e.g. Seurat). Figure 2g shows that genes with high stan-

dardized dispersion across individual cells often have low SAM weights, indicating that these highly

Figure 1 continued

Network properties iteratively improve for the graphs reconstructed from the original data (red) but not on the randomly shuffled data (blue). The

network properties converge to the same values when initializing SAM with the Seurat-reconstructed graph instead of a random graph (yellow). Dashed

lines: metrics measured from the Seurat-reconstructed graphs.

DOI: https://doi.org/10.7554/eLife.48994.003

The following figure supplements are available for figure 1:

Figure supplement 1. Quality control of library preparation and sequencing of the schistosome stem cells.

DOI: https://doi.org/10.7554/eLife.48994.004

Figure supplement 2. A user interface for interactively exploring single-cell data using SAM.

DOI: https://doi.org/10.7554/eLife.48994.005
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Figure 2. SAM identifies novel subpopulations within schistosome stem cells. (a) UMAP projections of the manifolds reconstructed by SAM, PCA, and

Seurat. SIMLR outputs its own 2D projection based on its constructed similarity matrix using a modified version of t-SNE. The schistosome cells are

color-coded by the stem cell subpopulations m, d’, ea, and eb determined by Louvain clustering. (b) UMAP projections with gene expressions of

subpopulation-specific markers (eledh, nanos-2, cabp, astf, bhlh,) and a ubiquitous stem cell marker, ago2-1, overlaid. Insets: magnified views of the

expressing populations. (c) FISH of cabp and EdU labeling of dividing stem cells in juvenile parasites at 2.5 weeks post-infection show that m-cells

Figure 2 continued on next page

Tarashansky et al. eLife 2019;8:e48994. DOI: https://doi.org/10.7554/eLife.48994 6 of 29

Tools and resources Computational and Systems Biology Stem Cells and Regenerative Medicine

https://doi.org/10.7554/eLife.48994


variable genes (HVGs) are irrelevant to the topological relationships between cells. Other methods

(e.g. SC3, Kiselev et al., 2017) identify marker genes based on differential gene expression

between cell clusters, but this approach suffers when cell cluster assignment is poor, especially when

discrete cell groups are difficult to separate or absent. Indeed, SC3 failed in the default mode as it

incorrectly predicted there to be only one cluster in the schistosome dataset. After we manually

increased the number of clusters, SC3 could recover a few of the marker genes associated with only

one (m-cells, blue symbols in Figure 2h) of the populations detected by SAM. Furthermore, changing

the number of clusters resulted in different solutions and large variability in SC3 scores for its top

ranked genes.

SAM outperforms other state-of-the-art methods in extensive
quantitative benchmarking
Below, we assess the general applicability of SAM by benchmarking its performance against state-

of-the-art scRNAseq analysis methods on a large collection of datasets. We focus on three methods,

that is, Seurat, SIMLR, and SC3, as they are mostly unsupervised, have been broadly used, and were

shown to outperform other methods through extensive benchmarking (Kiselev et al., 2017;

Wang et al., 2017; Duò et al., 2019; Bahlo et al., 2018; Tian et al., 2019). The criteria to select

algorithms for comparison are explained in Materials and methods. We first benchmark against nine

datasets (Supplementary file 2) that have high-confidence annotations to evaluate the accuracy of

SAM in assigning cell clusters. Seven of these datasets are of pancreatic islet cells, as their subpopu-

lations have been extensively characterized with known marker genes (Baron et al., 2016). For five

out of the nine datasets, SAM has the highest Adjusted Rand Index (ARI, a measure of clustering

accuracy) (Hubert and Arabie, 1985) with respect to the provided annotations (Figure 3a). On the

remaining four Baron datasets, SAM and Seurat perform equally well with near perfect clustering

accuracy, whereas SC3 and SIMLR tend to overestimate and underestimate the number of clusters,

respectively. Supplementary file 3 lists the clustering scores for each method and for each anno-

tated cell type in the benchmarking datasets (Materials and methods). SC3 and SIMLR struggle to

cleanly cluster cell types that constitute large fractions of the data, such as the alpha and beta cells

in the pancreatic datasets. While Seurat performs well on the Baron datasets, it fails to identify alpha

cells in the Wang and Muraro datasets when run with default parameters, although its performance

is improved after optimizing parameters to maximize its clustering accuracy

(Materials and methods). We note that this parameter optimization is impossible to perform on an

experimental dataset with no available ground truth labels. Nevertheless, even with optimal parame-

ters, Seurat has accuracy lower than or equal to that of SAM on all datasets.

SAM converges to the same set of gene weights for all datasets analyzed (Figure 3b, Figure 3—

figure supplement 1a) and its performance is robust to the choice of parameters and random initial

conditions (Figure 3—figure supplement 1b–c). In contrast, applying SAM to randomly generated

datasets (Materials and methods), the resulting gene weights are highly dissimilar across random ini-

tial conditions (Figure 3b), indicating that SAM does not converge to a stable solution on datasets

with no intrinsic structure. Finally, the scalability of SAM is similar to that of Seurat, capable of

Figure 2 continued

(cabp+EdU+, arrowheads) are close to the parasite surface and beneath a layer of post-mitotic cabp+ cells. Dashed outline: parasite surface. Right:

magnified views of the boxed region. (d) FISH of cabp and a set of canonical muscle markers, troponin, myosin, tropomyosin, and collagen, shows

colocalization in post-mitotic cabp+ cells. Images in (c–d) are single confocal slices. (e) FISH of astf and bhlh shows their orthogonal expression in

adjacent EdU+ cells (arrowheads). Bottom: magnified views of the boxed region. Image is a maximum intensity projection of a confocal stack with a

thickness of 12 mm. (f) UMAP projection of stem cells isolated from juveniles at 2.5 and 3.5 weeks post-infection. Cell subpopulation assignments based

on marker gene expressions are specified. Right: a magnified view to show the mapping of ea- and eb-cells. (g) Standardized dispersions as calculated

by Seurat plotted vs. the SAM gene weights. (h) SC3 AUROC scores plotted vs. the SAM gene weights. Error bars indicate the standard deviation of

SC3 AUROC scores between trials using different chosen numbers of clusters. In (g) and (h), the top 20 genes specific to each subpopulation are

colored according to the color scheme used in (a).

DOI: https://doi.org/10.7554/eLife.48994.006

The following figure supplement is available for figure 2:

Figure supplement 1. m-cells express ubiquitous stem cell marker and population specific genes.

DOI: https://doi.org/10.7554/eLife.48994.007
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analyzing hundreds of thousands of cells in minutes (Figure 3c), whereas SIMLR and SC3 are orders

of magnitudes slower and thus excluded from further benchmarking which requires the analysis of

many more datasets.

