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Abstract Axon caliber plays a crucial role in determining conduction velocity and, consequently,

in the timing and synchronization of neural activation. Noninvasive measurement of axon radii could

have significant impact on the understanding of healthy and diseased neural processes. Until now,

accurate axon radius mapping has eluded in vivo neuroimaging, mainly due to a lack of sensitivity

of the MRI signal to micron-sized axons. Here, we show how – when confounding factors such as

extra-axonal water and axonal orientation dispersion are eliminated – heavily diffusion-weighted

MRI signals become sensitive to axon radii. However, diffusion MRI is only capable of estimating a

single metric, the effective radius, representing the entire axon radius distribution within a voxel

that emphasizes the larger axons. Our findings, both in rodents and humans, enable noninvasive

mapping of critical information on axon radii, as well as resolve the long-standing debate on

whether axon radii can be quantified.

Introduction
Axons facilitate connectivity between distant neurons. Along with myelination, the axon radius deter-

mines the conduction velocity, thereby shaping the timing of neuronal computations and communi-

cation (Waxman, 1980). Using a model of action potential neurophysiology (Rushton, 1951), it has

been shown that the axon radius explains the largest proportion of variance in conduction velocity

(Drakesmith et al., 2019). Histological studies demonstrated that axon sizes vary widely within the

human brain, ranging from 0.1�m to more than 3�m (Aboitiz et al., 1992; Innocenti et al., 2015;

Liewald et al., 2014), and across species (Olivares et al., 2001; Schüz and Preibl, 1996;

Liewald et al., 2014). Moreover, axon radii have been shown to be altered in various disease pro-

cesses. For example, direct axon counting in post-mortem tissue has suggested that smaller axons

may be preferentially susceptible to axonal injury in multiple sclerosis (Evangelou et al., 2001) due

to inflammation (Campbell et al., 2014). Electron microscopy has revealed a higher percentage of

small-radius axons and a lower percentage of large-radius axons in several anatomically and func-

tionally distinct segments of the corpus callosum in autistic subjects compared to healthy controls

(Wegiel et al., 2018). From the animal literature, morphometric analysis of adult rat brains showed

reduced axonal radii without axonal loss after chronic alcohol feeding (Kjellström and Conradi,

1993). Such studies indicate that non-invasive metrics capable of reporting on features of the axon

radius distribution could provide important neuroimaging biomarkers for basic research and clinical

applications.

A particularly relevant neuroimaging modality attuned to the microarchitecture of living brain tis-

sue is diffusion-weighted MRI (dMRI). dMRI is sensitive to the thermal motion of water molecules
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and their interference with microscopic boundaries, such as imparted by cells and subcellular struc-

tures in the brain (Tanner, 1979; Le Bihan, 2003; Le Bihan et al., 1986; Callaghan et al., 1988;

Basser et al., 1994; Jones, 2010; Beaulieu, 2002; Novikov et al., 2019). Applications of dMRI spe-

cialize in revealing macroscopic brain connections (Jbabdi et al., 2015) and in the interpretation of

contrast differences in diffusion-weighted images (Moseley et al., 1990; Baron et al., 2015). How-

ever, reproducible and specific biomarkers for studying disease onset and progression non-invasively

and quantitatively in the entire brain, in particular vis-a-vis axonal properties, would confer clear

advantages. Several studies have used various methods to report on axon radius parameters; still,

despite many attempts, axon radius mapping using dMRI remains highly contested (Assaf et al.,

2013; Horowitz et al., 2015; Alexander et al., 2010; Innocenti et al., 2015; Xu et al., 2014;

Burcaw et al., 2015; Ong et al., 2008; Ong and Wehrli, 2010). Discrepancies between histology

and dMRI-derived axon radii uncovered various confounding factors, for example orientation disper-

sion (Drobnjak et al., 2016; Nilsson et al., 2012), time-dependent extra-axonal diffusion oversha-

dowing the intra-axonal signal at low diffusion weighting (Burcaw et al., 2015; Fieremans et al.,

2016; Lee et al., 2018), weak signal attenuation for typically very narrow axons, especially in the

realistic experimental regime of long diffusion gradient duration (van Gelderen et al., 1994; Neu-

man, 1974), and/or putative shrinkage during tissue preparation (Barazany et al., 2009;

Innocenti et al., 2015; Aboitiz et al., 1992).

Recent advances in biophysical modeling and hardware prompted a revival of MR axon radius

mapping (McNab et al., 2013; Huang et al., 2015; Jones et al., 2018). First, several of the most

crucial confounding factors have been removed using powder-averaging concepts (Callaghan et al.,

1979; Jespersen et al., 2013; Kaden et al., 2016). Averaging diffusion-weighted signals that are

isotropically distributed on a sphere with constant diffusion-weighting strength b has been shown to

factor out the orientation dispersion (Jespersen et al., 2013; Kaden et al., 2016; Mollink et al.,

2017), thereby eliminating one of the most important confounding factors in axon radius mapping

(Nilsson et al., 2012). Second, gradient systems capable of producing relatively strong gradient

pulses have been introduced in human scanners (Jones et al., 2018). Third, it has been shown that

dMRI can be made specific to a particular water population restricted into long, yet micrometer-thin

cylindrical objects by imparting high diffusion-weighting regimes (McKinnon et al., 2017;

Veraart et al., 2019). Often, an axon is too narrow to yield a measurable diffusion-weighted MR sig-

nal decay, hence the popular use of ‘sticks’ (Behrens et al., 2003; Kroenke et al., 2004) when refer-

ring to axons (and possibly glial cell processes) within the context of biophysical modeling of white

matter using dMRI.

The intuition behind promoting specificity to intra-axonal water comes from Callaghan’s

model (Callaghan et al., 1979) of diffusion inside infinitely narrow one-dimensional randomly-ori-

ented cylinders, as applied to intra-neurite diffusion by Kroenke et al. (2004). The spatial Four-

ier transform e�D
k
aðqn̂Þ2 t of the diffusion propagator (with respect to the diffusion wave vector q)

for a single stick as measured with MRI (Callaghan, 1991), averaged over the orientations n̂ of

the sticks, yields the asymptotic scale-invariant power law S ¼
R

d cos � e�D
k
aq

2t cos2 �
~ 1=ba as a func-

tion of the diffusion weighting parameter b ¼ q2t (Le Bihan et al., 1986), with the scaling expo-

nent a ¼ 1=2. Evidently, this power law scaling should be only approximate, for q � 1=r, where r

is the cylinder radius. Its observation (McKinnon et al., 2017; Veraart et al., 2019) in the range

6ms=�m2 � b � 10ms=�m2 is a manifestation of the insensitivity of dMRI to the transverse axonal

dimensions on clinical scanners. However, for sufficiently strong diffusion weighting, the power

law scaling eventually breaks down, and the dMRI measurement becomes sensitive to the axonal

diameter.

