
*For correspondence:

JXIONG@uams.edu

Competing interests: The

authors declare that no

competing interests exist.

Funding: See page 18

Received: 24 June 2019

Accepted: 29 August 2019

Published: 07 October 2019

Reviewing editor: Anna

Akhmanova, Utrecht University,

Netherlands

Copyright Li et al. This article

is distributed under the terms of

the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

Stimulation of Piezo1 by mechanical
signals promotes bone anabolism
Xuehua Li1,2, Li Han3, Intawat Nookaew1,4, Erin Mannen1,2, Matthew J Silva5,
Maria Almeida1,2,3, Jinhu Xiong1,2*

1Center for Musculoskeletal Disease Research, University of Arkansas for Medical
Sciences, Little Rock, United States; 2Department of Orthopaedic Surgery,
University of Arkansas for Medical Sciences, Little Rock, United States; 3Division of
Endocrinology, University of Arkansas for Medical Sciences, Little Rock, United
States; 4Department of Biomedical Informatics, University of Arkansas for Medical
Sciences, Little Rock, United States; 5Department of Orthopaedic Surgery,
Washington University, St Louis, United States

Abstract Mechanical loading, such as caused by exercise, stimulates bone formation by

osteoblasts and increases bone strength, but the mechanisms are poorly understood. Osteocytes

reside in bone matrix, sense changes in mechanical load, and produce signals that alter bone

formation by osteoblasts. We report that the ion channel Piezo1 is required for changes in gene

expression induced by fluid shear stress in cultured osteocytes and stimulation of Piezo1 by a small

molecule agonist is sufficient to replicate the effects of fluid flow on osteocytes. Conditional

deletion of Piezo1 in osteoblasts and osteocytes notably reduced bone mass and strength in mice.

Conversely, administration of a Piezo1 agonist to adult mice increased bone mass, mimicking the

effects of mechanical loading. These results demonstrate that Piezo1 is a mechanosensitive ion

channel by which osteoblast lineage cells sense and respond to changes in mechanical load and

identify a novel target for anabolic bone therapy.

DOI: https://doi.org/10.7554/eLife.49631.001

Introduction
Mechanical signals play critical roles in bone growth and homeostasis (Turner et al., 2009;

Ozcivici et al., 2010). Mechanical stimuli increase bone mass by stimulating the activity and produc-

tion of bone forming osteoblasts (Meakin et al., 2014; Klein-Nulend et al., 2012). In contrast, loss

of mechanical signals decreases bone mass by reducing bone formation and stimulating production

of bone resorbing osteoclasts (Kondo et al., 2005; Nakamura et al., 2013; Xiong et al., 2011).

Osteocytes, which are cells buried in the bone matrix and derived from osteoblasts, are able to

sense changes in mechanical load and orchestrate bone resorption and formation (Bonewald, 2011;

Klein-Nulend et al., 2013). However, the molecular mechanisms by which osteocytes sense changes

in mechanical loads remain unclear.

A variety of cell surface proteins and structures, including integrins, focal adhesions, and primary

cilia, have been proposed to sense mechanical signals in bone cells (Litzenberger et al., 2010;

Nguyen and Jacobs, 2013; Rubin et al., 2006). In addition, several lines of evidence suggest that

ion channels are involved in the sensing of mechanical signals by osteocytes (Hung et al., 1995;

Lu et al., 2012; Lewis et al., 2017; Li et al., 2002). For example, calcium influx is an early event fol-

lowing mechanical stimulus in osteocytes (Hung et al., 1995; Lu et al., 2012). Several calcium chan-

nels, including transient receptor potential channels (TRPV) and multimeric L-type and T-type

voltage-sensitive calcium channels (VSCC) are expressed in osteoblasts and osteocytes (Li et al.,

2002; Abed et al., 2009; Shao et al., 2005). TRPV4 is perhaps the most studied calcium channel in
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bone (Lee et al., 2015; Masuyama et al., 2008; Mizoguchi et al., 2008; Suzuki et al., 2013).

Although conditional deletion of Trpv4 in the osteoblast lineage has not yet been reported, Trpv4

germline knockout mice exhibit high bone mass, which is opposite of what would be expected with

loss of mechanical responsiveness (Masuyama et al., 2008; van der Eerden et al., 2013). Histologi-

cal analysis of these mice revealed decreased osteoclast number and a normal bone formation rate

(Masuyama et al., 2008; van der Eerden et al., 2013), arguing against a role for TRPV4 as a mecha-

nosensor in bone. Although mice with germline deletion of the L-type VSCC Cacna1d have reduced

cross-sectional area in long bones, these mice respond normally to mechanical loading (Li et al.,

2010). Thus, heretofore, a definitive role for a specific calcium channel in the response of the skele-

ton to mechanical loading has not been demonstrated.

Herein we sought to identify calcium channels involved in mechanosensation in osteocytes. We

found that Piezo1, a mechanosensitive ion channel, is highly expressed in osteocytes and its expres-

sion and activity were increased by fluid sheer stress. In addition, conditional deletion of Piezo1 in

osteoblasts and osteocytes decreased cortical thickness and cancellous bone volume. Moreover, the

skeletal response to anabolic loading was significantly blunted in mice lacking Piezo1 in osteoblasts

and osteocytes. Importantly, administration of Yoda1, a Piezo1 agonist, increased bone mass in vivo.

Overall, our results suggest that osteoblasts, osteocytes, or both, sense and respond to changes in

mechanical signals in part via activation of the Piezo1 calcium channel and identify activation of

Piezo1 signaling as a potential therapeutic approach for osteoporosis.

eLife digest Bone size and strength depend on physical activity. Increased forces on the

skeleton, such as those that occur during exercise, trigger more bone formation and make bones

stronger. Conversely, reduced forces, caused for example by the lack physical activity, cause bone

loss and increase the risk of fractures.

Bones contain cells called osteocytes. These cells sense the forces exerted on bone and

orchestrate bone formation in response. Calcium channels are one type of molecule that has been

proposed to help osteocytes to sense forces. Calcium channels reside in the cell membrane and can

change their structure to allow calcium ions to flow into the cell. Some of them allow calcium ions

into the cell in direct response to physical forces, communicating to the cell that a force has been

applied. These are called mechanosensitive ion channels. Until now, however, no specific calcium

channels involved in force sensing had been identified in osteocytes.

Li et al. searched for calcium channels in osteocytes, and found high levels of a mechanosensitive

ion channel called Piezo1. Then, Li et al. made genetically modified mice that did not have any

Piezo1 in these cells. The skeleton of these mice was small and weak. Moreover, the bones of these

modified mice did not respond to forces like the bones of normal mice. To demonstrate this, Li et al.

applied a short bout of increased force to the leg bones of unmodified mice and to those of the

Piezo1 deficient mice. After two weeks, the bones of the unmodified mice had increased in

thickness, whereas the bones lacking Piezo1 had not. A separate study by Sun, Chi et al. showed

similar results when Piezo1 was removed from bone cells grown in the laboratory.

Finally, Li et al. tested the impact of a chemical called Yoda1 on bones. Yoda1 makes the Piezo1

channel open, thus mimicking a physical force. These experiments showed that mice treated with

Yoda1 had thicker bones than untreated mice.

The ability of human bone to become stronger in response to exercise decreases with age, which

contributes to the development of osteoporosis. Conditions that require severely restricted exercise,

such as disability or extended bedrest, also lead to bone loss. These experiments show that Piezo1

allows bone to respond to physical force, and suggest Piezo1 as a promising therapeutic target to

help curtail bone loss in these conditions.