Because the nine benchmarking datasets are all comprised of clearly distinguishable cell types,

they may not represent the performance of methods on other datasets that contain cell populations

that are only subtly different. To identify such datasets, we introduce a network sensitivity metric

that quantifies the changes in the cell-to-cell distances when randomly selecting a subset of features

from the gene expression matrices (Materials and methods). High network sensitivity indicates that

changes to the selected features strongly alters the resulting topological network. Networks that are

robust to the selected features correspond to datasets that have many redundant signals or genes

corroborating the network structure. In the datasets we compiled (Supplementary file 2), all broadly

used benchmarking datasets have lower sensitivities whereas the schistosome dataset, which we

have shown to be challenging to analyze, has the highest sensitivity (Figure 4a). The fraction of

genes with large SAM weights (>0.5) is negatively correlated with the network sensitivity, suggesting

that the biologically relevant variation in datasets with high sensitivity is captured by relatively fewer

genes (Figure 4b). Analyzing all 56 datasets, we found that SAM improves the clustering,
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Figure 3. SAM improves clustering accuracy and runtime performance. (a) Accuracy of cluster assignment quantified by adjusted rand index (ARI) on

nine annotated datasets (left). Right: differences between the number of clusters found by each method (N) and the number of annotated clusters

(NTRUE). Smaller differences indicate more accurate clustering. Seurat* denotes Seurat analysis using parameters that maximize ARI. (b) RMSE of gene

weights output by SAM averaged across ten replicate runs with random initial conditions for 56 datasets (blue) and simulated datasets with no intrinsic

structure (green, Materials and methods). (c) Runtime of SAM, SC3, SIMLR, and Seurat as a function of the number of cells in each dataset. SC3 and

SIMLR were not run on datasets with >3000 cells as the run time exceeds 20 min.

DOI: https://doi.org/10.7554/eLife.48994.008

The following figure supplement is available for figure 3:

Figure supplement 1. SAM converges to a stable solution independent of random initial conditions and is robust to the number of nearest neighbors

and choice of distance metric.

DOI: https://doi.org/10.7554/eLife.48994.009
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modularity, and spatial organization of gene expression across the graph in comparison to Seurat as

the datasets become increasingly sensitive (Figure 4c).

Evaluating the clustering accuracy for the highly sensitive datasets, however, is challenging,

because many of them have incomplete or nonexistent cell type annotations. Therefore, we use the

nine well-annotated benchmarking datasets to simulate data across a wide spectrum of sensitivities.

For this, we corrupt the data by randomly permuting gradually increasing fractions of the gene

expressions. As illustrated by the Darmanis dataset (Darmanis et al., 2015), Figure 5a shows that

the sensitivity increases along with the corruption. Below ~50% corruption, SAM’s ARI scores only

marginally decrease as the corruption (and thereby sensitivity) increases, whereas Seurat’s perfor-

mance rapidly deteriorates, even when run with optimal parameters. A similar contrast was observed

between SAM and Seurat with the NACC, modularity, and spatial dispersion. Importantly, passing

the genes with high SAM weights into Seurat rescued its performance across all metrics, indicating

that SAM is able to consistently capture the genes relevant to the underlying structure of the data

even with increasing levels of noise and illustrating the robustness of its feature selection strategy

compared to the HVG filtering approach used by Seurat. These observations generalize to all nine

benchmarking datasets, quantified by the area under the curves (AUC) of the metrics with respect to

corruption (Figure 5b).
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Figure 4. SAM improves the analysis of datasets with varying network sensitivities. (a) Network sensitivity of all 56

datasets ranked in descending order. Blue: the nine benchmarking datasets used in Figure 3a. Sensitivity

measures the robustness of a dataset to changes in which features are selected (Materials and methods). (b) The

network sensitivity plotted against the fraction of genes with SAM weight greater than 0.5 (in log scale) with

Spearman correlation coefficient specified in the upper-right corner. (c) Fold improvement of SAM over Seurat for

NACC, modularity, and spatial dispersion with respect to sensitivity for all 56 datasets. These ratios are linearly

correlated with network sensitivity with Pearson correlations (r2) specified in the upper-left corner of each plot.

DOI: https://doi.org/10.7554/eLife.48994.010
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SAM clusters macrophages by their activation dynamics with proper
temporal ordering
We next highlight another dataset to show that SAM can recover biologically meaningful information

that other methods fail to capture. We chose this example, which contains ~600 macrophages

treated with lipopolysaccharide (LPS) when individually trapped in microfluidic channels (Lane et al.,

2017), because it has high network sensitivity (Figure 4a) and has accompanying single cell func-

tional data of macrophage activation dynamics that may help to validate the results of our analysis.

Applied to this dataset, SAM initially identifies two clusters (Figure 6a, top). Performing gene set

enrichment analysis (GSEA, Subramanian et al., 2005), we find that genes with high SAM weights

are dominated by cell cycle-related processes, with one of the clusters heavily enriched for cell cycle

genes (e.g. Top2a, Mki67, Figure 6—figure supplement 1a). After removing the cell cycle effects

(Materials and methods), SAM identifies two different clusters in which cells are properly ordered by

the time since LPS induction, with the highly weighted genes being primarily involved in immune sig-

naling (Figure 6a, bottom). These observations demonstrate that, in conjunction with GSEA, the

quantitative gene weights output by SAM can be used to infer the biological pathways that drive

the clustering of cells.

One of the two clusters is enriched for TNFa expression (Figure 6b). It is known that LPS activates

two independent pathways, one through the innate immune signal transduction adaptor (Myd88)

and the other through the TIR-domain-containing adapter-inducing interferon-b (TRIF) (Lee et al.,

2009). While the Myd88 pathway directly activates NF-kB, the TRIF pathway first induces the secre-

tion of TNFa, which subsequently binds to its receptor, TNFR, to prolong the activation of NF-kB
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Figure 5. Robust feature selection improves cell clustering and manifold reconstruction. (a) Network sensitivity, ARI, NACC, modularity, and spatial

dispersion with respect to corruption of the Darmanis dataset, in which we randomly permute fractions of the data ranging from 0 to 100% of the total

number of elements (Materials and methods). Performance is compared between SAM (blue), Seurat (red), Seurat with optimal parameters (black), and

Seurat rescued with the top-ranked SAM genes (indigo). Error bars indicate the standard deviations across 10 replicate runs. The errors for points with

no bars are too small to be seen. (b) Comparison of the area under curve (AUC) of the metrics in (a) with respect to data corruption for all nine datasets.

Error bars indicate the standard deviations across 10 replicate runs. The errors for data with no error bars are too small to be seen.