Technically, this work addresses the detection and the interpretation of the deviation from the

radius-insensitive a ¼ 1=2 power law signal behavior at the largest possible b (by varying q at fixed

diffusion time t), in rat and human white matter. Indeed, either sensitivity of MR to a finite axonal

radius, or a notable exchange rate between intra- and extra-axonal water at the clinical dMRI time

scales t~100 ms, would alter the very particular power law scaling (Kroenke et al., 2004;

Jensen et al., 2016; McKinnon et al., 2017; Veraart et al., 2019).

Following theoretical considerations, we demonstrate the breaking of the power law scaling at

very high b-values in ex vivo rodent brains, from which metrics associated with the axon radius distri-

bution can be mapped quantitatively. Confocal microscopy of the rat corpus callosum (CC) validated
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that (i) the signal arises mainly from the intra-axonal space, and (ii) the MR-derived axon radius met-

rics are in good quantitative agreement with those derived from histology. We then observe the

same signal signatures in living human brain on the Connectom 3T scanner, that is, a high perfor-

mance research scanner with a maximal gradient amplitude of 300 mT/m – a fourfold increase com-

pared to state-of-the art clinical scanners (Glasser et al., 2016). Our findings both validate the

mechanism with which axon radii are weighted in dMRI (Burcaw et al., 2015), and demonstrate the

accuracy of which properties of the radius distributions can be estimated. After validating and evalu-

ating our methodology in rat and human brain, we further discuss the impact of axon radius meas-

urements in health and disease.

Theory

Power law scaling
In most biophysical models for diffusion in white matter, axons (and possibly glial cell processes) are

represented by zero-radius impermeable ‘sticks’, characterized by locally one-dimensional diffusion,

that is radial intra-axonal diffusivity D?
a � 0 (Kroenke et al., 2004; Behrens et al., 2003;

Jespersen et al., 2007; Jespersen et al., 2010; Fieremans et al., 2011; Sotiropoulos et al., 2012;

Zhang et al., 2012; Novikov et al., 2014; Novikov et al., 2018; Novikov et al., 2019;

Jensen et al., 2016; Reisert et al., 2017; McKinnon et al., 2017; Veraart et al., 2019). The stick

model then yields an asymptotic intra-axonal orientationally averaged signal decay,

SðbÞ ’ bb�aþg ; bDk
a � 1 ; (1)

with an intercept g (discussed below), the power law exponent a¼ 1=2, and the coefficient

b¼
ffiffiffiffiffiffiffiffiffi

p=4
p

� f =ðDk
aÞ

1=2 where f is the T2-weighted axonal water fraction (Veraart et al., 2018;

Lampinen et al., 2019) and Dk
a the parallel intra-axonal diffusivity. This particular signal decay only

holds in the absence of extra-axonal signal, which is assumed to decay exponentially fast and, as

such, to be fully suppressed at sufficiently high b-values (McKinnon et al., 2017; Veraart et al.,

2019). Therefore, we restrict our in vivo analysis to b>6ms=�m2 (Veraart et al., 2019). Our lower

bound on the b-value is significantly higher than previous predictions from Monte Carlo simulations

(Raffelt et al., 2012), thereby minimizing the likelihood of residual extra-axonal signal contributions.

For the ex vivo analysis, we increase this lower bound to b¼ 20ms=�m2 to compensate for the

reduced diffusivities in fixed tissue (Shepherd et al., 2009).

Breaking of the power law
The following computations always assume that the signal is normalized to Sjb¼0

� 1. Sensitivity of

MR to either finite axon radius or notable exchange rate between intra- and extra-cellular water

would break the b�1=2-scaling at large b as follows:

. Finite axon radius: A finite D?
a > 0 results in a truncated power law:

SðbÞ ’ be�bD?
a þOðb2Þ b�1=2 þ fim; (2)

with fim � Sjb!¥ � 0 the signal fraction of a fully restricted immobile water compartment (the so-
called ‘dot’ compartment) (Stanisz et al., 1997; Dhital et al., 2018; Tax et al., 2019;

Veraart et al., 2019). If D?
a ¼ 0, the power law offset (found from extrapolating the signal to

b ! ¥), should give the fraction of the dot compartment, g � fim (Veraart et al., 2019). However,

for nonzero D?
a and finite b, the Taylor expansion of,

S’ b� � e�D?
a =�

2 þ fim ; �¼ 1=
ffiffiffi

b
p

(3)

around any finite point �0 predicts the � ! 0 intercept g<fim, Figure 1. The always negative differ-
ence � ¼ g � fim<0 depends on b, Da, and �0; its maximal magnitude

j�maxj ¼ b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2D?
a =e

p

¼ f �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p
2e
� D?

a =D
k
a

q

is achieved at the curve’s inflection point �2� ¼ 2D?
a . Hence,
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γ

fim

ǫClinical 

Research (human) 

Research (Small animal) 

fim

Figure 1. Breakdown of power law scaling: Top left: A nonzero D?
a would result in a truncated power-law signal

decay. Although the resulting signal nonlinearity might be too subtle to be discerned within the achievable b-

range, even for (pre-)clinical systems with strong diffusion-weighting gradients, the concavity of the curves plotted

as function of � ¼ 1=
ffiffiffi

b
p

for �>�� ¼
ffiffiffiffiffiffiffiffiffi

2D?
a

p

means that even the smallest D?
a will result in an extrapolated � ! 0

intercept g<fim when the power law, Equation 1, is used to approximately describe the signal in the delineated b-

ranges. The intercept is maximally negative at the inflection point �� (colored dots), beyond which each curve

becomes convex, and the negative intercept g of the linear extrapolation starts to decrease. In all plots here,

diffusivities and b-values are expressed in mm2/ms and ms/mm2, respectively. Top right: One representative curve

(D?
a ¼ 0:020) is shown to highlight the differences between the physically plausible dot compartment fim>0, and

the intercept g. The dot compartment is a positive signal fraction of a biophysical compartment, whereas the

intercept is a parameter of the power-law approximation, Equation 1. Their difference � depends on various

parameters, including the axonal signal fraction, diffusivities, the axon radius, and the scan protocol. The predicted

signal decay for the exchange model (dash-dotted; Equation 4) is convex in the entire b-range, where the signal

decay for the finite axon radius model (dotted; Equation 2) is concave until the inflection point. Bottom: The

optimization landscape of Equation 3 shows a shallow valley, relative to the noise floor, for a simulation that

mimics the human component of the study. (Bottom left) The valley is shown in a 2D projection of the landscape