DOI: https://doi.org/10.7554/eLife.49631.002
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Results

Piezo1 mediates mechanotransduction in an osteocyte cell line
To identify calcium channels that respond to mechanical signals in osteocytes, we compared gene

expression profiles of the osteocytic cell line MLO-Y4 under static and fluid flow conditions by RNA-

seq. Principal components analysis and volcano plot of transcripts indicated that a significant number

of genes were differentially expressed in MLO-Y4 cells under static versus fluid shear stress (Fig-

ure 1—figure supplement 1A,B). GO-enrichment analysis revealed enrichment in genes known to

respond to mechanical signals, thereby validating the fluid flow experiment (Figure 1—figure sup-

plement 2A). We then identified differentially expressed genes related to calcium channels. Piezo1

was the most highly expressed among 78 calcium channels detected in MLO-Y4 cells under static

condition (Figure 1—figure supplement 2B). In addition, Piezo1 was also highly up-regulated by

fluid flow in MLO-Y4 cells as determined by RNA-seq (Figure 1A) and RT-qPCR (Figure 1B). The

Piezo ion channel family consists of two members, Piezo1 and Piezo2. While Piezo2 is expressed pre-

dominately in neurons, Piezo1 is mainly expressed in non-neuronal cells (Murthy et al., 2017). Con-

sistent with this previous evidence, the expression of Piezo1 was approximately 200-fold higher than
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Figure 1. Piezo1 mediates mechanotransduction in an osteocyte cell line. (A) mRNA levels of calcium channels regulated by fluid shear stress in MLO-

Y4 cells determined by RNA-seq (here and throughout, values are the mean ± s.d.). (B) qPCR of Piezo1 and Piezo2 mRNA in MLO-Y4 cells cultured

under static or fluid shear stress conditions for 2 hr. *p<0.05 versus static, using Student’s t-test. (C) Piezo1 and Piezo2 mRNA levels in cortical bone of

3-month-old wildtype C57BL/6J mice. (D) Intracellular calcium concentration measured in control or Piezo1 knock-down MLO-Y4 cells before and after

the start of fluid flow. Arrow indicates the time when fluid flow starts. (E) qPCR of Piezo1, Ptgs2, and Tnfrsf11b in control or Piezo1 knock-down MLO-Y4

cells cultured under static or fluid shear stress conditions for 2 hr. n = 3 per group. (F) qPCR of Piezo1, Ptgs2, and Tnfrsf11b in control or Piezo1

overexpressed MLO-Y4 cells cultured under static or fluid shear stress conditions for 2 hr. n = 3 per group. *p<0.05 with the comparisons indicated by

the brackets using 2-way ANOVA. Gray indicates the static condition and teal indicates fluid shear stress.

DOI: https://doi.org/10.7554/eLife.49631.003

The following figure supplements are available for figure 1:

Figure supplement 1. Sequencing analysis of mRNA isolated from MLO-Y4 cells cultured under static or fluid shear stress conditions.

DOI: https://doi.org/10.7554/eLife.49631.004

Figure supplement 2. Sequencing analysis of mRNA isolated from MLO-Y4 cells cultured under static or fluid shear stress conditions.

DOI: https://doi.org/10.7554/eLife.49631.005

Li et al. eLife 2019;8:e49631. DOI: https://doi.org/10.7554/eLife.49631 3 of 22

Research article Human Biology and Medicine

https://doi.org/10.7554/eLife.49631.003
https://doi.org/10.7554/eLife.49631.004
https://doi.org/10.7554/eLife.49631.005
https://doi.org/10.7554/eLife.49631


that of Piezo2 in MLO-Y4 cells (Figure 1B). Piezo1 expression was also much higher than Piezo2 in

osteocyte-enriched cortical bone isolated from 12-week-old mice (Figure 1C). Therefore, we focused

our remaining analysis on Piezo1. Knock-down of Piezo1 mRNA in MLO-Y4 cells significantly blunted

the increase in intracellular calcium induced by fluid-flow (Figure 1D). Knock-down of Piezo1 also

blunted fluid-flow stimulation of Ptgs2 and Tnfrsf11b (Figure 1E), two well-known targets of fluid

shear stress in osteocytes (Wadhwa et al., 2002; Zhao et al., 2016). Conversely, overexpression of

Piezo1 in MLO-Y4 cells increased the expression of Ptgs2 and Tnfrsf11b and enhanced their induc-

tion by fluid shear stress (Figure 1F). These results demonstrate that Piezo1 contributes to the

response of MLO-Y4 cells to fluid shear stress.

Loss of Piezo1 in osteoblasts and osteocytes decreases bone formation
and bone mass
To determine the role of Piezo1 in osteocytes in vivo, we deleted Piezo1 by crossing Piezo1f/f mice

(Cahalan et al., 2015) with Dmp1-Cre transgenic mice, which express the Cre recombinase in osteo-

blasts and osteocytes (Bivi et al., 2012; Xiong et al., 2015). Deletion of the Piezo1 gene was con-

firmed by qPCR of genomic DNA isolated from osteocyte-enriched cortical bone (Figure 2A). Mice

lacking the Piezo1 gene in osteoblasts and osteocytes, hereafter referred to as Dmp1-Cre;Piezo1f/f

mice, exhibited normal body weight compared to their control Piezo1f/f littermates (Figure 2—fig-

ure supplement 1A). Both female and male Dmp1-Cre;Piezo1f/f mice exhibited low bone mineral

density (BMD) at 5, 8, and 12 weeks of age as measured by dual energy x-ray absorptiometry (DXA)

and the difference increased as the mice matured (Figure 2B and Figure 2—figure supplement

1B). Since the three control groups, including wild-type (WT), Dmp1-Cre, and Piezo1f/f littermates,

displayed similar BMD, we used Piezo1f/f littermates as controls in the remaining studies. Spontane-

ous fractures were observed in the tibia of conditional knockout mice at a frequency of 0.16

(Figure 2C). Detailed analysis of the skeletal phenotype of these mice at 12 weeks of age by micro-

CT revealed that femoral cortical thickness was lower in Dmp1-Cre;Piezo1f/f mice compared with

controls in both sexes (Figure 2D,E and Figure 2—figure supplement 1C). Periosteal and endocort-

ical circumferences were also decreased in the femur of Dmp1-Cre;Piezo1f/f mice (Figure 2E). In line

with these changes, the total cross sectional area, cortical bone area, and medullary area were

reduced in the conditional knockout mice (Figure 2—figure supplement 1D). In contrast to the

changes in bone width, the length of the femurs was not different between genotypes indicating

that longitudinal bone growth was normal in conditional knockout mice (Figure 2—figure supple-

ment 1E). A decrease in cortical bone thickness was also detected in vertebrae of Dmp1-Cre;Pie-

zo1f/f female and male mice (Figure 2F and Figure 2—figure supplement 1F). Analysis of

cancellous bone in the femur and vertebra revealed that bone volume over tissue volume, trabecular

number, and trabecular thickness were decreased, while trabecular separation was increased in

female Dmp1-Cre;Piezo1f/f mice compared to their control littermates (Figure 2G,H and Figure 2—

figure supplement 1G,H). Similar results were obtained in male mice (Figure 2—figure supplement

1I,J).

Biomechanical testing by 3-point bending showed that the femurs from Dmp1-Cre;Piezo1f/f mice

had reduced stiffness and ultimate force (Figure 2I). However, the Young’s modulus and ultimate

stress did not change, suggesting that the lower strength was due to differences in size and mass

rather than changes in bone material properties (Figure 2I). Consistent with this, the tissue mineral

density of femoral cortical bone was unaffected by deletion of Piezo1 (Figure 2J).