DOI: https://doi.org/10.7554/eLife.48994.011
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Figure 6. SAM captures the cellular activation dynamics in a stimulated macrophage dataset. (a) GSEA analysis (left) and UMAP projections (right) of

the activated macrophages before (top) and after (bottom) removing cell cycle effects. Teal: significantly enriched gene sets determined by the

significance threshold of 0.25 for the False Discovery Rate (FDR, dashed lines). Bottom: the two clusters are denoted as MT and M with colors

representing the time since LPS induction. Arrows: evolution of time. (b) TNFa is enriched in the MT cluster. (c) Diagram of NF-kB activation in

response to LPS stimulation via the Myd88 and TRIF signaling pathways. (d) Log2 fold changes of the average expressions of selected inflammatory

genes in the MT cluster vs. the M cluster. All genes are significantly differentially expressed between the two clusters according to the Welch’s two-

sample t-test (p<5 � 10�3). (e) Representative traces for transient (left) and prolonged (right) NF-kB activation (Materials and methods). (f) Cells with

prolonged NF-kB response (denoted as P) are primarily in the MT population. (g) Seurat and SIMLR projections show that they fail to order the cells by

time since LPS induction and do not identify cell clusters representing the different modes of NF-kB activation.

DOI: https://doi.org/10.7554/eLife.48994.012

The following figure supplements are available for figure 6:

Figure supplement 1. Cluster-specific marker genes before and after removing cell cycle effects.

DOI: https://doi.org/10.7554/eLife.48994.013

Figure supplement 2. SAM groups cells based on NF-kB activation dynamics while other methods cannot.

DOI: https://doi.org/10.7554/eLife.48994.014
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(Figure 6c). Figure 6d and Figure 6—figure supplement 1b show examples of genes that are

highly enriched with TNFa, a number of which are inflammatory factors known to accumulate due to

prolonged NF-kB activation (Lane et al., 2017). These results suggest that SAM grouped the cells

based on their activated signaling pathways: one cluster is activated through both Myd88 and TRIF

pathways (MT), while the other is only activated through Myd88 (M).

To further verify that the separation between the MT and M clusters truly reflects the dichotomy

in cellular response to LPS induction, we noted that this dataset combines scRNAseq with live-cell

imaging of NF-kB activity in single cells. This allows us to directly test if the MT and M clusters corre-

spond to different signaling dynamics (Materials and methods). We found that most of the cells with

prolonged NF-kB response (i.e. cells showing broad peaks of NF-kB activation in time) are in fact in

the MT cluster (Figure 6e–f, and Figure 6—figure supplement 2a), consistent with the expectation

that TNFa signaling prolongs NF-kB activation. Although our interpretation of the data matches that

provided in the original study, we were able to analyze the dataset with almost no a priori knowl-

edge. In contrast, the original study required extensive manual curation, analyzed only a subset of

the dataset, and could not group cells by their NF-kB activation dynamics based on the gene

expression data alone. Similarly, Seurat and SIMLR were unable to order the cells by the time since

LPS induction or group cells based on their activation dynamics after removing the cell cycle effects

(Figure 6g, and Figure 6—figure supplement 2b–c).

Discussion
Here, we introduced a scRNAseq analysis method, SAM, which uses an unsupervised, robust, and

iterative strategy for feature selection and manifold reconstruction. As demonstrated by our analysis

of the schistosome stem cells and activated macrophages, SAM can capture biology that is unde-

tectable by other methods. While SAM has consistently higher clustering accuracy than other state-

of-the-art methods on datasets containing clearly distinct cell types, its advantages are especially

apparent on datasets in which cell states or types are only distinguishable through subtle differences

in gene expression.

The strength of SAM lies in the integration of three algorithmic components: spatial dispersion to

measure feature relevance, soft feature selection, and the iterative scheme. By averaging the gene

expression of a cell with that of its neighbors, the spatial dispersion quantifies the variation across

neighborhoods of cells rather than individual cells. Genes with high spatial dispersion are more likely

to be biologically relevant as they are capable of separating cells into distinct topological locations.

Soft feature selection includes all genes and weights their contribution to the manifold reconstruc-

tion by their spatial dispersions. This mitigates the shortcoming of existing approaches in which the

selection of features is a binary decision: genes are either included or not depending on arbitrarily

chosen thresholds.

The conceptual challenge here is that calculating the gene weights requires the manifold, but

reconstructing the manifold requires the gene weights for feature selection. SAM thus uses an itera-

tive strategy to converge onto both the gene weights and the corresponding graph topology from a

random initial graph. Each successive iteration refines the gene weights and network structure until

the algorithm converges. Empirically, for all datasets analyzed we have shown that SAM converges

onto a stable solution and is robust to the random initial conditions. Practically, it is possible to ini-

tialize SAM using the graph output of another method such as Seurat (Figure 1d), but using random

initial conditions avoids potential biases in the analysis and enables the evaluation of the stability of

SAM.

To demonstrate the strengths of SAM in practice, we analyzed the schistosome stem cells and

identified novel stem cell populations that were validated by FISH experiments (Figure 2). In the

analysis of activated macrophages, we showed that SAM can simultaneously order cells by the time

since LPS induction and group cells according to their respective activated signaling pathways. We

have validated this result using the live-cell imaging data presented in the original study (Figure 6).

We expect that the application of SAM is not limited to feature selection, cell clustering, and

manifold reconstruction; it can be readily integrated with existing analytical pipelines as its gene

weights and reconstructed manifolds can be used in downstream analyses. For example, we have

shown how the genes ranked by their SAM weights can be used as input to GSEA to determine the

biological processes enriched among the highly weighted genes (Figure 6), thus directly testing if

Tarashansky et al. eLife 2019;8:e48994. DOI: https://doi.org/10.7554/eLife.48994 12 of 29

Tools and resources Computational and Systems Biology Stem Cells and Regenerative Medicine

https://doi.org/10.7554/eLife.48994


the weights reflect the biological relevance of genes. Additionally, the manifold reconstructed by

SAM can be used as input to pseudotemporal ordering algorithms (Setty et al., 2016;

Trapnell et al., 2014).

Beyond the two example case studies, we have rigorously evaluated SAM on a total of 56 data-

sets. While previous studies benchmarked on datasets with clearly defined cell populations, we

defined a network sensitivity measure to rank the datasets based on the inherent difficulty of their

analysis (Figure 4). Using these datasets, we showed that SAM consistently outperforms other meth-

ods in terms of both cell clustering accuracy measured by ground truth annotations, and manifold

reconstruction measured by quantitative graph characteristics. These improvements can be attrib-

uted to the robust selection of features relevant for cell clustering and manifold reconstruction even

in the presence of significant amounts of random noise, as shown in the corruption tests (Figure 5).