(shown as a function of radius instead of D?
a , see Equation 10). (Bottom right) The fit objective function along the

valley is shown (red line) in comparison to the noise floor (dashed line) with an unrealistically high SNR of 250 for

the non-DW signal. The red dot indicates the ground truth value.
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the lower bound fim � j�maxj for the � ! 0 intercept g may be negative. A negative g is biophysi-

cally implausible if the stick model holds, D?
a � 0; however, g<0 becomes a natural consequence

of a finite D?
a >0 (and hence, of a finite axonal diameter), Figure 1, in the case when the extrapo-

lated negative intercept overcomes the positive immobile fraction fim. Recently, fim was shown to
be negligible in healthy human white matter (Dhital et al., 2018; Tax et al., 2019; Veraart et al.,
2019). Therefore, a negative intercept is a novel hallmark of MR sensitivity to the inner axon

diameter, even if the signal scaling might appear linear as a function of b�1=2 for b-ranges accessi-
ble on human MR scanners. Importantly, the finite axon radius model, Equation 3, is poorly con-

ditioned as a result of which the simultaneous estimation of fim and D?
a is practically impossible,

especially for human MR experiments, see Figure 1. An accurate and precise measurement of D?
a

depends on the prior knowledge of fim and requires a dedicated measurement (Dhital et al.,
2018; Tax et al., 2019).

. Exchange: The spherical integration of the two-compartment ‘Kärger’ model (Kärger, 1985)
with a finite exchange rate R>0 yields approximately the following signal decay:

SðbÞ»b b�1=2 þ c � b�3=2
� �

þ fim ; c/RTE=D
?
e >0 ; (4)

with D?
e the radial diffusivity in the interstitial space, and TE, the echo time, during which

exchange can happen. Importantly, Equation 4 is convex as a function of � ¼ b�1=2.

The relative fit quality of the models (i.e., Equations 1, 2, and 4) to the dMRI signal decays can

be evaluated qualitatively (convex versus concave shape) or statistically by means of the corrected

Akaike information criterion (AICc) (Burnham and Anderson, 2002).

From diffusivity to effective MR radius
The radial signal attenuation S?c ðrÞ inside the cylinder of radius r in the Gaussian phase approxima-

tion (van Gelderen et al., 1994):

ln S?c ðrÞ ¼� 2g2r4

D0

P

¥

m¼1

tc
a6
mða2

m�1Þ � 2a2

m
d
tc
� 2þ 2e�2a2

md=tc þ 2e�2a2

mD=tc � e�2a2

mðD�dÞ=tc � e�2a2

mðDþdÞ=tc
h i

þOðg4Þ

��bD?
a ðrÞþOðb2Þ;

(5)

with b¼ g2d2 D� d=3ð Þ and tc ¼ r2=D0 defines the connection between the intra-axonal radial diffusiv-

ity D?
a and the radius r. Here, D0 is the diffusivity of the axoplasm, g the gradient of the Larmor fre-

quency, am is the mth root of dJ1ðaÞ=da¼ 0, where J1ðaÞ is the Bessel function of the first kind, and d

and D are the gradient duration and separation, respectively (Stejskal, 1965).

In the long-pulse limit, that is when d � tc, the dependence on D drops out (Neuman, 1974), and

Equation 5 approaches the Neuman’s limit

lnS?c ðrÞ ¼�k r4 ; k¼ 7

48

g2d

D0

; d� tc : (6)

This limit practically applies to the majority of axons. Importantly, the attenuation is proportional to

the fourth power of the radius r and, as such, it is very weak for narrow axons. Hence the low sensi-

tivity of dMRI to the inner axon diameter.

For an unknown distribution hðrÞ of axons with radii r, the total intra-axonal signal attenuation

becomes a volume-average over the histogram bins ri (Packer and Rees, 1972):

S?½hðrÞ� ’
P

i hðriÞr2i S?c ðriÞ
P

i hðriÞr2i
¼ hr2S?c ðrÞi

hr2i ; (7)

such that the signal contribution of an axon scales quadratically with its radius r. The Taylor expan-

sion of the net signal attenuation S? demonstrates the sensitivity of the dMRI signal to the distribu-

tion’s higher order moments:
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S?½hðrÞ� ¼ hr2 1�kr4 þOðr8Þ
� �

i=hr2i»1�khr6i=hr2i
»e�kr4

eff � S?c ðreffÞ;
(8)

where the effective axon radius:

reff � hr6i=hr2i
� �1=4

(9)

captures the contribution from the whole distribution hðrÞ in a single metric (Burcaw et al., 2015). The

ability to represent the whole distribution by the ratio of its 6th and 2nd moments relies on almost all

axons falling into the Neuman’s limit, Equation 6. Representing S?c ðreffÞ � e�bD?
a , we can calculate

rMR ¼
48

7
d D� d=3ð ÞD0D

?
a

� �1=4

; (10)

the MRI estimate of reff after estimating D?
a from the orientation-averaged signal using Equation 2.

Note that the effective radius, Equation 9, is heavily weighted by the tail of hðrÞ. Physically, this
happens due to the combination of the weak NMR signal attenuation by small radii, ln S ~ � r4, in

the diffusion-narrowing (Neuman’s) regime (Neuman, 1974), and of the subsequent volume-weight-

ing that emphasizes the thickest axons by an extra factor of r2 (Packer and Rees, 1972;

Alexander et al., 2010). The error associated with these modeling assumptions is discussed in the

Results section.

Results

Simulations
Accuracy
First, we evaluate the accuracy of axon radius mapping as a function of r for axon radius distributions

extracted from histology; Figure 2 (left and middle panels). We used a simulation framework based

on the matrix formalism for diffusion signal attenuation within fully restricted cylinders (Calla-

ghan, 1997), as implemented in the MISST toolbox (Drobnjak et al., 2010), while mimicking the

entire experimental setup, for both the human and preclinical experiments.

In the case of diffusion restricted in a single cylinder with radius r, the error in the estimated

radius r̂ increases with r. Indeed, the missing higher-order Oðg4Þ corrections to Equations (5)-(6) set

an upper bound on the achievable accuracy for large axons, as estimated recently (Lee et al., 2018).

The combined error in the estimation of reff associated with the approximations made in Equa-

tion 6 and Equation 8 is only 5% for the human set-up when considering the axon radius distribution

provided by Aboitiz et al. (1992); the distributions of Caminiti et al. (2009) result in a subpercent

error. Additionally, we show the errors in the estimation of reff for the axon caliber distributions that

were observed in our different histological sections while considering the scan parameters from our

fixed tissue experiments. The shorter diffusion timings increase the approximation errors, leading to

an underestimation up to 9%.

Feasibility and precision
Figure 2 (right panel) shows a theoretical lower bound on the 95% confidence interval in the voxelwise

estimation of D?
a from Equation 2, as predicted using a Cramér-Rao lower bound analysis (Kay, 1993).