To evaluate the cellular changes underlying the skeletal phenotype of the conditional knockout

mice, we performed bone histomorphometry of femoral cortical bone and found that periosteal and

endocortical mineralizing surfaces were significantly reduced in Dmp1-Cre;Piezo1f/f mice at 5 weeks,

an age of rapid bone growth (Figure 2K and Figure 2—figure supplement 2A). Bone formation at

the outer (periosteal) surfaces of bone is a critical process for the enlargement of the skeleton. While

double labels were easily seen in control mice, double labels were not observed in the conditional

knockout mice, indicating that the bone formation rate at the periosteum of Dmp1-Cre;Piezo1f/f

mice was extremely low. Histomorphometric analysis of vertebral trabecular bone also revealed a

decrease in mineralizing surface, mineral apposition rate, and bone formation rate in the conditional

knockout mice (Figure 2L). In line with these changes, osteoblast number was lower in Dmp1-Cre;

Piezo1f/f mice (Figure 2M). In addition, we observed an increase in osteoclast number in the condi-

tional knockout mice (Figure 2M).
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Figure 2. Loss of Piezo1 in osteoblasts and osteocytes decreases bone formation and bone mass. (A) qPCR of loxP-flanked Piezo1 genomic DNA

isolated from tibial cortical bone of Dmp1-Cre;Piezo1f/f (n = 6) and Piezo1f/f (n = 6) littermates. *p<0.05 using Student’s t-test. (B) Serial BMD of female

Dmp1-Cre;Piezo1f/f mice and their littermate controls at 5, 8, and 12 weeks of age. *p<0.05 using 2-way ANOVA at a given age. (C) X-ray images of

tibia from 12-week-old Dmp1-Cre;Piezo1f/f and Piezo1f/f littermate. Arrowhead indicates the location of fracture. (D, E) Representative mCT images

(scale bar, 0.1 mm) (D) and cortical thickness, periosteal circumference, and endocortical circumference analysis (E) of the femoral diaphysis in Dmp1-

Cre;Piezo1f/f (n = 9) and Piezo1f/f (n = 9) littermates. (F) Cortical thickness measured in the 4th lumbar vertebra of 12-week-old female Dmp1-Cre;

Piezo1f/f (n = 9) and Piezo1f/f (n = 9) littermates. (G) Bone volume per tissue volume (BV/TV) measured in the femur and the L4 vertebra of 12-week-old

female Dmp1-Cre;Piezo1f/f (n = 9) and Piezo1f/f (n = 7) mice. (H) Representative mCT images of the distal femur. Scale bar, 1 mm. (I) Stiffness, ultimate

force, Young’s modulus, and ultimate stress measured in the femurs of Dmp1-Cre;Piezo1f/f (n = 9) and Piezo1f/f (n = 9) littermates. (J) Tissue mineral

density measured in cortical bone in femoral diaphysis of Dmp1-Cre;Piezo1f/f (n = 9) and Piezo1f/f (n = 9) littermates. (K) Representative histological

cross sections (left, yellow dotted line indicates periosteal surface and white dotted line indicates endocortical surface; scale bar = 100 mm) and

quantification of mineralizing surface in periosteal and endocortical surface (right) at the femoral diaphysis of 5-week-old female Dmp1-Cre;Piezo1f/f

Figure 2 continued on next page
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To evaluate whether cell death could account for the changes seen with Piezo1 deletion, we mea-

sured the percentage of empty osteocyte lacunae and osteocyte number. We did not observe

changes in the percentage of empty osteocyte lacunae or the number of osteocytes normalized to

bone area in Dmp1-Cre;Piezo1f/f mice compared to their littermate controls (Figure 2—figure sup-

plement 2B,C). Consistent with these results, we did not observe any apparent morphological

changes in osteocytes in the conditional knockout mice (Figure 2—figure supplement 2D). In addi-

tion, knock-down of Piezo1 in MLO-Y4 cells decreased, rather than increased, Capase3 activity (Fig-

ure 2—figure supplement 2E). These results indicate that Piezo1 deletion does not increase

osteocyte death in vitro or in vivo. We also analyzed osteoblastogenesis in vitro and found normal

osteoblast differentiation of bone marrow stromal cells from Dmp1-Cre;Piezo1f/f mice, as indicated

by Alizarin Red staining (Figure 2—figure supplement 2F).

Since the Dmp1-Cre transgene also leads to recombination in a sub-population of muscle cells

(Lim et al., 2017), we measured Piezo1 deletion in gastrocnemius muscle, lean body weight, and

gastrocnemius muscle mass to determine whether altered muscle mass could have contributed to

the skeletal phenotype. We detected about 20% deletion of the Piezo1 gene in the conditional

knockout mice (Figure 2—figure supplement 3A). In addition, Piezo1 expression in gastrocnemius

muscle was about 10 times lower than that in bone (Figure 2—figure supplement 3B). More impor-

tantly, we did not observe any difference in lean body weight or gastrocnemius muscle mass

between the conditional knockout mice and their control littermates (Figure 2—figure supplement

3C,D). These results demonstrate that Piezo1 in osteoblasts, osteocytes, or both, is essential for nor-

mal bone size and mass.

Loss of Piezo1 in osteoblasts and osteocytes blunts the skeletal
response to mechanical loads
To determine whether Piezo1 in osteoblasts or osteocytes is required for the skeletal response to

increased mechanical loading, we loaded the left tibia of 16-week-old female Dmp1-Cre;Piezo1f/f

mice and their control littermates with +1200me peak strain at the midshaft, as illustrated in

Figure 3A. Two weeks of anabolic loading increased tibial cortical thickness in control mice but not

in conditional knockout mice (Figure 3B). Consistent with the changes in bone mass, loading

increased periosteal bone formation rate in control mice, due to increases in both mineralizing sur-

face and mineral apposition rate (Figure 3C,D). The load-stimulated bone formation was significantly

blunted in conditional knockout mice (Figure 3C,D). These results suggest that Piezo1 in osteo-

blasts, osteocytes, or both, plays an essential role in the response of the skeleton to mechanical

loads.

Piezo1 controls Wnt1 expression via YAP1 and TAZ
To understand the molecular mechanisms by which Piezo1 increases bone mass, we compared

expression of genes known to influence bone formation and resorption between Dmp1-Cre;Piezo1f/f

mice and control littermates. Production of Wnt1 or the Wnt signaling inhibitor Sclerostin (Sost) by

osteocytes represent critical stimulatory or inhibitory signals to bone formation, respectively

(Luther et al., 2018; Li et al., 2008). Wnt1 mRNA was lower in cortical bone shafts of conditional

knockout mice at both 5 and 12 weeks of age while the expression of Sost was unaffected

Figure 2 continued

(n = 7) and Piezo1f/f (n = 5) littermates. (L, M) Mineralizing surface per bone surface (MS/BS), mineral apposition rate (MAR), and bone formation rate

per bone surface (BFR/BS) (L), Osteoblast number (N.Ob/B.Pm), and osteoclast number (N.Oc/B.Pm) (M) measured in cancellous bone of lumbar

vertebra 1–3 from 12-week-old female Dmp1-Cre;Piezo1f/f (n = 5) and Piezo1f/f (n = 5) littermates. *p<0.05 using Student’s t-test.

DOI: https://doi.org/10.7554/eLife.49631.006

The following figure supplements are available for figure 2:

Figure supplement 1. Loss of Piezo1 in osteoblasts and osteocytes decreases bone mass.

DOI: https://doi.org/10.7554/eLife.49631.007

Figure supplement 2. Deletion of Piezo1 in osteoblasts and osteocytes decreases cortical bone.

DOI: https://doi.org/10.7554/eLife.49631.008

Figure supplement 3. Deletion of Piezo1 from Dmp1-Cre-targeted cells does not affect muscle mass.

DOI: https://doi.org/10.7554/eLife.49631.009
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(Figure 4A,B). Consistent with increased osteoclast number, expression of the essential pro-osteo-

clastogenic cytokine RANKL (Tnfsf11) was higher in the conditional knockout mice (Figure 4B). In

contrast, expression of OPG (Tnfrsf11b), a secreted decoy receptor for RANKL, was not different

between the genotypes (Figure 4B), despite our observation of reduced Tnfrsf11b expression in

MLO-Y4 cells lacking Piezo1 (Figure 1E).

The expression of Wnt1 can be stimulated by mechanical loading in mice (Holguin et al., 2016).

Therefore, we determined whether mechanical signals increase Wnt1 expression via Piezo1. Fluid

shear stress increased Wnt1 expression in MLO-Y4 cells but this was blunted after knock-down of

Piezo1 (Figure 4C). Basal expression of Wnt1 was also reduced by Piezo1 knock-down (Figure 4C).