Overall, the network sensitivity and quantitative benchmarking metrics should help in characterizing

the performance of future scRNAseq analysis methods across a wider variety of datasets.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation Source or reference Identifiers

Additional
information

Commercial
assay or kit

SsoAdvanced Universal
SYBR Green Supermix

Biorad 1725270 qPCR

Commercial
assay or kit

Quant-iT PicoGreen
dsDNA Assay Kit

Thermo-Fisher P7589 cDNA quantification

Peptide,
recombinant protein

RNase Inhibitor Takara Bio 2313B RT mix

Chemical
compound, drug

dNTP Set 100 mM
solutions

Thermo-Fisher R0181 RT mix and cDNA
pre-amplification

Sequence-
based reagents

100 mM oligo-dT IDT AAGCAGTGGTATCAAC
GCAGAGTACT(30)VN

Sequence-
based reagents

100 mM TSO Exiqon AAGCAGTGGTATCAAC
GCAGAGTACATrGrG+G

Commercial
assay or kit

ERCC RNA Spike-In Mix Thermo-Fisher 4456740 RT mix

Chemical
compound, drug

10% Triton X-100 Thermo-Fisher 28314 RT mix

Peptide,
recombinant protein

SMARTscribe reverse
transcriptase

Takara Bio 639538 RT mix

Chemical
compound, drug

100 mM DTT Promega P1171 RT mix

Chemical
compound, drug

5 M Betaine Thermo-Fisher B0300-1VL RT mix

Commercial
assay or kit

Kapa Hotstart Ready Mix Roche KK2602 cDNA pre-
amplification

Sequence-
based reagents

100 mM IS_PCR primer IDT AAGCAGTGGTAT
CAACGCAGAGT

Peptide,
recombinant protein

lambda exonuclease NEB M0262S Depletion of primer dimers

Commercial
assay or kit

Ampure purification
beads

NEB M0262S DNA purification

Commercial
assay or kit

TG Nextera XT DNA
Sample Preparation Kit

Illumina FC-131–1096 Library preparation

Commercial
assay or kit

TG Nextera XT Index
Kit v2 Set A (96 Indices,
384 Samples)

Illumina TG-131–2001 Library preparation

Continued on next page
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Continued

Reagent type
(species) or
resource Designation Source or reference Identifiers

Additional
information

Strain, strain
background
(S. mansoni)

NMRI BEI Resources NR-21963

Antibody Anti-Digoxigenin-POD,
Fab fragments from sheep

Roche 11207733910 (1:1,000); FISH
experiments

Antibody Anti-Fluorescein-POD,
Fab fragments from sheep

Roche 11426346910 (1:1,500); FISH
experiments

Peptide,
recombinant
DNA reagents

Plasmid-pJC53.2 Addgene 26536 Cloning vector

Chemical
compound, drug

Cy5-azide Click Chemistry Tools AZ118 EdU detection

Chemical
compound, drug

5-ethynyl-2-
deoxyuridine (EdU)

Invitrogen A10044

Chemical
compound, drug

Vybrant DyeCycle Violet (DCV) Invitrogen V35003 FACS

Chemical
compound, drug

TOTO-3 Invitrogen T3604 FACS

Code and data availability
The SAM source code and tutorials can be found at https://github.com/atarashansky/self-assem-

bling-manifold (Tarashansky, 2019; copy archived at https://github.com/elifesciences-publications/

self-assembling-manifold). We have included a number of tutorials describing in detail the various

functions, parameters, attributes, and data structures of the SAM package, and provided the docu-

mentation (docstrings) for all functions available to users. In addition, we have developed an interac-

tive user interface that facilitates the convenient exploration of single-cell data and SAM parameters

(Figure 1—figure supplement 2). A Jupyter notebook tutorial explaining how to use the interface is

provided as well. The schistosome stem cell scRNAseq data generated in this study were obtained

in two sequencing batches and are available through the Gene Expression Omnibus (GEO) under

accession number GSE116920.

Data processing
Supplementary file 2 summarizes all datasets used in this study as well as the methods used to con-

vert raw sequence read counts to gene expression, such as TPM (transcripts per million), CPM

(counts per million), RPKM (reads per kilobase per million), or FPKM (fragments per kilobase per mil-

lion). Datasets with asterisks next to their accession numbers are sourced from the conquer database

(Soneson and Robinson, 2018). The nine benchmarking datasets used with high-confidence annota-

tion labels are marked by crosses. Gene expression is measured in log space with a pseudocount of

1 (e.g. log2(TPM+1)). Genes expressed (log2(TPM+1)>1) in fewer than 1% or more than 99% of cells

are excluded from downstream analysis as these genes lack statistical power. To reduce the influ-

ence of technical noise near the molecular detection limit, we set gene expression to zero when

log2(TPM+1)<1. We denote the resulting expression matrix as E.

In the SAM algorithm (see below), we either standardize the gene expression matrix E to have

zero mean and unit variance per gene (which corrects for differences in distributions between genes)

or normalize the expressions such that each cell has unit Euclidean (L2) norm (which prevents cells

with large variances in gene expressions from dominating downstream analyses) prior to dimension-

ality reduction. In the below section, we denote the standardized or normalized expression matrix

as �E. Empirically, we have found that standardization performs well with large, sparse datasets that

are expected to contain many subpopulations, whereas L2-normalization is more suitable for smaller

datasets with fewer subpopulations. This is likely due to the fact that standardization amplifies the

relative expression of genes specific to small populations in large datasets, thereby making them

easier to identify. In contrast, standardization decreases the relative expression of genes specific to
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populations comprising larger fractions of the data, as is typically the case in smaller datasets,

thereby making distinct populations more difficult to identify. Supplementary file 2 documents the

preprocessing step used for each dataset.

The SAM algorithm
After first generating a random kNN adjacency matrix, the SAM algorithm goes through three steps

that are repeated until convergence.

Calculate the gene weights
First, the expression of each cell is averaged with its k-nearest neighbors:

C¼ 1

k
NE (1)

where N is the directed adjacency matrix for the kNN graph, and E is the n x m log-transformed

gene expression matrix with rows as cells and columns as genes. Here, we do not use �E as it may

contain negative values, for which dispersion is ill-defined. For each gene i, SAM computes the Fano

factor from the averaged expressions Ci:

�Ci
¼ 1

n

X

n

j¼1

Cji (2)

s
2

Ci
¼ 1

n

X

n

j¼1

Cji ��Ci

� �2
(3)

Fi ¼
s
2

Ci

�Ci

(4)

where �Ci
is the mean and s

2

Ci
is the variance. We use the Fano factor to measure the gene expres-

sion variance relative to the mean in order to account for the fact that genes with high mean expres-

sions tend to have higher variability. Computing the Fano factors based on the kNN-averaged

expressions links gene dispersion to the cellular topological structure: genes that have highly vari-

able expressions among individual cells but are homogeneously distributed across the topological

representation should have small dispersions. k, set by default to 20, determines the topological

length scale over which variations in gene expression are quantified. Figure 3—figure supplement

1b shows that the downstream analysis is robust to the specific choice of k. Additionally, the choice

of k does not significantly affect runtime complexity or scalability.