Using the dependence D?
a »D?

a ðreffÞ, Equation 8, that approximately identifies reff with the single cylin-

der radius in van Gelderen’s model, can be used to translate the lower bound onD?
a to that on reff .

Notably, it follows from Figure 2, that an estimate of D?
a exceeds zero with a statistical threshold

of p>0:05, if the corresponding reff>1:41�m and reff>0:76�m, when mimicking the diffusion acquisi-

tion and SNR on the Siemens Connectom (Gmax ¼ 300mT=m) and Bruker Aeon (Gmax ¼ 1500mT=m)

MR scanners, respectively. In comparison, for a typical acquisition on a modern clinical scanner with

Gmax ¼ 80mT=m, this lower bound is 3.2 �m (Veraart et al., 2019).
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Preclinical data
Dot compartment
Because fim has been reported to be significant in fixed tissue by Stanisz et al. (1997), we first have

to estimate the signal fraction of the immobile water compartment fim in the three fixed brain sam-

ples from a dedicated MRI acquisition (see Materials and methods). The estimate f̂im is in the range

of 8 to 17% with a median value of 13%. The range is defined here by the 5th and 95th percentile of

the distribution of the estimated dot fractions in all CC voxels, across the three samples.

Breaking the power law
Figure 3 shows the signal decay, averaged across all CC voxels, based on diffusion measurements in

the three rat brain samples with b up to 100ms=�m2. We notice that an extrapolation to infinite b,

that is 1=
ffiffiffi

b
p

! 0, yields a small but significant negative offset g, of the order of a few per cent of the

non-attenuated Sjb¼0
signal, in all three samples after subtracting the f̂im from the diffusion

measurements.

We re-evaluate the validity of a perfect stick assumption in the high b-regimes using a AIC analy-

sis. To study fit robustness with respect to the number of degrees of freedom by considering the

full, nested, and extended models to Equation 1. Specifically, we evaluated the following models:

i. fim þ bb�a

ii. fim þ bb�1=2;

iii. fim þ be�bD?
a b�1=2

iv. fim þ b b�1=2 þ c � b�3=2
� �

v. bb�a

vi. bb�1=2

vii. be�bD?
a b�1=2

viii. b b�1=2 þ c � b�3=2
� �
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Figure 2. Simulations on accuracy and precision of MR-based axon radius mapping. First, the left and middle panel show the difference between the

estimated, r̂, and theoretical, r, effective MR radius associated with various realistic axon caliber distributions (solid dots with different color for different

distributions) for the clinical and preclinical setups, respectively. Axon caliber distributions were adopted from Aboitiz et al. (1992) and

Innocenti et al. (2015) for the clinical simulations (see Figure 7), whereas various axon distributions (see Figure 4) derived from our own histology

were used for the preclinical simulation. The average radii, �r, of the axon caliber distribution are shown for comparison (open dots). Additionally, the

accuracy of the framework for a system with single cylinder with radius r is shown (black line). Second (right figure), the feasibility to measure D?
a with

statistical significance in case of scan settings and SNR for the Connectom (300 mT/m; blue), Aeon (1500 mT/m; green) protocol, respectively. For

comparison, we also assessed the feasibility for the Prisma protocol as described in Veraart et al. (2019) (80mT/m; red). The shaded areas illustrate

the 95% confidence intervals derived from Cramér-Rao lower bound analysis of model, Equation 2 with fim ¼ 0. The corresponding minimal cylinder

radius r that allows for the observation of significant D?
a ðrÞ, r ¼ 0:76�m, 1.41 mm and 3.24 mm for Aeon, Connectom, and Prisma, respectively, is

indicated by the vertical lines. In all plots, diffusivities and radii are expressed in �m2=ms and �m, respectively.
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Figure 3. Breaking of the power law. The ROI- and spherically averaged signal decay is shows for the different

fixed samples of the rat CC (a) and human subjects (b) and as a function of 1=
ffiffiffi

b
p

and on a double logarithmic

scale. The data deviate from the power law scaling with exponent 1/2 that is predicted by the stick model (i.e.

nonlinear signal decay in log-log plot), thereby demonstrating sensitivity of the signal to the radial intra-axonal

signal. The fits of Equation 1 are shown in dashed lines. In all plots, b is expressed in ms=�m2.
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Our analysis shows that a truncated power law (vii), which explicitly accounts for D?
a >0 (and hence

does not require a negative intercept parameter), yet sets fim ¼ 0, fits the experimental data signifi-

cantly better than pure power law forms (models (i), (ii), (v), and (vi)) (the difference in AICc<2), with

or without an offset g, if the immobile (dot) compartment is corrected for, that is when using

S*ðbÞ ¼ SðbÞ � f̂im. Without dot-correcting the ex vivo data, the power law form (ii) with an intercept

outperforms the other models. In that case, the intercept g is negative, while fim is defined to be

positive. Hence, the intercept encodes both the still water fraction and a negative offset to the inter-

cept associated with the sensitivity to the axon diameter, such that the overall g<0.

Axon radius estimation and histological validation
Axon radii were estimated from the diffusion MRI data for the different CC ROIs (Figure 4) along

with the axon radius distributions extracted histologically, Figure 4. The errors between the associ-

ated tail-weighted effective radii and MR-derived rMR vary between 5 and 21% in the different ROIs.

Notably, a consistent residual overestimation was observed, whereas the previous simulations (Fig-

ure 2) predicted an underestimation.

To further examine the correlations between the MR-derived parameters and underlying micro-

structure, we analyzed 16 patches with the same size as an imaging voxel, that is 100 � 100 �m2

within the genu of the CC of the second sample, CC#2. The confocal light microscopy images of

two of those patches are shown for the various stainings, Figure 5. Two notable biological compo-

nents other than axons were highlighted, namely, astrocytic processes and (neuronal or glial) cell

bodies, which were found to have volume fractions of about 5%. Although the radius of the astro-

cytic processes cannot be measured due to their random orientations w.r.t. the image plane, it is

clear that some of the processes have a large diameter, for example up to 7 �m in the first patch.

The average cell body radius is 2.6 �m, with an effective radius of 4.3 �m. It is worth highlighting

that the T2-weighted signal fraction of both cell types remains unknown since the corresponding

ROI #1 ROI #2 ROI #3 ROI #4

Genu

Spleniumii

ROI #1

ROI #2

ROI #3 ROI #4

Axon radius distribution (microscopy)

Effective axon radius (microscopy)

Effective axon radius (dMRI)

Figure 4. Histological validation, part I. The axon radius distributions for different ROIs of rat CC#1 are shown

(blue bars).The associated tail-weighted effective radii are shown in the black lines, whereas the corresponding MR

estimates are shown by the red lines. In all plots, r is expressed in �m.
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relaxation times are unknown. This unknown difference between compartmental volume (histology)

and signal (MRI) fractions remains the Achilles’s heel of comparisons between MRI measurements

and histological evaluations of tissue microstructure.