YAP1 and TAZ are two related transcriptional cofactors that can be activated by mechanical signals,

including fluid flow and matrix rigidity, and recently Piezo1 has been shown to control their activity

(Wang et al., 2016; Dupont et al., 2011; Pathak et al., 2014). We have shown previously that dele-

tion of Yap1 and Taz using Dmp1-Cre decreases bone mass, due to both reduced bone formation

and increased osteoclast number (Xiong et al., 2018). Here, we analyzed the diaphysis of femurs of

these mice and found that cortical thickness, periosteal circumference, and endocortical circumfer-

ence were significantly decreased in Dmp1-Cre;Yap1f/f,Tazf/f mice compared to their Yap1f/f,Tazf/f lit-

termates (Figure 4—figure supplement 1A). Because these changes were similar to the ones seen

in cortical bone of Dmp1-Cre;Piezo1f/f mice, we examined whether Piezo1 controls Wnt1 expression

via YAP1 and TAZ. Silencing the Piezo1 gene in MLO-Y4 cells decreased the expression of Cyr61, a

YAP1 and TAZ target gene, and blunted fluid shear stress induction of Cyr61 expression
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Figure 3. Loss of Piezo1 in osteoblasts and osteocytes blunts the skeletal response to mechanical loads. (A) Schematic illustration of anabolic loading

on mouse tibia. (B) Cortical thickness (Ct.Th) in the tibial shaft of 4-month-old loaded or control Dmp1-Cre;Piezo1f/f (n = 5) and Piezo1f/f (n = 7)

littermates. (C) Mineralizing surface (MS/BS), mineral apposition rate (MAR), and bone formation rate (BFR/BS) in periosteal surface of the tibia of 4-

month-old female Dmp1-Cre;Piezo1f/f (n = 5) and Piezo1f/f (n = 7) littermates. (D) Representative histological cross section images of the tibial shaft of

4-month-old female Dmp1-Cre;Piezo1f/f and Piezo1f/f littermates. Scale bar, 100 mm. *p<0.05 with the comparisons indicated by the brackets using 2-

way ANOVA.

DOI: https://doi.org/10.7554/eLife.49631.010
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Figure 4. Piezo1 controls Wnt1 expression via YAP1 and TAZ. (A) qPCR of Wnt1 mRNA in tibial cortical bone of 5-week-old female Piezo1f/f (n = 6) and

Dmp1-Cre;Piezo1f/f mice (n = 6). *p<0.05 using Student’s t-test. (B) Relative mRNA levels of Wnt1, Sost, Tnfsf11 (RANKL), and Tnfrsf11b (OPG) in tibia

cortical bone of 12-week-old female Piezo1f/f (n = 9) and Dmp1-Cre;Piezo1f/f (n = 9) mice. *p<0.05 using Student’s t-test. (C) Wnt1 and Cyr61 mRNA

levels in control or Piezo1 knock-down MLO-Y4 cells cultured under static or fluid shear stress conditions. *p<0.05 with the comparisons indicated by

the brackets using 2-way ANOVA. (D) Ptgs2, Wnt1, and Cyr61 mRNA levels in control or Yap1/Taz knock-down MLO-Y4 cells cultured under static or

fluid shear stress conditions. *p<0.05 with the comparisons indicated by the brackets using 2-way ANOVA. (E) YAP1 immunofluorescence in control or

Piezo1 knock-down MLO-Y4 cells cultured under static or fluid shear stress conditions. Scale bar, 100 mm. (F) Quantification of mean fluorescence

intensity in nucleus versus cytoplasm in the cells described in (E). (G) Wnt1 and Cyr61 mRNA levels measured in tibia of female Dmp1-Cre;Piezo1f/f

(n = 8) and Piezo1f/f (n = 7) mice loaded with one bout of compressive loading. Mice were harvested 5 hr after loading. *p<0.05 with the comparisons

indicated by the brackets using 2-way ANOVA.

DOI: https://doi.org/10.7554/eLife.49631.011

The following figure supplements are available for figure 4:

Figure supplement 1. Loss of YAP1 and TAZ in osteoblasts and osteocytes decreases cortical bone.

DOI: https://doi.org/10.7554/eLife.49631.012

Figure supplement 2. Deletion of Piezo1 in osteoblastic cells blunts their response to fluid flow.

DOI: https://doi.org/10.7554/eLife.49631.013
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(Figure 4C). We then silenced the Yap1 and Taz genes in MLO-Y4 cells to examine whether these

factors are required for the stimulation of Wnt1 by fluid shear stress. We found that lack of Yap1 and

Taz blunted the response to fluid flow including the increase in Ptgs2, Wnt1, and Cyr61 expression

(Figure 4D). Knock-down of Piezo1 and Yap1/Taz was confirmed by mRNA abundance (Figure 4—

figure supplement 1B,C). Importantly, silencing Piezo1 blunted YAP1 activation caused by fluid

shear stress, indicated by blunted nuclear translocation of YAP1 (Figure 4E,F). Similarly, we deleted

Piezo1 in UAMS-32 cells, a murine osteoblastic cell line, using CRISPR/Cas9 and found that expres-

sion of Ptgs2, Wnt1, and Cyr61 induced by fluid flow were blunted in Piezo1 knock out cells (Fig-

ure 4—figure supplement 2). To determine whether Piezo1 is required for Wnt1 expression

induced by mechanical loading in vivo, we applied one bout of compressive loading on the tibia of

Dmp1-Cre;Piezo1f/f mice and their Piezo1f/f littermates with +1200me peak strain at the midshaft.

Mechanical loading increased Wnt1 and Cyr61 expression in control mice (Figure 4G). However,

these increases were blunted in Dmp1-Cre;Piezo1f/f mice (Figure 4G). Taken together, these results

indicate that stimulation of Piezo1 by mechanical signals increases Wnt1 expression at least in part

via activation of YAP1 and TAZ.

Activation of Piezo1 mimics the effects of mechanical stimulation on
osteocytes
Finally, we determined whether activation of Piezo1 is sufficient to mimic the effects of mechanical

stimulation in osteocytes and bone. Treatment of MLO-Y4 cells with Yoda1, a small molecule agonist

of Piezo1 (Syeda et al., 2015), increased intracellular calcium concentration (Figure 5A), and stimu-

lated expression of Ptgs2, Wnt1, and Tnfrsf11b (Figure 5B), similar to the effect of fluid flow on

these cells. Importantly, silencing of Piezo1 completely prevented the increase of intracellular cal-

cium (Figure 5A), as well as the changes in gene expression induced by Yoda1 (Figure 5B). Likewise,

silencing Yap1 and Taz in MLO-Y4 cells significantly blunted the increase of Ptgs2, Wnt1, and

Tnfrsf11b by Yoda1, indicating that the response to Yoda1 also requires YAP1 and TAZ (Figure 5C).

Yoda1 also promoted expression of Ptgs2, Wnt1, Tnfrsf11b, Cyr61, and decreased Sost in cortical

bone organ cultures from C57BL/6J mice (Figure 5D). Importantly, Yoda1 increased Wnt1 expres-

sion in osteocyte-enriched cortical bone in vivo (Figure 5E). These results demonstrated that Yoda1

mimics the response to fluid flow in authentic osteocytes.

To determine whether Yoda1 is able to increase bone mass in vivo, we administered Yoda1 to 4-

month-old female WT C57BL/6J mice for 2 weeks (Figure 5F). Yoda1 did not alter body weight (Fig-

ure 5—figure supplement 1A) but increased cortical thickness and cancellous bone mass in the dis-

tal femur (Figure 5G). Yoda1 also increased cortical thickness in the vertebra (Figure 5H). However,

we did not detect changes in cancellous bone volume in vertebrae (Figure 5H). Consistent with the

effect on bone mass, the serum levels of osteocalcin, a bone formation marker, were increased in

Yoda1-treated mice (Figure 5I). In contrast, we did not observe changes in the serum levels of CTX,

a bone resorption marker (Figure 5—figure supplement 1B). Our results demonstrate that activa-

tion of Piezo1 by Yoda1 mimics the effects of fluid shear stress on osteocytes and increases bone

mass in mice.