To compute the gene weights, we normalize the Fano factors to be between 0 and 1. First, we

saturate the Fano factors to ensure that genes with large spatial dispersions do not skew the distri-

bution of weights: FijFi>zf g ¼ z, where z is the mean of the largest N dispersions (N ¼ 50 by default).

We then calculate the gene weights as:

Wi ¼
Fi

z
(5)

Rescale the expression matrix
SAM multiplies the gene weights into the preprocessed expression matrix:

Ê¼ �E
ffiffiffiffiffiffiffi

WD

p
(6)

where �E is the standardized or normalized expression matrix and WD is a diagonal matrix with Wi

along the diagonal. This matrix multiplication linearly rescales the gene expression variances and

gene-gene covariances by their respective weights, attenuating the influence of genes with low dis-

persions across neighborhoods.
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Updating the kNN graph
To compute pairwise cell-cell distances, we perform PCA on the rescaled expression matrix Ê. The

variance-scaling operation in Equation 6 improves the robustness of PCA to variations in genes that

are uniformly distributed along the current graph (i.e. genes with low weights). Furthermore, this

weighting strategy eliminates the typical requirement of selecting a subset of HVGs to feed into

PCA, which often relies on arbitrary thresholds and heuristics. To perform PCA, we first mean center

Ê to form Ê�:

Ê� ¼ Ê� 1

n
eeT Ê (7)

where e is a column vector of ones with dimension n. We then compute the Singular Value Decom-

position (SVD) of Ê�:

Ê� ¼USVT (8)

with the principal components defined as

P¼US (9)

The eigenvalues corresponding to the eigendecomposition of the gene-gene covariance matrix

are defined in terms of the singular values as

L¼ S2

n� 1
(10)

where S is a diagonal matrix with singular values along the diagonal. Using the PC matrix P, SAM

computes a pairwise cell-cell distance matrix. While typical dimension reduction approaches include

a subset of the PCs, which is often subjective or requires computationally intensive maximum-likeli-

hood approaches, we include all PCs and scale their variances by their corresponding eigenvalues:

P̂¼ P
ffiffiffiffi

L
p

(11)

As a result, PCs with small eigenvalues are weighted less in the calculation of the distance

between cells i and j, DP̂iP̂j
. DP̂iP̂j

is the Pearson correlation or Euclidean distance between rows P̂i

and P̂j in the PC matrix. Pearson correlation distance is used by default, although Figure 3—figure

supplement 1c shows that SAM is robust to the choice of distance metric. Using the distances to

define the k-nearest neighbors for each cell, SAM updates the kNN matrix and repeats steps 1-3.

The algorithm continues until convergence, defined as when the RMSE between gene weights in

adjacent iterations converges:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

m

X

m

j¼1

Wi;j�Wiþ1;j

� �2

v

u

u

t <5� 10
�3 (12)

where m is the number of genes and Wi;j is the weight for gene j at iteration i.

Visualization
To visualize the topological structure identified by SAM, we feed the final weighted PCA matrix, P̂,

into UMAP (Becht et al., 2019) using Pearson correlation as the distance metric by default. To

directly visualize the final kNN adjacency matrix (Figure 1c), we used the Fruchterman-Reingold

force-directed layout algorithm and drawing tools implemented in the Python package graph-tool

(Peixoto, 2017).

Choosing the benchmarking methods
We used three main criteria for choosing the benchmarking scRNAseq analysis methods: they should

be widely used, have done extensive benchmarking against other methods, and be mostly unsuper-

vised. We found on Web of Science that among the highest cited scRNAseq analysis tools in 2017–
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2018 are Seurat, SC3, SIMLR, Reference Component Analysis (Li et al., 2017), Monocle

(Trapnell et al., 2014; Qiu et al., 2017), zero-inflated factor analysis (ZIFA, Pierson and Yau, 2015),

and Wishbone (Setty et al., 2016), of which we chose Seurat, SC3, and SIMLR.

SC3 is a consensus clustering algorithm that has done rigorous benchmarking against other meth-

ods such as SINCERA (Guo et al., 2015), SNN-Cliq (Xu and Su, 2015) and pcaReduce

(Žurauskienė and Yau, 2016) on 12 datasets with ground truth annotation labels. SIMLR, a

dimensionality reduction and clustering algorithm, evaluated its clustering performance on four

annotated datasets against eight other dimensionality reduction methods, including PCA, Factor

Analysis (FA), t-SNE, multidimensional scaling (MDS), and ZIFA. Both methods have demonstrated

the highest clustering accuracy across most of the tested datasets. Additionally, as both methods

have built-in functions to estimate the number of clusters present within the data, they are largely

unsupervised. We also selected Seurat as one of the benchmarking methods, because it is arguably

the most widely used tool for dimensionality reduction and clustering of scRNAseq data and has per-

formed well in rigorous benchmarking studies against various methods including SC3, SIMLR, RCA,

and pcaReduce (Duò et al., 2019; Bahlo et al., 2018).

We did not select Reference Component Analysis as it is primarily designed for cases in which an

atlas of bulk, cell-type specific, reference transcriptomes is present. Additionally, we did not bench-

mark against Monocle and Wishbone, because they are pseudotime analysis methods and are meant

for datasets with continuous branching processes such as cell differentiation. However, it is impor-

tant to note that SAM can be used for dimensionality reduction upstream of pseudotime algorithms

for such datasets. Finally, we did not benchmark against ZIFA as it has already been shown to have

lower clustering accuracy than SIMLR.

In addition to measuring clustering accuracy, we also introduce the NACC, modularity, and spatial

dispersion metrics to quantify both the degree of structure and spatial organization of gene expres-

sion within a nearest-neighbor graph. These metrics can only be applied to dimensionality reduction

methods that construct a graph representation of the dataset. Consequently, we cannot use these

metrics to evaluate SC3.

Although it does technically produce a graph representation of the data, SIMLR should be consid-

ered as a hybrid between a clustering and dimensionality reduction method. Because its similarity

graph is assumed to have a block structure where the number of blocks is equal to the prespecified

number of clusters, the resulting nearest-neighbor graph will, by construction, tend to have a higher

degree of structure and therefore artificially inflated NACC and modularity.