Within each of the 16 patches, we extracted the axon radii distribution and derived the average �r

and effective radius reff . The box plots of those metrics are shown in Figure 5. The median �r and

median effective radius reff across all patches are 0.61 and 1.06 �m , respectively. In comparison, the

median rMR, derived from dMRI in 16 voxels within the genu of the CC, is 1.16, 1.10, and

1.19 �m for the three rat samples, respectively. The median MR-derived effective axon radius is

between 81 and 97% larger than the median �r, whereas the error to the median reff , as derived from

histology, is only 3.4 to 12.8%.

Parameter maps
ROI measurements provided robust estimation, but a remaining question is whether dMRI could be

used to map the effective MR radius in a voxelwise manner. Figure 6 shows the maps of the MR-

derived effective axon radii for all three rat CC’s. The maps appear smooth with very few outlier vox-

els, suggesting that the estimation is robust even when voxelwise data is used. Furthermore, the

qualitative trends are in good agreement with previously reported observations of larger axons in

the body of the CC in comparison to the genu and splenium (Barazany et al., 2009). Inter-subject

variability is not very large and can be attributed to slightly different slice positions. When comput-

ing the effective radius of the CC-averaged signal �rMR, the intersubject variability nearly nullifies.

Indeed, we estimate �rMR ¼ 1:22; 1:25 and 1.25 mm in the three samples, respectively.

Towards human applicability
Breaking the power law
To assess the applicability of this approach in more realistic settings available for human imaging,

experiments were performed in human subjects on the Connectom scanner, which is capable of pro-

ducing 300 mT/m gradient amplitudes. The dMRI signal decay curves, averaged across all WM

20µm20µm
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d
ii
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m
]
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Cell bodies 

Axons 
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d
ii
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d
ii
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Figure 5. Histological validation, part II. (left) For a second fixed brain sample, CC#2, the confocal microscopy images, stained for neurofilaments (red),

astrocytes (green), and cell bodies (blue), are shown for two representative 100� 100�m2-patches that are positioned within the Genu (microscopy

image of CC shown for ROI positioning). The abundance of astrocytes and cell bodies, both representing 5% of the volume, is clear in both patches.

The astrocytic processes can have a large diameter, up to 7 mm in the first patch. A detailed analysis of the radius distribution of the astrocytic

processes is not possible due to their random orientation w.r.t. the image plane. (middle) Axon radius distributions for all 16 patches of the Genu (each

patch has different color in the bar plot). (right) Boxplots represent the distribution of the average and effective radius of the axon radii distribution that

were extracted from each of the 16 patches within the genu. The effective radius reff is larger than the average �r, respective medians are 1.06 and

0.61 mm. The boxplots for the MR-derived axon radius measurements for 16 MR voxels within the genu for the three fixed CC samples are also

shown. In all plots, radii are expressed in �m.
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voxels, with b-values up to 25 ms/mm2 for the

four human subjects are shown in Figure 3.

Importantly, we find that — in excellent corre-

spondence with the previous preclinical data —

the linear extrapolation of the signal decay as a

function of 1=
ffiffiffi

b
p

to 1=
ffiffiffi

b
p

! 0 produces a signifi-

cant negative offset g in all subjects.

Note that the dot compartment was not mea-

sured directly, because previous dedicated stud-

ies revealed a negligible dot compartment,

that is fim ¼ 0, in the healthy white matter

(Dhital et al., 2018; Veraart et al., 2019;

Tax et al., 2019); see Discussion.

The AICc analysis of various models demon-

strated that also for the human white matter, the

truncated power law (vii) with D?
a >0 and negligi-

ble dot compartment fim ¼ 0 fits the data signifi-

cantly better than pure power law forms, with or

without intercept. However, this statistical analy-

sis cannot be interpreted as a data-driven justifi-

cation for fim ¼ 0 because of the degeneracy of

Equation 3, as highlighted in Figure 1.

Comparison with histology
Since direct histological evaluation in volunteers is unfeasible, we turn to validate the MR-derived

metrics in humans with previously reported literature of human corpus callosum microstructure

(Aboitiz et al., 1992; Innocenti et al., 2015). In Figure 7, the MR-derived metrics were directly

compared with axon radius distributions of multiple histological studies (Aboitiz et al., 1992;

Innocenti et al., 2015). Various reports and histological studies show a good correspondence for

the bulk of the distributions, represented by the average radius �r, that is the average radius �r only

ranges between 0.54 and 0.69 mm. In histological samples, the corresponding effective radius reff

dominated by large axons, shows strong variability. Indeed, compared to �r, reff varies more than

three-fold, from 0.91 to 2.9�m.

The four human subjects show good correspondence in terms of rMR. In Figure 7, we show the

individual and combined distributions describing rMR for all voxels in the midbody of the CC for all

four subjects. It is apparent that the combined distribution falls almost entirely within the range

spanned by reff -values as predicted from histology – even without introducing a putative axonal

shrinkage factor (maximally 35% [Aboitiz et al., 1992], and typically within 10% [Tang et al., 1997]).

Parameter distribution and maps
In Figure 8, the distribution and map of D?

a for WM voxels in all human subjects, estimated using

the ODF-independent model, Equation 2 with fim ¼ 0, are shown. Considering the statistical bound

from Figure 2, it is to be expected that the estimated D?
a is biophysically meaningful for the vast

majority of WM voxels for the Connectom scanner (Figure 8 shows a representative map of D?
a and

associated rMR for a single subject of the Connectom cohort), whereas similar measurements on a

modern clinical scanner result in a biophysically implausible negative D?
a in approximately 35% of all

WM voxels. Note that the data from a clinical scanner (Siemens Prisma with 80 mT/m gradients) are

adopted from our recent work (Veraart et al., 2019). This suggests that estimating D?
a and the asso-

ciated effective axonal radius rMR is only possible on MR systems with ultra-strong gradients

(Jones et al., 2018; Huang et al., 2015). The spatial variability as well as the observed asymmetry

between the hemispheres in, for example, the occipital lobes was noted for all subjects. However,

our cohort is too small and not sufficiently characterized to study the whole brain characterization or

the role of lateralization in large axons of human brain (Eichert et al., 2019; Liewald et al., 2014;

Lebel and Beaulieu, 2009).