Discussion
Loss of function studies in epithelial cells have shown that Piezo1 responds to various forms of

mechanical forces, including membrane stretch, static pressure, and fluid shear stress (Li et al.,

2014; Gudipaty et al., 2017; Miyamoto et al., 2014). Moreover, Piezo1 can be activated by

mechanical perturbations of the lipid bilayer alone, demonstrating its role in mechanosensation

(Syeda et al., 2016). Here, the rapid response of MLO-Y4 cells to fluid shear stress is blunted by

knocking-down Piezo1 indicating its important role in mechanosensation in bone cells. In addition,

the basal skeletal phenotype of mice lacking Piezo1 in osteoblasts and osteocytes suggests that they

have a reduced ability to respond to mechanical stimulation. Direct testing of this idea by perform-

ing an anabolic loading regime confirmed that the bones of the conditional knockout mice were less

responsive to mechanical signals than controls. This decrease cannot be attributed to intrinsic cell

defect since cell survive is not affected by Piezo1 deletion. Thus, our studies demonstrate that

Piezo1 plays a critical role in sensing mechanical signals and maintaining bone homeostasis. In

humans, truncation mutations in Piezo1 cause a recessive form of generalized lymphatic dysplasia
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but a musculoskeletal phenotype has not been reported (Fotiou et al., 2015). Nonetheless, SNPs in

the human Piezo1 locus are associated with low bone mineral density and increased fracture risk

(Morris et al., 2019).

While preparing the revision of this manuscript, Sun et, al published a similar study in which

Piezo1 was deleted from osteoblast lineage cells using BGLAP-Cre transgenic mice (Sun et al.,

2019). Similar to our studies, deletion of Piezo1 in osteoblast lineage cells resulted in a low bone
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Figure 5. Activation of Piezo1 mimics the effects of mechanical stimulation on osteocytes. (A) Intracellular calcium concentration measured in control or

Piezo1 knock-down MLO-Y4 cells immediately after the treatment of DMSO or 10 mM Yoda1. (B) qPCR of Ptgs2, Wnt1, and Tnfrsf11b in control or

Piezo1 knock-down MLO-Y4 cells treated with DMSO or 10 mM Yoda1 for 2 hr. n = 3 per group. *p<0.05 versus vehicle treated controls of the same

genotype by 2-way ANOVA. (C) qPCR of Ptgs2, Wnt1, and Tnfrsf11b in control or Yap1/Taz knock-down MLO-Y4 cells treated with DMSO or 10 mM

Yoda1 for 2 hr. n = 3 per group. *p<0.05 versus vehicle treated controls of the same genotype by 2-way ANOVA. (D) qPCR of Ptgs2, Wnt1, Tnfrsf11b,

Cyr61, and Sost in ex vivo cultured femoral cortical bone from 5-week-old mice treated with DMSO or 10 mM Yoda1 for 4 hr. n = 3 per group. (E) qPCR

of Wnt1 in tibia of C57BL/6J mice treated with Veh or Yoda1 for 4 hr. n = 12 per group. (F) Schedule of in vivo Yoda1 administration. (G, H) Cortical

thickness and cancellous BV/TV in distal femur (G) and the 4th lumbar (H) of 4-month-old vehicle or Yoda1 treated female C57BL/6J mice (n = 12 per

group). (I) Circulating osteocalcin levels in the serum of 4-month-old vehicle or Yoda1 treated female C57BL/6J mice (n = 12 per group). *p<0.05 versus

vehicle treated controls by Student’s t-test.

DOI: https://doi.org/10.7554/eLife.49631.014

The following figure supplement is available for figure 5:

Figure supplement 1. Yoda1 does not affect body weight and serum bone resorption marker.

DOI: https://doi.org/10.7554/eLife.49631.015
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mass phenotype. Importantly, loss of Piezo1 in osteoblast lineage cells blunted the bone loss caused

by hind-limb suspension, supporting the idea that Piezo1 contributes to the skeletal response to

mechanical stimulation.

Deletion of Piezo1 from osteoblasts and osteocytes did not completely abolish the response of

skeleton to mechanical stimulus. Thus Piezo1 is not the sole mechanosensor in

osteoblasts and osteocytes. Other cell surface proteins and structures including integrins, focal

adhesions, and primary cilia, also likely contribute to sensing mechanical signals in bone. Possible

crosstalk between Piezo1 and these other sensors will need to be addressed in future studies. It is

also possible that cells other than osteoblasts and osteocytes, such as osteoblast progenitors, sense

changes in load and contribute to the increase in bone formation.

It is important to note that, in addition to osteoblasts and osteocytes, the Dmp1-Cre transgene

used in our study also causes recombination in skeletal muscle cells (Xiong et al., 2011; Lim et al.,

2017; Xiong et al., 2015). Therefore, it is possible that loss of Piezo1 in muscle cells also contrib-

uted to the skeletal phenotype we observed in the conditional knockout mice. However, lean body

weight and muscle mass in the conditional knockout mice were unchanged, arguing against a role

for muscle cells in the skeletal phenotype. In addition, the potent effects of Piezo1 gain- and loss-of-

function in MLO-Y4 cells suggest that its effects are at least partly due to actions in osteocytes.

Nonetheless, to distinguish between the possible contributions of Piezo1 in osteoblasts versus

osteocytes, further studies using a Cre driver strain that is active in osteocytes but not in osteoblasts

will be required.

We identified Wnt1 as a potential downstream effector of Piezo1. Previous studies have shown

that mechanical loading increases Wnt1 expression in murine bone (Holguin et al., 2016;

Kelly et al., 2016). Importantly, deletion of Wnt1 in osteoblasts and osteocytes using a Dmp1-Cre

transgene produced a skeletal phenotype that resembles the one we observed by deletion of Piezo1

using the same Cre driver strain (Joeng et al., 2017). Taken together, these results suggest that

mechanical signals stimulate Wnt1 expression via activation of Piezo1. The molecular pathways by

which Piezo1 controls gene expression are only partially understood. Nonetheless, cell culture stud-

ies demonstrate that Piezo1 is required for YAP1 nuclear localization in neural stem cells

(Pathak et al., 2014). Consistent with this, we found that Piezo1 controls nuclear translocation of

YAP1 induced by fluid flow in MLO-Y4 cells. YAP1 and TAZ have been implicated as mediators of

the response to mechanical signals in a variety of cell types (Dupont et al., 2011; Hansen et al.,

2015). Our finding that YAP1 and TAZ are required for stimulation of Wnt1 by fluid flow or Yoda1

suggests that mechanical activation of Piezo1 stimulates Wnt1 expression in osteocytes, at least in

part, by activating YAP1 and TAZ. Consistent with this idea, deletion of Yap1 and Taz in mature

osteoblasts and osteocytes caused a skeletal phenotype that was similar to deletion of Piezo1, albeit

less pronounced (Xiong et al., 2018). The milder bone phenotype of Yap1/Taz conditional knockout

mice suggests that YAP1 and TAZ are not the only downstream effectors of Piezo1 in osteoblast

lineage cells.

Similar to unloading, deletion of Piezo1 in osteoblasts and osteocytes led to not only decreases

in bone formation, but also increases in RANKL expression and bone resorption. Indeed, increased

RANKL expression as well as osteoclast number have been observed in hind-limb unloaded mice

(Xiong et al., 2011). In our previous studies, we detected an increase in osteoclast number in mice

that lack Yap1 and Taz in osteoblasts and osteocytes (Xiong et al., 2018), suggesting that YAP1 and

TAZ are downstream effectors of Piezo1 in controlling osteoclast formation. Thus, loss of Piezo1 in

osteoblasts and osteocytes mimics the overall effect of unloading on the skeleton, further supporting

the idea that Piezo1 is a mechanosensor in bone.

Activation of Piezo1 using the small molecule Yoda1 mimics the effects of fluid flow in various cell

types including endothelial cells, erythrocytes, platelets, and smooth muscle cells (Cahalan et al.,

2015; Li et al., 2014; Ilkan et al., 2017; Rode et al., 2017). In addition, Yoda1 administration pro-

motes lymphatic valve formation during development (Choi et al., 2019). Here, we showed that

Piezo1 activation by Yoda1 mimics the impact of mechanical stimulation in cultured osteocytic cells

as well as ex vivo bone organ cultures. More importantly, administration of Yoda1 to mice increased

bone mass and elevated a bone formation marker in the circulation, demonstrating that activation of

Piezo1 is a potential target for anabolic bone therapy. One possible limitation of such an approach

would be the functions of Piezo1 in other tissues, such as the vasculature. However, it is important

to note that bone anabolism requires only transient mechanical stimulation of the skeleton in rodents
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or humans (Vlachopoulos et al., 2018; Hinton et al., 2015; Kato et al., 2006). Therefore, it is possi-

ble that selectivity for bone anabolism may be achieved by administration regimes that result in only

transient activation of Piezo1 by ligands such as Yoda1.