Furthermore, the poor scalability of SC3 and SIMLR makes them difficult to run for many trials

across a large number of datasets. Although SIMLR, in particular, does provide an alternative algo-

rithm that can scale to run on much larger datasets, this alternative version has not been extensively

benchmarked. Even so, despite the improved speed of this large-scale implementation, estimating

the number of clusters using its built-in function remains a significant computational and memory

bottleneck. For example, when applied to datasets with ~10,000 cells, neither implementations of

SIMLR could estimate the number of clusters within 2 hr. As a result, we cannot run SIMLR in an

unsupervised manner on datasets significantly larger than ~3000 cells.

As there are few practical alternatives for manifold reconstruction that have been extensively

benchmarked and widely used, we primarily compare SAM to Seurat in tests involving the unsuper-

vised, graph-based metrics to highlight the key, advantageous characteristics of SAM as a manifold

reconstruction and feature selection algorithm when applied to datasets with varying sensitivities

(Figure 4a–c).

Benchmarking
To generate the convergence curves in Figure 1b, we computed the root mean square error (RMSE)

of the gene weights averaged across all pairwise comparisons of ten replicates starting from ran-

domly generated initial graphs. In Figure 3b, we extend this analysis to all datasets analyzed and

report the final error. We use randomly generated datasets of varying sizes (ranging from 200 to

5000 cells) as a negative control to show that SAM does not converge onto the same solution across

initial conditions when the data has no intrinsic structure. These datasets were randomly generated

by sampling gene expressions from a Poisson distribution with mean drawn from a gamma distribu-

tion. To generate the convergence curves in Figure 3—figure supplement 1a, we computed the

RMSEs, which are ensemble-averaged across ten replicate runs, between the gene weights in
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adjacent iterations. We compute the adjacency error between kNN adjacency matrices Ni and Nj

(Figure 1b) as

Ai;j ¼
eT jNi � Njje

2eTNie
(13)

where e is a column vector of ones. This simply measures the fraction of total edges that are differ-

ent between the two graphs.

To compute the standardized dispersion factors in Figure 2g, we used Seurat’s methodology

implemented in Scanpy (Wolf et al., 2018), which groups the genes into 20 bins based on their

mean expression values and computes the z-score of each gene’s Fano factor with respect to the

mean and standard deviation of all Fano factors in its corresponding bin. To generate the AUROC

scores in Figure 2h, which quantify the likelihood of genes being cluster-specific markers, we ran

SC3 on the schistosome data with the number of clusters ranging from 2 to 12. We used the AUROC

scores corresponding to four clusters for the points on the scatter plot and the standard deviations

of the scores across all tested numbers of clusters for the error bars.

We evaluated each analysis method on nine gold standard datasets (Figure 3a) using ARI, which

measures the accuracy between two cluster assignments X and Y while accounting for randomness

in the clustering:

ARI ¼

P nij
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where n is the number of cells, and nij, ai, and bj are elements from a contingency table that summa-

rizes the overlap between the assignments X and Y (Hubert and Arabie, 1985). nij denotes the num-

ber of cells assigned to Xi that are also assigned to Yj, while ai and bj are the sums of the ith row jth

column of the contingency table, respectively. To calculate the clustering accuracy for each ground

truth annotation label in Supplementary file 3, we decomposed the ARI into a vector of j elements

if Y is the ground truth (i otherwise) by not summing up the j terms in the numerator, leaving it in

vector form. Because the magnitudes of the cluster-specific scores depend on the number of cells in

each cluster, a reference score was computed for each cluster using both X and Y as the true labels.

Seurat was implemented using the Scanpy package in Python (Wolf et al., 2018). For Seurat, we

used both default and optimized parameters. In its default implementation, we selected the top

3000 variable genes according to their standardized dispersions and chose the number of PCs

(bounded between 6 and 50) which explain 30% of the variance for dimensionality reduction. From

these PCs, we calculated a cell-cell correlation distance matrix. To keep the comparison between

SAM and Seurat graphs consistent, this distance matrix was converted into a kNN adjacency matrix

with the value of k used by SAM. We also ran a parameter sweep to optimize Seurat’s performance

for each benchmarking dataset separately by changing the number of highly variable genes and

principal components to maximize the clustering accuracy.

To assign cluster labels for SAM and Seurat, we applied HDBSCAN (McInnes et al., 2017), an

unsupervised, density-based clustering algorithm to their respective PCA outputs. As HDBSCAN

does not cluster any cell it deems an outlier, we assign the remaining outlier cells to clusters using

kNN classification. For each outlier cell, we identify its 20 nearest neighbors among the clustered

cells. Outliers are assigned to the same cluster as that of the majority of its neighbors. This minor

extension to HDBSCAN is available as the built-in function hdbknn_clustering in SAM. SC3 was run

using default parameters. The SIMLR package was implemented in R and run with the normalization

parameter set to ‘True’, which mean-centers gene expressions after normalizing them to be between

0 and 1. Both SC3 and SIMLR provide their own functions to estimate the number of clusters and

cluster assignments.

To compare the quality of graphs generated by different methods, we use the NACC, modularity,

and spatial dispersion. The NACC is the average of the local clustering coefficient for each node of a

graph and quantifies the degree of structure in the graph (Watts and Strogatz, 1998). The local

clustering coefficient is defined as

Tarashansky et al. eLife 2019;8:e48994. DOI: https://doi.org/10.7554/eLife.48994 18 of 29

Tools and resources Computational and Systems Biology Stem Cells and Regenerative Medicine

https://doi.org/10.7554/eLife.48994


ai ¼
Li

ki ki � 1ð Þ (15)

where Li is the number of edges between the ki neighbors of node i and measures the degree of

connectedness in a particular node’s local neighborhood. We calculate the NACC using the imple-

mentation in graph-tool (Peixoto, 2017).

The modularity Q of a graph is defined as

Q¼ 1

4m

X

c

i;j

Aij�
kikj

2m
dij

� �

(16)

where Aij is one if there is an edge from cell i to cell j, ki is the degree of cell i, kj is the degree of cell

j, m is the total number of edges, and dij is 1 if cells i and j are in the same cluster or 0 otherwise.

High modularity indicates that clusters have on average more edges within clusters than between

clusters. To find the optimal modularity for a particular graph, we used Louvain clustering, which

searches for a partition with maximum modularity.

To quantify the spatial organization of gene expression along the graph, we calculate the Euclid-

ean norm of the largest 100 spatial dispersions. Spatial dispersion is defined as before in the SAM

algorithm: Fi ¼
s
2

Ci

�Ci

, where Fi is the Fano factor of the kNN-averaged expressions and Ci ¼ 1

k
NEi. N is

the directed adjacency matrix output by SAM or Seurat and Ei is a column vector of expression val-

ues for gene i.