0.5 2µm

CC#1

CC#2

CC#3

Figure 6. Effective radii in the CC. Maps of the

effective radii derived from diffusion MR data, for the 3

samples of the rat CC.
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Gray matter
It is worth examining the power law scaling also in areas outside the white mater. Therefore, Figure 9

shows the diffusion-weighted signal decay, averaged over all cortical gray matter (GM) voxels as a

function of b in the human subjects. The signal scaling in the WM is shown for qualitative compari-

son. The non-linear scaling of the isotropically-averaged signal as a function of 1=
ffiffiffi

b
p

of all human

subjects indicates strong deviations from the ‘stick’ model in the cortical GM, (McKinnon et al.,

2017; Palombo et al., 2019). Accounting for a finite neurite radius, Equation 2, does not describe

r̄ reff

rMR

rMR

rMR

rMRrMR

r̄MR

r̄MR

rMR

r̄

reff

(MRI) 

(MRI) 

(Histology) 

(Histology) 

Figure 7. Comparing the effective radius from histology and in vivo dMRI. (top - histology) Axon radius

distributions of multiple histological studies and human CC samples show a good correspondence for the bulk of

the distribution, represented by the average radius �r (dashed-dotted lines). Due to mesoscopic fluctuations of the

large axons in histological samples, the corresponding effective radius reff dominated by large axons, shows

strong variability (dotted lines). (bottom - MRI) The four Connectom subjects show good correspondence in terms

of reff . The distribution describing reff for all voxels in the midbody of the CC for all four subjects falls almost

entirely within the range spanned by values predicted by histology, with no need to account for potential

shrinkage (Horowitz et al., 2015) during tissue preparation. In all plots, radii are expressed in �m.
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the data well either. Instead, the convex signal decay as a function of 1=
ffiffiffi

b
p

at high b-values is in

good agreement with the anisotropic exchange model that we derived from the expansion of the

anisotropic Kärger model in the powers of inverse b, Equation 4. Both the finite radius and

exchange model predictions are shown in the absence of an immobile water fraction. The exchange

model fits the data better than all other evaluated models in all subjects according to an AIC analysis

(data not shown). The residence time within the neurites 1=R varies from approximately 10 to 15 ms

or 20 to 30 ms if we assume D?
e ¼ 1�m2=ms or D?

e ¼ 0:5�m2=ms, respectively. Dedicated experi-

ments are required for a more precise measurement of the exchange rate.

Discussion

What do we measure with dMRI?
Noninvasively estimating metrics associated with axon radius distributions is a formidable task, yet it

could have a strong impact for numerous areas of research including neuroscience, biomedicine and

even for clinical research and applications. Histological studies have extensively reported axon diam-

eters 2r to be in the range 0.5 � 2 mm for human WM (Aboitiz et al., 1992; Caminiti et al., 2009;

Liewald et al., 2014; Tang et al., 1997), with only 1% of all axons having a diameter larger than

3 mm (Caminiti et al., 2009). A vigorous debate has emerged in the MRI and neuroanatomy commu-

nities as in vivo, MRI-derived axon diameters are reported to fall within the range 3.5 �15 mm

(Alexander et al., 2010; Horowitz et al., 2015; Huang et al., 2015). On the MRI side, the discrep-

ancy has been attributed to the long diffusion pulses that strongly reduce the signal attenuation of

protons restricted in a narrow cylinder (van Gelderen et al., 1994; Burcaw et al., 2015). Therefore,

the time-dependence of extra-axonal diffusion D?
e ðtÞ (Burcaw et al., 2015; Fieremans et al., 2016;

Lee et al., 2018), and the undulation or along-axon caliber variation (Nilsson et al., 2012; Bra-

bec, 2019; Özarslan et al., 2018; Lee et al., 2019), potentially overshadow the relatively small D?
a .

On the other hand, shrinkage during tissue fixation has been suggested as a potential shortcom-

ing of histology (Barazany et al., 2009; Horowitz et al., 2015), implying that in vivo axons are

thicker than their histologically reported values.

This study aimed at investigating what the dMRI signal can measure in terms of axon radius, as

well as provide insight into the aforementioned debate. Our wide range of diffusion weightings in
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Figure 8. Distribution and maps of D?
a and rMR. (left) The distribution of D?

a estimated via Equation 3 for all WM

voxels (all scanner-specific subjects pooled) shown for both scan set-ups. In agreement with Figure 2, Prisma

(80mT/m) data shows a much lower precision for the estimator of D?
a . Despite the small yet positive mean value

and the associated negative offset g in Figure 3, a large number of WM voxels yield biophysically implausible

D?
a <0 values. Precision drastically improves on the Connectom scanner (300 mT/m). (right) Maps of D?

a , and of the

effective MR radius heavily weighted by the tail of axonal distribution (Figure 7), for a single subject. Here, rMR is

derived from D?
a via Equation 10. In all plots, diffusivities and radii are expressed in �m2=ms and �m, respectively.
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both human and preclinical dMRI enables a suppression of the extra-axonal contribution (that other-

wise biases the radii Burcaw et al., 2015; Fieremans et al., 2016), thereby allowing us to shed light

on this controversy. We claim that the effective MR radii measured in this study (rMR) quantitatively

agree with those derived from histology — to the extent that histology correctly captures the tail of

the axonal radii distribution hðrÞ. That is, rMR obtained from dMRI appears to be a self-averaging

quantity in each imaging voxel, as large MRI voxels ensure that the moments of hðrÞ sampled from a

voxel represent well the ‘true’ underlying hðrÞ in that WM region, so that the spatial variations in rMR

stem mainly from genuine biological variations of the tails of axon distributions across the brain.

Mesoscopic fluctuations
Histology-derived reff are prone to mesoscopic fluctuations due to small sampling sizes, Figure 7.

Despite a good correspondence of the bulk of axon radii distributions obtained from different histo-

logical studies and samples (Aboitiz et al., 1992; Caminiti et al., 2009; Liewald et al., 2014;

Tang et al., 1997), the tail of the distribution is typically coarsely sampled, with only a few spikes

representing the occasional observation of large axons within the relatively small histological sec-

tions, Figure 7. It is precisely for the detectable large r, that the relative fluctuations for the bin

counts Ni are observed for bin values of Ni ~ 1 (Table 2 of Aboitiz et al. (1992) and Figure 5),

according to the Poissonian statistics governing each Ni. Not surprisingly, reff derived from discrete

histological histograms exhibits strong fluctuations, as depicted by dotted vertical lines in Figure 7a

and the error bars in Figure 5.

Humans
Although the average radius �r, as reported in human literature (Aboitiz et al., 1992;

Innocenti et al., 2015), only ranges between 0.54 and 0.69�m, the corresponding reff varies from

0.91 to 2.9�m. In comparison, the average dMRI-derived rMR estimated from the four Connectom

data sets within the same region-of-interest, the midbody of the CC, only varied from 2.48 to

2.82�m (Figure 7b).