In summary, our studies demonstrate a critical role for Piezo1 in the maintenance of bone homeo-

stasis and suggest that this occurs via mediation of mechanosensation in osteoblasts, osteocytes, or

both. Our finding that activation of Piezo1 mimics the effects of mechanical stimulation on bone cells

and increases bone mass in mice sets the stage for exploration of this pathway as a therapeutic tar-

get for osteoporosis.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation

Source or
reference Identifiers

Additional
information

Genetic reagent
(M. musculus)

Mouse: Piezo1f/f

(Piezo1tm2.1Apat/J)
Jackson Laboratories JAX: 029213;

RRID:IMSR_JAX:029213

Genetic reagent
(M. musculus)

Mouse: Dmp1-Cre Bivi et al., 2012 N/A

Genetic reagent
(M. musculus)

Mouse: Yap1f/f;Tazf/f Xin et al., 2013 N/A

Genetic reagent
(M. musculus)

Mouse: WT C57BL/6J Jackson Laboratories JAX: 000664;
RRID:IMSR_JAX:000664

Commercial
assay or kit

Mouse Osteocalcin
Immunoassay Kit

Thermo Fisher Cat# J64239

Commercial
assay or kit

Fluo-8 Calcium
Flux Assay Kit

Abcam Cat# ab112129

Commercial
assay or kit

RatLaps
(CTX-I) EIA kit

Immunodiagnostic
Systems

Cat# AC-06F1

Commercial
assay or kit

TruSeq stranded
mRNA kit

Illumina Cat# 20020594

Commercial
assay or kit

High-capacity cDNA
reverse transcription kit

Life Technologies Cat# 4368813

Commercial
assay or kit

RNeasy mini kit QIAGEN Cat# 74106

Cell line (Murine) 293T ATCC CRL-3216

Cell line (Murine) MLO-Y4 Kato et al., 1997

Cell line(Murine) UAMS-32 O’Brien et al., 1999 Cell line maintained in
Charles O’Brien lab

Transfected construct
(M. musculus)

Piezo1 shRNA forward Zhang et al., 2017 Oligo CCGGTCGGCGCTTGCTAGAA
CTTCACTCGAGTGAAGTTC
TAGCAAGCGCCGATTTTTG

Transfected construct
(M. musculus)

Piezo1 shRNA reverse Zhang et al., 2017 Oligo AATTCAAAAATCGGCGCTTG
CTAGAACTTCACTCGAGTGAA
GTTCTAGCAAGCGCCGA

Transfected construct
(M. musculus)

Yap1 shRNA Sigma-Aldrich TRCN0000238432

Transfected construct
(M. musculus)

Taz shRNA Sigma-Aldrich TRCN0000095951

Sequenced-
based reagent

Piezo1 Life Technologies Mm01241549_m1

Sequenced-
based reagent

Piezo2 Life Technologies Mm01265861_m1

Sequenced-
based reagent

Ptgs2 Life Technologies Mm00478374_m1

Continued on next page
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Continued

Reagent type
(species) or resource Designation

Source or
reference Identifiers

Additional
information

Sequenced-
based reagent

Cyr61 Life Technologies Mm00487498_m1

Sequenced-
based reagent

Wnt1 Life Technologies Mm01300555_g1

Sequenced-
based reagent

Yap1 Life Technologies Mm01143263_m1

Sequence-
based reagent

Taz Life Technologies Mm01289583_m1

Sequence-
based reagent

Tnfsf11 Life Technologies Mm00441906_m1

Sequence-
based reagent

Tnfrsf11b Life Technologies Mm00435452_m1

Sequence-
based reagent

Sost Life Technologies Mm00470479_m1

Sequence-
based reagent

Mrps2 Life Technologies Mm00475529_m1

Sequence-
based reagent

Piezo1 sgRNA This paper GGTTATTCCTGTGAGGCCCG

Sequence-
based reagent

Piezo1 sgRNA This paper TTAGGATTCGGCTCACAGAG

Chemical
compound, drug

Yoda1 Sigma-Aldrich Cat# SML1558

Chemical
compound, drug

Puromycin
dihydrochloride

Sigma-Aldrich Cat# P8833

Chemical
compound, drug

G418 disulfate Sigma-Aldrich Cat# G8168

Antibody YAP1 Cell Signaling Cat# 14074S;
RRID:AB_2650491

1:200

Antibody Goat anti-Rabbit IgG
(Alexa Fluor 488)

Abcam Cat# ab150077;
RRID:AB_2630356

1:200

Software,
algorithm

Prism 8 GraphPad https://www.graphpad.
com/scientific-software/prism/

Software,
algorithm

ImageJ NIH https://imagej.nih.gov/ij

Mice
The generation of mice harboring Piezo1 conditional allele, termed Piezo1f/f mice, was described

previously (Cahalan et al., 2015). Mice harboring both Yap1 and Taz conditional alleles, termed

Yap1f/f;Tazf/f mice were kindly provided by Eric N. Olson (UT Southwestern Medical Center, Texas)

and were described previously (Xin et al., 2013). The 8 kb Dmp1-Cre transgenic mice were

described previously (Bivi et al., 2012). To generate Dmp1-Cre; Piezo1f/f mice and littermates, we

mated Piezo1f/f mice (crossed into C57BL/6J for more than 10 generations) and Dmp1-Cre mice

(crossed into C57BL/6J for more than 10 generations). Dmp1-Cre; Yap1f/f,Tazf/f mice and littermates

were obtained by mating Yap1f/f,Tazf/f mice (mixture of 129/Sv and C57BL/6J) and Dmp1-Cre mice

(crossed into C57BL/6J for more than 10 generations). We housed all mice in the animal facility of

the University of Arkansas for Medical Sciences. Animal studies were performed in strict accordance

with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National

Institutes of Health. Animal use protocols (3782, 3805, and 3897) were approved by the Institutional

Animal Care and Use Committee (IACUC) of the University of Arkansas for Medical Sciences. All of

the animals were handled according to approved protocols.

To quantify cancellous bone formation, we injected mice with calcein (20 mg/kg body weight)

intraperitoneally 7 and 3 days before harvest. To quantify periosteal and endocortical bone forma-

tion, we injected mice with calcein (20 mg/kg body weight) and Alizarin Red (20 mg/kg body weight)
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10 and 3 days before harvest. For gene expression, we injected Yoda1 into 4-month-old female

C57BL/6J mice one time and harvested tibiae 4 hr later for RNA extraction. For bone mass evalua-

tion, we injected Yoda1 into 4-month-old female C57BL/6J mice five consecutive days per week for

2 weeks (day 1–5 and day 8–12) and harvested the mice at day 15 for analysis. Yoda1 (Sigma, St.

Louis, MO) was dissolved in DMSO at 40 mM as a stock, diluted in 5% ethanol, and injected intraper-

itoneally at 5 mmol/kg body weight. Mice were rank-ordered by body weight and then assigned to

Veh or Yoda1 groups to give identical group means. All investigators involved in data collection

were blinded as to the genotype and group of the mice.

Cell line
HEK 293 T cells were authenticated by ATCC. MLO-Y4 cells were created and authenticated in Dr.

Lynda Bonewald’s lab (Kato et al., 1997). We tested the MLO-Y4 cells by morphology and osteo-

cytic gene expression such as RANKL and OPG. UAMS-32 cells were created and authenticated by

Dr. Charles O’Brien (O’Brien et al., 1999; Fu et al., 2002). Cells were treated with plasmocin to pre-

vent potential mycoplasma contamination.