To measure the inherent sensitivity of each dataset, we randomly perturbed the gene expression

matrices of each dataset by randomly sampling 2000 genes and applied PCA to the subsampled

data. A correlation distance matrix was calculated from the top 15 PCs and perturbations were

repeated 20 times to generate distance matrix replicates. Sensitivity is then defined as the average

error across all pairwise comparisons between replicates. The error between two distance matrices j

and k, Sjk, is defined as the average correlation distance between corresponding pairs of rows in the

distance matrices dj and dk:

Sjk ¼
1

n

X

n

i¼1

D dj;i;dk;i
� 	

(17)

where D dj;i;dk;i
� 	

is the Pearson correlation distance between the distances from cell i in distance

matrices j and k.

We simulated datasets with increasing sensitivity by introducing increasing degrees of corruption

in each of the nine annotated datasets. To corrupt a dataset, we randomly permuted a fraction f of

the elements in the expression matrix. The proportion of elements permuted corresponds to the

degree of corruption, ranging from 0 to all elements. For each annotated dataset, we simulated 10

replicates per value of f. SAM and Seurat were run on each corrupted dataset, clustering was per-

formed using the hdbknn_clustering function in SAM, and the ARI, NACC, modularity, and spatial

dispersion metrics were recorded. The Area Under the Curve (AUC) was calculated for each metric

with respect to f using the trapezoidal rule. Finally, to rescue the performance of Seurat, we used as

input to Seurat the top 3000 genes with the highest SAM weights.

Gene set enrichment analysis (GSEA)
GSEA (Subramanian et al., 2005) is typically run on a gene expression matrix with user-defined clus-

ter assignments to quantify the differential expression for each gene. By default, differential expres-

sion is quantified using a signal-to-noise metric and the resulting scores are used to rank the genes

in descending order. However, GSEA can also run in an alternative mode in which the user provides

a predefined list of gene rankings. Therefore, we used the genes ranked by their SAM weights as

input to GSEA to determine the biological processes enriched among the highly weighted genes. As

shown in Figure 6a, we can directly test if SAM captures the relevant biological processes. GSEA

provides a number of statistical measures to assess the significance of enriched gene sets, of which

we use the False Discovery Rate (FDR). The FDR quantifies the likelihood that a highly enriched gene
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set represents a false positive. The significance threshold typically used with FDR is 25%, which

implies that the results are likely to be valid 75% of the time.

Removal of cell cycle effects
To remove cell cycle effects from the macrophage dataset, we adopted a simpler version of the

strategy used in ccRemover (Barron and Li, 2016), in which we subtract from the data PCs that are

significantly associated with known cell cycle genes. Letting P represent the PCs and L be the gene

loadings, we quantify the association between the set of cell cycle genes G and PC j as

Aj ¼
1

jGj
X

i2G
Lji
�

�

�

� (18)

PC j is selected if its association Aj is at least two standard deviations above the mean of the asso-

ciations for all PCs. In the particular case of the macrophage data, we identified the set of PCs

S¼ P0;P1;P8f g as being significantly associated with the cell cycle genes. We next reconstruct the

data using these PCs, which thus captures the cell-cycle effects, and subtract the reconstructed data

from the expression matrix E:

Eremoved ¼ E�
X

j2S
PjLj

ffiffiffiffiffi

W
p

(19)

When reconstructing the data, we scale the gene loadings by the SAM weights W so that only

the highly weighted SAM genes (which are initially dominated by cell cycle genes) contribute to the

cell cycle removal, as there may be other genes involved in other biological processes that could

also be correlated with the PCs in S. To run SAM on the data with cell cycle effects removed, we use

E as opposed to Eremoved for the calculation of spatial dispersions, because the latter may contain

negative values, for which dispersion is ill-defined. This method is made available as a part of the

SAM package in the functions calculate_regression_PCs and regress_genes.

Clustering the NF-kB activity time series
The original study combined imaging and transcriptomics to link NF-kB nuclear translocation dynam-

ics to changes in gene expression within single cells. Macrophages stimulated with LPS were individ-

ually trapped in microfluidic chambers and imaged for various lengths of time (75–300 min) prior to

scRNAseq library preparation. NF-kB was tagged with a fluorescent protein, and its activation was

measured as the nuclear-localized fluorescence intensity. Based on the imaging data, the authors

identified three main classes of NF-kB dynamics, the first with a transient initial response, the second

with a prolonged initial response, and the third with a recurrent response. Because the recurrent

response is found only in the 300 min time point (the latest time point in the study) and comprises

only ~8% of these cells, we primarily focused on clustering cells based on their initial dynamics. To

do this, we used the tslearn (Tavenard, 2017) python package to group cells based on their NF-kB

activity time series. Because these time series are quite noisy, we were conservative in labeling cells

as having a prolonged initial response in an effort to avoid false positives. As a result, these cells

comprise only ~30% of the dataset.

For the cells sampled at 75 and 150 min after LPS stimulation, we used the time series k-means

algorithm with the softdtw distance metric to cluster them into three groups, which resulted in rep-

resentative time series with transient, intermediate, and prolonged responses. Merging the cells

with transient and intermediate responses into one cluster (which we simply labeled as transient

response), we obtained the 75 and 150 min representative time series shown in Figure 6e. Because

the cells sampled at 300 min displayed much more variability in their NF-kB time series, we clustered

them into six groups, labeling the cluster whose representative time series had the broadest initial

peak as the prolonged response cluster (blue in Figure 6e, right). The remaining groups were

labeled as the transient response cluster (blue in Figure 6e, left).

Correcting batch effects in the schistosome datasets
We used the Mutual Nearest Neighbors algorithm (Haghverdi et al., 2018) with default values to

generate an expression matrix Ecorrected in which the batch effects between the 2.5-week and 3.5-
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week datasets were corrected for. To run SAM on the batch-corrected data, we use E for the calcu-

lation of spatial dispersions as opposed to Ecorrected.

scRNAseq of schistosome stem cells
Schistosome stem cells were isolated from juvenile parasites retrieved from infected mice at 2.5 and

3.5 weeks post infection. We followed the protocol as previously described (Wang et al., 2018).

Briefly, we retrieved juvenile parasites from schistosome-infected mice (Swiss Webster NR-21963) by

hepatic portal vein perfusion. Parasites were cultured at 37˚C/5% CO2 in Basch Medium 169 supple-

mented with 1X Antibiotic-Antimycotic for 24–48 hr to allow complete digestions of host blood cell

in parasite intestines. In adherence to the Animal Welfare Act and the Public Health Service Policy

on Humane Care and Use of Laboratory Animals, all experiments with and care of mice were per-

formed in accordance with protocols approved by the Institutional Animal Care and Use Committees

(IACUC) of Stanford University (protocol approval number 30366).

