1. Biochemistry and Chemical Biology
  2. Microbiology and Infectious Disease
Download icon

Anaerobic Bacteria: Solving a shuttle mystery

  1. Bridget Conley  Is a corresponding author
  2. Jeffrey Gralnick  Is a corresponding author
  1. University of Minnesota, United States
Insight
Cite this article as: eLife 2019;8:e49831 doi: 10.7554/eLife.49831
1 figure

Figures

An abiotic reaction produces ACNQ, a molecule that serves as an electron shuttle in Shewanella oneidensis.

(A) Redox reactions take place when electrons released from a molecule (oxidation) are accepted by another compound (reduction). Wild-type S. oneidensis can reduce AQDS, a molecule present in the environment (reduced AQDS is shown in red and oxidized AQDS in yellow); they also produce the newly identified compound called ACNQ, which shuttles electrons from the cells into the extracellular environment. When grown alone, mutant S. oneidensis bacteria that cannot produce menaquinone fail to reduce AQDS (upper right); however, when they are grown close to a wild-type colony, they can use the ACNQ molecules present in the milieu to complete the redox reaction (lower left). This diagram summarizes the AQDS reduction assays performed by Newman and Kolter as well as Mevers et al. (B) The work by Mevers et al. reveals how S. oneidensis can produce ACNQ. The enzymes MenA and UbiE convert the molecular precursor DHNA into menaquinone-7 (MQ), its dominant product. Menaquinone is found in the inner membrane (IM) of the bacterium, where it serves as a lipid-soluble electron carrier in the electron transport chain (blue structure in right inset). About 2% of the DHNA pool can also chemically react with an ammonia source (NH3+) to form ACNQ. AQDS: anthraquinone-2,6-disulfonate; ACNQ: 2-amino-3-carboxyl-1,4-napthoquinone; DHNA: 1,4-dihydroxy-2-naphthoic acid.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)