Cell cultures
MLO-Y4 cells were cultured in a-MEM supplemented with 5% FBS, 5% BCS, and 1% penicillin/strep-

tomycin/glutamine. Fifteen dynes/cm2 oscillatory fluid shear stress was applied on MLO-Y4 cells at 1

Hz for 2 hr using an IBDI pump system (IBIDI, Germany). For Yoda1 treatment, cells were cultured in

the presence of 10 mM Yoda1 (Sigma, St. Louis, MO) or DMSO for 2 hr. Immediately after the treat-

ments, we isolated RNA from cells using RNeasy mini kit (Qiagen, Germany) for qPCR or RNA-seq

analysis. To silence Piezo1, we generated Piezo1 shRNA expression plasmid using the following oli-

gonucleotides in the pLKO.1-TRC cloning vector (Addgene Plasmid #10878, a gift from David Root):

forward oligo: 5’-CCGGTC-GGCGCTTGCTAGAACTTCACTCGAGTGAAGTTCTAGCAAGCGCCGA

TTTTTG-3’; reverse oligo: 5’- AATTCAAAAATCGGCGCTTGCTAGAACTTCACTCGAGTGAAGTTC

TAGCAAGCGC-CGA-3’ (Zhang et al., 2017). Yap1 shRNA (TRCN0000238432) and Taz shRNA

(TRCN0000095951) were purchased from Sigma (St. Louis, MO). A shRNA against firefly luciferase

was used as a control (Sigma, St. Louis, MO). For virus production, HEK293T cells were cultured in a

6-well culture plate and co-transfected with a total 3 mg of lentiviral shRNA vector, pMD2G (Addg-

ene plasmid #12259, a gift from Didier Trono), and psPAX2 (Addgene plasmid # 12260, a gift from

Didier Trono) at the ratio of 2:0.9:0.4 using TransIT-LT1 transfection reagent (Mirus, Madison, WI).

Culture media was changed 12 hr after transfection and viral supernatants were collected 48 hr after

media change. Viral supernatants were filtered through a 0.45 mm filter and used immediately to

transduce cells cultured in a 10 cm dish. Cells were then subjected to selection with G418 (100 mg/

ml) or puromycin (25 mg/ml) for 5 days before treatment. To overexpress Piezo1 in MLO-Y4 cells, we

transfected mPiezo1-IRES-eGFP (Addgene plasmid # 80925, a gift from Ardem Patapoutian) into

MLO-Y4 cells using TransIT-LT1 transfection reagent (Mirus, Madison, WI) and then treated these

cells with 15 dynes/cm2 oscillatory fluid shear stress at 1 Hz for 2 hr. Plasmids for expression of Cas9

and sgRNAs for knocking out Piezo1 in UAMS-32 cells were prepared by inserting oligonucleotides

encoding the desired sgRNA sequence into the pX458 vector using the protocol recommended by

the Zhang laboratory (Cong et al., 2013). Plasmids expressing Cas9 and Piezo1 sgRNAs were trans-

fected into UAMS-32 cells using TransIT-LT1 transfection reagent (Mirus, Madison, WI). Cells were

sorted into 96-well plates for single cell cloning 48 hr after transfection. Single cell colonies were

then screened for homozygous deletion using the following primers: Forward: 5’-GCTGTCAGGG

TAAGCAGTATC-3’, Reverse: 5’-GGAATATGAGGACAGCAGTCC-3’. All homozygous mutant cell

colonies were then pooled together for further analysis. Cas9 transfected cells were used as a con-

trol. All in vitro cell culture experiments were performed three times with three technical replicates.

Femoral organ culture
Female mice at 5 weeks of age were euthanized in a CO2 chamber. Femurs were dissected and both

ends were removed in a culture hood. Bone marrow was then flushed out using PBS and the perios-

teal surface was scraped to remove periosteal cells. Femoral shafts were then cultured in a 12-well-

plate with 1 ml of a-MEM supplemented with 10% FBS and 1% penicillin/streptomycin/glutamine for

24 hr. We then treated femur shafts with 10 mM Yoda1 (Sigma, St. Louis, MO) or DMSO for 4 hr.
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Femur shafts were then collected for RNA isolation and qPCR analysis. Ex vivo femoral organ culture

was repeated twice with three biological replicates.

In vitro osteoblast differentiation
Bone marrow stromal cells were flushed out from long bones, collected into a 50 ml cubical tube,

and filtered through a 40 mm cell strainer to obtain a single cell suspension. Bone marrow stromal

cells were then seeded into a 12-well-plate at 5 � 106 cells/well and cultured in a-MEM containing

10% fetal bovine serum, 1% penicillin/streptomycin/glutamine, 1% ascorbic acid, and 10 mM b-glyc-

erolphosphate. Culture medium was changed every 3 days. After 21 days, the cultures were fixed

with 10% buffered formalin and stained with an aqueous solution of 40 mM Alizarin Red to evaluate

osteoblastogenesis.

RNA-seq analysis
Purified RNA was used as input for sequencing library preparation and indexing using the TruSeq

stranded mRNA kit (Illumina, CA), following the manufacturer’s protocol. The libraries were then

pooled and sequenced using a NextSeq sequencer with 75 cycles of sequencing reaction. Data han-

dling and processing were performed on the basis of a previous bioinformatics pipeline

(Nookaew et al., 2012). The high-quality reads (phred quality score,>25; length after trimming,>20

bases) were obtained with the dynamic trimming algorithm in the SolexaQA++ toolkits (Cox et al.,

2010), and aligned with the mouse genome version GRCm38 using BWA software (Li and Durbin,

2009). Then the alignment files (.bam) were used to generate read counts for statistical analysis. The

differential gene expression analysis was performed using negative binomial based statistic

(Love et al., 2014). The adjusted p-values were used for gene enrichment analysis based on Gene

Ontology using the piano package (Väremo et al., 2013). Raw RNA-seq results have been depos-

ited in GEO database under BioProject PRJNA551282 with accession numbers: SRR9598498,

SRR9598497, SRR9598496, SRR9598495, SRR9598494, and SRR9598493. Detailed RNAseq analysis

was shown in Supplementary file 1.

Calcium concentration measurement
For intracellular calcium concentration measurement under fluid flow condition, 1 � 105 MLO-Y4

cells were seeded in a m-Slide I Luer (0.4 mm) fluid chamber slide (IBIDI, Germany) overnight. One

hour before initiating fluid flow, the culture medium was removed and 100 ml Hank’s Buffer with

Hepes (HHBS) containing 4 mM Fluo-8 (Abcam, Cambridge, MA) was added to the culture, as

described by the manufacturer. The cells were then cultured at 37˚C for 30 min. After additional

incubation at room temperature for 30 min, the chamber slide was placed under a confocal micro-

scope in order to record the intensity of fluorescence of MLO-Y4 cells. Fluorescence was recorded

for 3 min before starting fluid flow using HHBS and then recorded for another 10 min. The increase

of intracellular concentration was calculated by subtracting the initial mean fluorescence. For mea-

suring intracellular calcium concentration in cells with Yoda1 treatment, we cultured 4,000 MLO-Y4

cells per well in a 96-well-plate. We preloaded the cells with Fluo-8 as described by the manufacturer

and read the intensity of the fluorescence using a Victor X3 multi-label plate reader (Perkin Elmer,

Waltham, MA) immediately after the treatment. We measured the fluorescence for 5 min at an inter-

val of 20 s. The percentage of increase in intracellular calcium concentration was calculated as (Fx-

F0)/F0.

Skeletal analysis
Tibial X-rays were obtained using an UltraFocus X-ray machine (Faxitron Bioptics, Tucson, Arizona)

and BMD of the lumbar spine and femur were measured by dual-energy X-ray absorptiometry using

a PIXImus Densitometer (GE-Lunar Corp.) Three dimensional bone volume and architecture of L4

vertebra, femur, and tibia were measured by mCT (model mCT40, Scanco Medical, Wayne, PA). The

femur, vertebrae (L4), or tibia, were cleaned of soft tissues and fixed in 10% Millonig’s formalin for

24 hr. Bone were then gradually dehydrated into 100% ethanol. Bone samples were loaded into a

12.3 mm diameter scanning tube and images acquired in the mCT40. The scans were integrated into

3D voxel images (1024 � 1024 pixel matrices for each individual planar stack) and a Gaussian filter

(sigma = 0.8, support = 1) was used to reduce signal noise. Scanco Eval Program v.6.0 was used for
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measuring bone volume. A threshold of 220 mg/cm3 was applied to all scans at medium resolution

(E = 55 kVp, I = 145 mA, integration time = 200 ms) for trabecular bone measurements. The cortical

bone and the primary spongiosa were manually excluded from the analysis. Trabecular bone meas-

urements at the distal femur were made on 151 slices beginning 8–10 slices away from the growth

plate and proceeding proximally. Trabecular bone measurements in the vertebra was determined

using 100 slices (1.2 mm) of the anterior (ventral) vertebral body immediately inferior (caudal) to the

superior (cranial) growth plate. All trabecular measurements were made by drawing contours every

10 to 20 slices and voxel counting was used for bone volume per tissue volume and sphere filling

distance transformation indices, without pre-assumptions about the bone shape as a rod or plate for

trabecular microarchitecture. Femoral cortical thickness, periosteal circumference, and endocortical

circumference were measured at the mid-diaphysis. For tibial cortical thickness, we analyzed 18 sli-

ces 5 mm proximal from the distal tibiofibular junction. Vertebral cortical bone thickness was deter-

mined on the ventral cortical wall using contours of cross-sectional images, drawn to exclude

trabecular bone. Cortical analysis were measured at a threshold of 260 mg/cm3. Calibration and

quality control were performed weekly using five density standards and spatial resolution was veri-

fied monthly using a tungsten wire rod. We based beam-hardening correction on the calibration

records. Corrections for 200 mg hydroxyapatite were made for all energies.