Rodents
The average radius, as measured in this study, varies between 0.54 and 0.68 �m across the 16

patches of the genu of the CC, while the associated reff varies from 0.81 to 1.30 �m. The MR-derived
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Figure 9. Signal decay in the GM. The spherically-averaged signal decay in the WM and GM is shown for all

human subjects as a function of 1=
ffiffiffi

b
p

. The consistent non-linear scaling of the signal as a function of 1=
ffiffiffi

b
p

demonstrates deviations from the ‘stick’ model in the cortical GM. In contrast to the WM, the convex signal decay

in the GM is better described by an anisotropic exchange model of two compartments (Equation 4), than the

finite radius model (Equation 3). In all plots, b is expressed in ms=�m2 .
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effective axon radii rMR vary similarly, that is 0.94 to 1.4 �m across several voxels within the genu of

the CC for all three scanned samples.

For dMRI, the variability in the estimation of rMR is determined by thermal MRI noise, and genuine

anatomical – inter-voxel and inter-subject – differences. For human MRI, the mesoscopic fluctuations

are much weaker, due to the large MRI voxels in comparison to the histological samples. Indeed, the

variance in the estimation of rMR is expected to decay inversely with the number of axons within a

field of view. However, for rodent MRI, in which the MRI voxels have the same surface area as the

histological patches, the precision in the estimation of the effective radius is similar for both

modalities.

Overall, dMRI provides a precise measurement of the largest axons, which are captured within an

MRI voxel. In contrast, histology, so far, mainly probes the bulk that consists of smaller axons with

high precision. Therefore, both modalities are complementary, especially in human MRI for which

the voxels are significantly larger than a typical histological sample.

Measuring the bulk of the axon distribution using MRI
As the signal attenuation inside axons, Equations (5)-(6), scales as ln S~ � g2r4eff , getting to two-

times smaller reff would require another four-fold increase in gradients. However, even with stronger

gradient systems, the main bottleneck might be the missing prior knowledge about the shape of the

expected axon radius distribution hðrÞ. Even when assuming a particular functional form of hðrÞ, one
is limited to estimating a single parameter to describe the axon radius distribution, whereas realistic

distributions such as the generalized extreme value distribution (Sepehrband et al., 2016) are

parameterized by at least two variables. Hence, the reconstruction of hðrÞ from only reff is technically

ill-posed and, as such, prone to mis– or over–interpretation due to biases towards user-defined dis-

tribution shapes and parameters, even more so if confounding factors such as dispersion or fixed dif-

fusivities are ignored (Assaf et al., 2008; Barazany et al., 2009; Horowitz et al., 2015;

McNab et al., 2013).

With unknown hðrÞ, only a single metric representing the entire distribution, that is reff , for which

the strength of tail-weighting is determined by the gradient pulse width, can be estimated reliably.

In the best case, that is the narrow-pulse limit d � tc, see ’From D?
a to effective MR radius’, reff will

depend on the fourth rather than the sixth order moment of hðrÞ, that is

reff �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hr4i=hr2i
p

(Burcaw et al., 2015), thereby reducing, but not eliminating the difference between

reff and �r. Other methods, such as oscillating gradient diffusion weighting or double diffusion encod-

ing, may provide other sources of contrast encoding different aspects of the size distribution

(Jiang et al., 2016), although the low-frequency limit of the oscillating-gradient attenuation has

been shown to be equivalent to the Neuman’s limit, not providing any extra information

(Novikov et al., 2019). It can be hypothesized that the combination of methods could perhaps

recover more accurate information on the underlying hðrÞ.

Dot fraction
The presence of isotropic immobile water fim has been conjectured by Stanisz et al. (1997) as water

possibly restricted inside the soma of various cell types, such as neurons or oligodendrocytes. Sev-

eral previous studies, for example Veraart et al. (2019), Tax et al. (2019), and Dhital et al. (2019),

demonstrated with various diffusion encoding strategies that in vivo dMRI is practically insensitive,

that is < 0.2%, to such signal contributions in the healthy white matter of the living human brain,

excluding the cerebellum (Tax et al., 2019). The lack of sensitivity of dMRI to immobile water might

be explained by a small volume fraction, a short T2 relaxation time, and/or a fast water exchange

rate on the scale of our diffusion time D ¼ 30ms for treating them as coming from separate compart-

ments. In contrast, the dot compartment has been observed in fixed brain samples in various studies

(Stanisz et al., 1997; Alexander et al., 2010). The origin of this signal contribution is not well under-

stood yet, but the still water compartment needs to be considered when validating or studying bio-

physical models in fixed tissue.

In this work, for the human experiments, we build upon the previously reported observations to

fix fim ¼ 0 in the healthy white matter to avoid fitting degeneracies that are associated with the poor

conditioning of model (iii). However, any underestimation of the dot compartment, for example due

to fixing fim ¼ 0, leads directly to an underestimation of the effective MR radius, see Figure 1.
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Therefore, in future studies, especially those that focus on the developing, aging, or pathological

brain, we encourage the independent measurement of the dot compartment to complement the

axon radius acquisitions. The fast measurement of the dot compartment is promoted by the avail-

ability of spherical diffusion-encoding, as demonstrated by Dhital et al. (2019), and Tax et al.

(2019).

In our ex vivo experiments, the measurement of the dot compartment is based on the diffusion-

weighing in the direction parallel to the average fiber direction in the CC at the maximal b-value of

100 ms/mm2. The measured signal fraction of such a still water compartment in our fixed brain sam-

ples was in the range of 8 to 17%, in line with Stanisz et al. (1997). Applying a radial or planar diffu-

sion-weighting filter prior to this measurement would suppress any contribution of anisotropic signal

compartments, such as crossing or dispersed axons, to the isotropically restricted dot compartment.

Although we aimed to minimize this confounding factor by using a very high b-value (Dhital et al.,

2019), the dot compartment fraction, and as such the effective MR radius, might be slightly overesti-

mated because of various complex fiber configurations. Additional confounding factors are listed in

the following section.

Confounding factors
The apparent discrepancy between histology and dMRI, when confounding factors such as extra-

axonal water (Burcaw et al., 2015; Fieremans et al., 2016; Lee et al., 2018) and orientational dis-

persion (Drobnjak et al., 2016; Nilsson et al., 2012) are addressed, is mainly a result of the differ-

ence between �r and reff – that is between the bulk and the tail of axonal distribution. This already

provides an important insight into the discussion on why the radii reported in the literature vary so

much between the methods. When comparing apples-to-apples, despite the excellent agreement

observed in this study between rMR and its histological counterpart reff , in our own histological vali-

dation we still observed a small, yet consistent overestimation of between 5 and 20% in axon radius

rMR using dMRI. Aside from the previously discussed dot compartment, various other factors might

contribute to this discrepancy.