Before dissociation, parasites were permeabilized in PBS containing 0.1% Triton X-100% and

0.1% NP-40 for 30 s and washed thoroughly to remove the surfactants. The permeabilized parasites

were dissociated in 0.25% trypsin for 20 min. Cell suspensions were passed through a 100 mm nylon

mesh (Falcon Cell Strainer) and centrifuged at 150 g for 5 min. Cell pellets were gently resuspended,

passed through a 30 mm nylon mesh, and stained with Vybrant DyeCycle Violet (DCV; 5 mM, Invitro-

gen), and TOTO-3 (0.2 mM, Invitrogen) for 30–45 min. As the stem cells comprise the only prolifer-

ative population in schistosomes, we flow-sorted cells at G2/M phase of the cell cycle on a SONY

SH800 cell sorter. Dead cells were excluded based on TOTO-3 fluorescence. Single stem cells were

gated using forward scattering (FSC), side scattering (SSC), and DCV to isolate cells with doubled

DNA content compared to the rest of the population (Wang et al., 2018). Cells that passed these

gates were sorted into 384-well lysis plates containing Triton X-100, ERCC standards, oligo-dT,

dNTP, and RNase inhibitor.

cDNA was reverse transcribed and amplified on 384-well plate following the Smart-Seq2 protocol

(Picelli et al., 2013). For quality control, we quantified the histone h2a (Smp_086860) levels using

qPCR (the primers are listed in Supplementary file 4), as h2a is a ubiquitously expressed in all schis-

tosomes stem cell (Collins et al., 2013; Wang et al., 2013; Wang et al., 2018). We picked wells

that generated CT values within 2.5 CT around the most probable values (~45% of total wells, Fig-

ure 1—figure supplement 1). cDNA was then diluted to 0.4 ng/mL for library preparation. Tagmen-

tation and barcoding of wells were prepared using Nextera XT DNA library preparation kit. Library

fragments concentration and purity were quantified by Agilent bioanalyzer and qPCR. Sequencing

was performed on a NextSeq 500 using V2 150 cycles high-output kit at ~1 million reads depth per

cell. Raw sequencing reads were demultiplexed and converted to fastq files using bcl2fastq. Paired-

end reads were mapped to S. mansoni genome version WBPS9 (WormBase Parasite) using STAR. In

2.5 week dataset, 338 cells with more than 1700 transcripts expressed at >2 TPM were used for

downstream analysis. In the 3.5 weeks dataset, 338 cells with more than 1350 transcripts expressed

at >2 TPM were used for downstream analysis (Figure 1—figure supplement 1).

In situ hybridization and EdU labeling
RNA FISH experiments were performed as detailed in previous publications (Collins et al., 2013;

Wang et al., 2013; Wang et al., 2018). Clones used for riboprobe synthesis were generated as

described previously, with oligonucleotide primers listed in Supplementary file 4. Juvenile parasites

were cultured with 10 mM EdU overnight, killed in 6 M MgCl2 for 30 s, and then fixed in 4% formal-

dehyde with 0.2% Triton X-100% and 1% NP-40. Fixed parasites were sequentially dehydrated in

methanol, treated in 3% H2O2 for 30 min, and rehydrated. Parasites were permeabilized by 10 mg/

mL proteinase K for 15 min and post fixed with 4% formaldehyde. The hybridization was performed

at 52˚C with riboprobes labeled with either digoxigenin-12-UTP (Roche) or fluorescein-12-UTP

(Roche). For detection, samples were blocked with 5% horse serum and 0.5% of Roche Western

Blocking Reagent, and then incubated with anti-digoxigenin-peroxidase (1:1000; Roche) or anti-fluo-

rescein peroxidase (1:1500; Roche) overnight at 4˚C for tyramide signal amplification (TSA). For dou-

ble FISH, the first peroxidase was quenched for 30 min in 0.1% sodium azide solution before the

detection of the second gene. After FISH, EdU detection was performed by click reaction with 25

mM Cy5-azide conjugates (Click Chemistry Tools). Samples were mounted in scale solution (30%
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glycerol, 0.1% Triton X-100, 4 M urea in PBS supplemented with 2 mg/mL sodium ascorbate) and

imaged on a Zeiss LSM 800 confocal microscope.
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Picelli S, Björklund ÅK, Faridani OR, Sagasser S, Winberg G, Sandberg R. 2013. Smart-seq2 for sensitive full-
length transcriptome profiling in single cells. Nature Methods 10:1096–1098. DOI: https://doi.org/10.1038/
nmeth.2639, PMID: 24056875

Pierson E, Yau C. 2015. ZIFA: dimensionality reduction for zero-inflated single-cell gene expression analysis.
Genome Biology 16:241. DOI: https://doi.org/10.1186/s13059-015-0805-z, PMID: 26527291

Qiu X, Mao Q, Tang Y, Wang L, Chawla R, Pliner HA, Trapnell C. 2017. Reversed graph embedding resolves
complex single-cell trajectories. Nature Methods 14:979–982. DOI: https://doi.org/10.1038/nmeth.4402,
PMID: 28825705

Satija R, Farrell JA, Gennert D, Schier AF, Regev A. 2015. Spatial reconstruction of single-cell gene expression
data. Nature Biotechnology 33:495–502. DOI: https://doi.org/10.1038/nbt.3192

Schwalie PC, Dong H, Zachara M, Russeil J, Alpern D, Akchiche N, Caprara C, Sun W, Schlaudraff KU, Soldati G,
Wolfrum C, Deplancke B. 2018. A stromal cell population that inhibits adipogenesis in mammalian fat depots.
Nature 559:103–108. DOI: https://doi.org/10.1038/s41586-018-0226-8, PMID: 29925944

Setty M, Tadmor MD, Reich-Zeliger S, Angel O, Salame TM, Kathail P, Choi K, Bendall S, Friedman N, Pe’er D.
2016. Wishbone identifies bifurcating developmental trajectories from single-cell data. Nature Biotechnology
34:637–645. DOI: https://doi.org/10.1038/nbt.3569, PMID: 27136076

Soneson C, Robinson MD. 2018. Bias, robustness and scalability in single-cell differential expression analysis.
Nature Methods 15:255–261. DOI: https://doi.org/10.1038/nmeth.4612, PMID: 29481549

Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR,
Lander ES, Mesirov JP. 2005. Gene set enrichment analysis: a knowledge-based approach for interpreting
genome-wide expression profiles. PNAS 102:15545–15550. DOI: https://doi.org/10.1073/pnas.0506580102,
PMID: 16199517

Tarashansky AJ. 2019. The Self-Assembling-Manifold (SAM) Algorithm. 1cfe50c. Github. https://github.com/
atarashansky/self-assembling-manifold

Tavenard R. 2017. Tslearn: A Machine Learning Toolkit Dedicated to Time-Series Data.
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