Histology
Lumbar vertebrae were fixed for 24 hr in 10% Millonig’s formalin, dehydrated into 100% ethanol,

embedded in methyl methacrylate, and then 5 mm longitudinal sections were obtained. After

removal of plastic and rehydration, we stained sections for TRAP activity and counter-stained with

T-blue. Quantitative histomorphometry was performed to determine osteoblast and osteoclast num-

ber using Osteomeasure system (OsteoMetrics, Decatur, GA) interfaced to an Axio image M2 (Carl

Zeiss, NY). Bone formation rate was measured using unstained sections in Osteomeasure system.

We used terminology recommended by the Histomorphometry Nomenclature Committee of the

American Society for Bone and Mineral Research (Dempster et al., 2013). For quantification of peri-

osteal and endocortical bone formation, femurs or tibiae were fixed in 10% Millonig’s formalin for 24

hr, dehydrated into 100% ethanol, embedded in methyl methacrylate, and then 80 mm cross sections

were obtained at the femoral mid-diaphysis for femoral sections and 5 mm proximal from the distal

tibiofibular junction for tibial sections. We then measured mineralizing surface and mineral apposi-

tion rate using the Osteomeasure system.

Tibia axial loading
A cyclic axial load was applied to left tibia of mice to achieve +1200 me peak strain at the tibial mid-

shaft using an Electroforce TA 5500 (TA Instruments, New Castle, DE). To determine the required

load to achieve +1200 me peak strain for each genotype of experimental mice, axial loading was

applied to harvested tibiae ex vivo. A single-element strain gauge (C2A-06-015LW-120, VPG Micro-

Measurements, Wendell, NC) was attached to the antero-medial surface of the tibia located 5 mm

proximal from the distal tibiofibular junction using M-Bond 200 adhesive kit (VPG Micro-Measure-

ments). We recorded the force-strain regressions using Electroforce TA 5500 software. We then

applied the same amount of load to mice in vivo according to their genotype (8.5 Newton for Pie-

zo1f/f mice and 7.5 Newton for Dmp1-Cre; Piezo1f/f mice). The left tibia of each mouse was loaded

for five consecutive days per week for 2 weeks (day 1–5 and day 8–12), and the load was applied in

1200 cycles with 4 Hz triangle waveform and 0.1 s rest time between each cycle, a protocol shown

to be anabolic (Sun et al., 2018). We injected calcein (Sigma, St. Louis, MO) and Alizarin Red

(Sigma) intraperitoneally into mice 10 days and 3 days before euthanasia to label new bone forma-

tion. We euthanized the mice and collected tissues at day 15 for skeletal analysis. For gene expres-

sion analysis, we loaded left tibia of 4-month-old female mice with one bout of loading and

harvested tibiae 5 hr after loading for RNA extraction.

Biomechanical testing
We performed three-point bending test on femurs at room temperature using a miniature bending

apparatus with the posterior femoral surface lying on lower supports (7 mm apart) and the left sup-

port immediately proximal to the distal condyles. Load was applied to the anterior femoral surface
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by an actuator midway between the two supports moving at a constant rate of 3 mm/min to pro-

duce a physiological in vivo strain rate of 1% for the average murine femur. Maximum load (N) and

displacement (mm) were recorded. The external measurements (length, width and thickness) of the

femora were recorded with a digital caliper. We measured the moment of inertia in the midshaft of

femur using mCT (model mCT40, Scanco Medical). The mechanical properties were normalized for

bone size and ultimate strength and stress (N/mm2; in megapascals and MPa) was calculated.

Quantitative PCR
Organs and whole bones were harvested from animals, removed of soft tissues, and stored immedi-

ately in liquid nitrogen. We prepared osteocyte-enriched bone by removing the ends of femurs and

tibias and then flushing the bone marrow with PBS. We then scraped the bone surface with a scalpel

and froze them in liquid nitrogen for later RNA isolation, or decalcified them for genomic DNA isola-

tion. We isolated total RNA using TRIzol (Life Technologies, NY), according to the manufacturer’s

instructions and prepared cDNA using High Capacity first strand cDNA synthesis kit (Life Technolo-

gies). We performed quantitative RT-PCR using the following Taqman assays from Applied Biosys-

tems: Piezo1 (Mm01241549_m1); Piezo2 (Mm01265861_m1); Ptgs2 (Mm00478374_m1); Cyr61

(Mm00487498_m1); Wnt1 (Mm01300-555_g1); Yap1 (Mm011432-63_m1); Taz (Mm01289583_m1);

Tnfsf11 (Mm00441906_m1); Tnfrsf11b (Mm00435452_m1); Sost (Mm00470479_m1); and ribosomal

protein S2 (Mrps2) (Mm00475529_m1). We calculated relative mRNA amounts using the DCt method

(Livak and Schmittgen, 2001). We isolated genomic DNA from decalcified cortical bone after diges-

tion with proteinase K and phenol/chloroform extraction. We obtained two custom Taqman assays

from Applied Biosystems for quantifying Piezo1 gene deletion efficiency: one specific for sequences

between the loxP sites and the other specific for sequences downstream from the 30 loxP site.

Immunostaining
Cultured cells were fixed in 4% freshly prepared paraformaldehyde for 15 min. Slides were washed

in PBST for 5 min, pretreated with PBS containing 0.1% Triton X-100 for 20 min, and blocked in

2.5% normal goat serum for one hour. Anti-YAP1 antibody (14074S, Cell Signaling, Danvers, MA)

was diluted 1:200 in PBST containing 2.5% normal goat serum and incubated with the chamber

slides overnight at 4˚C followed by rinsing and additional incubation for 1 hr with goat anti-rabbit

IgG H and L (Alexa Fluor 488) (1:200) (ab150077, Abcam, Cambridge, MA). Non-immune goat IgG

was used as a negative control. Slides were mounted with aqueous mounting medium (H-1000, VEC-

TOR LABORATORIES, INC., Burlingame, CA). Stained slides were imaged using Axio imager M2

fluorescence microscope (Carl Zeiss, NY). Mean fluorescence intensity was quantified using ImageJ

(NIH, Bethesda, Maryland).

Osteocalcin and CTX ELISA
Circulating osteocalcin and CTX in serum was measured using a mouse Osteocalcin enzyme immuno-

assay kit (Thermo Fisher) and RatLaps (CTX-I) EIA kit (Immunodiagnostic Systems, Boldon, UK)

respectively according to the manual provided by manufacturers. Blood was collected by retro-

orbital bleeding into 1.7 mL microcentrifuge tubes. Blood was then kept at room temperature for

one hour and centrifuged at 1500 x g for 10 min to separate serum from cells.

Statistical analysis
GraphPad Prism seven software (GraphPad, San Diego) was used for statistical analysis. Two-way

analysis of variance (ANOVA) or Student’s t-test were used to detect statistically significant treat-

ment effects, after determining that the data were normally distributed and exhibited equivalent var-

iances. All t-tests were two-sided. P-values less than 0.05 were considered as significant. Error bars

in all figures represent s.d..
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