First, an underlying assumption of all studies targeting the measurement of the axon radius is

specificity: that the signal observed at these high b-values could be attributed exclusively to the

intra-axonal space. However, this assumption is not established nor in our opinion is it justified given

that water resides in all cellular compartments of the central nervous system. We cannot exclude

that water trapped in other ‘stick’-like features such as the radiating processes of astrocytes contrib-

ute observable signals; it has been previously reported, but also observed in our histological sample,

that such glial processes can have large diameters, up to 7�m in our sample. In the future, this con-

tribution could be investigated using the increased cellular specificity of (diffusion-weighted) spec-

troscopy (Palombo et al., 2016; Shemesh et al., 2017; Ligneul et al., 2019).

Second, Stanisz et al. (1997) and, more recently, Palombo et al. (2019) demonstrated that at

shorter diffusion times, the signal contribution from cell bodies might be characterized by a specific

b-value dependent signature (Neuman, 1974 and Murday and Cotts, 1968) that might enable the

extraction of MR effective cell body sizes in both the white and gray matter (Palombo et al., 2019).

In this study, the potential b-value dependent signal contribution of cell bodies was unaccounted for,

and, given our and other (e.g. Sampaio-Baptista et al., 2019) observations of a finite cell body vol-

ume fraction, the axon radius measurements could be biased. However, deviations to the power law

scaling due to the presence of cell bodies are more likely to be expected in the GM because of

larger volume density of large somas in comparison to the WM (Palombo et al., 2019). In our histo-

logical sample, we observed a significant volume fraction of cell bodies in the genu of the CC, that is

5%, but due to unknown compartmental relaxation times, the associated, yet more important, signal

fraction is unknown (Lampinen et al., 2019). Regardless, a biophysical model parameterized by vari-

ous volume fractions, axon radii, soma sizes, and compartmental diffusivities may be poorly condi-

tioned and degenerate.

Third, along-axon undulations (Nilsson et al., 2012) and curvature (Özarslan et al., 2018) might

result in an increased apparent radial diffusivity and, as such, contribute to an overestimation of the

axon radius using dMRI, especially for increasingly long diffusion times (Lee et al., 2019;

Brabec, 2019).

Finally, the estimation of the MR effective axon radius depends on the unknown intrinsic diffusiv-

ity D0 of the axoplasm. In ex vivo samples of a well-aligned WM bundle, one could estimate D0
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directly by exploring the time dependence of the apparent diffusivity at very short diffusion times,

(Mitra et al., 1993). In this study, we were not able to achieve a reproducible and precise estimate

of D0 and opted to use the longitudinal diffusivity Dk
a as a proxy for D0, with Dk

a � D0. Therefore, we

might actually underestimate the positive bias in the estimation of r̂eff ~ D0ð Þ1=4 (Equation 10). How-

ever, the propagation of the error in the estimation of D0 to r̂eff is strongly reduced by the fourth

root relation between both metrics.

Inter-species variability
In our study, the effective MR radius in humans was significantly higher than in rats when comparing

similar regions of interest, for example the midbody of the CC. This difference is in agreement with

several studies that compared the callosal fiber composition as a function of the brain size of various

mammals and concluded that large brains have more large axons and an increased maximal radius,

whereas the bulk of axons is not altered (Olivares et al., 2001; Schüz and Preibl, 1996;

Liewald et al., 2014). Since the effective MR radius is predominantly sensitive to the larger axons,

observed differences between humans and rats will be amplified when comparing effective MR radii.

Overall, this observation favors future application of MR axon radius mapping in species with rela-

tively large brain sizes.

Gray matter
Although this work mainly focuses on the WM, we do report significantly different signal scaling for

the cortical GM. We suggest that the proton exchange between dendrites and interstitial water

might explain this scaling behavior, in particular due to the convex scaling with b�1=2. However, the

abundance of cell bodies in the gray matter might confound this analysis (Palombo et al., 2019).

Moreover, the study of the cortical GM is challenged by its low SNR and susceptibility to partial vol-

uming. Nonetheless, we conclude that the stick assumption does not hold in the cortical GM and

that biophysical models building upon that assumption must be interpreted with caution if applied

to tissue regions outside of WM.

Conclusion
In summary, we provide a realistic perspective on MR axon radius mapping by showing MR-derived

effective radii that have good quantitative agreement with histology. First, we compared the MR-

derived axon radii directly to confocal microscopy of the same rat brain samples. Second, the distri-

bution of dMRI-derived rMR of the living human brain falls almost entirely within the range spanned

by histology-derived reff that has been reported in the literature — even without introducing a puta-

tive axonal shrinkage factor. This estimation is inherently bound to a single scalar reff that encodes

moments of the axon distribution, which is – by virtue of the signal encoding – dominated by the

largest axons. Therefore, the average axon radius �r and reff can be practically considered as two

complementary metrics probing the underlying axon caliber distribution: histology, so far, mainly

probes its bulk, that is �r, while dMRI probes rMR ¼ r̂eff , that is its tail. Due to the intrinsic bias of MR-

derived axon radii to larger axons, clinical applications should focus on pathologies that specifically

target those larger axons, until other methods are developed that probe the smaller axon diameter.

Materials and methods

Key resources table

Reagent type (species) or resource Designation Source or reference Identifiers
Additional
information

Antibody anti-Neurofilament 160/200
(Mouse monoclonal)

Sigma Aldrich Cat# N2912
(clone RMdo20)

2.5 mg/mL

Antibody anti-GFAP
(rabbit polyclonal)

Thermo
Fisher Scientific

Cat# PA1-10019 1:1000

software.
algorithm

ImageJ imagej.nih.gov/ij/ RRID: SCR003070 1.52q

Continued on next page
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Continued

Reagent type (species) or resource Designation Source or reference Identifiers
Additional
information

software.
algorithm

FSL fsl.fmrib.ox.ac.uk/fsl/ RRID: SCR002823 v6

software.
algorithm

MRtrix www.mrtrix.org RRID: SCR006971 v3.0

software.
algorithm

FreeSurfer surfer.nmr.mgh.
harvard.edu

RRID: SCR001847 v6.0.0

Other DAPI Sigma Aldrich Cat# D9542 500nM

MRI of fixed rat brain tissue
Ethics
Animals used in this study were handled in agreement with the European FELASA guide-lines and all

procedures were approved by the Champalimaud Animal Welfare Body and by the national authori-

ties, Direção Geral de Alimentação e Veterinária, Lisbon, Portugal, under the approved protocol

number 0421/000/000/2016. All animal care procedures were conducted in agreement with the

European Directive 2010/63, at the vivarium of the Champalimaud Foundation, a research facility

part of CONGENTO, project number Lisboa-01–0145-FEDER-022170.

Sample preparation
Three Long Evans rats (Female, 12-weeks-old) were transcardially perfused using 4% paraformalde-

hyde. The extracted brains were kept for 24 hr in 4% paraformaldehyde and washed using PBS over

two days (changed daily). Given our focus on the CC of the rat brains, we will refer to the samples as

CC#1, CC#2, and CC#3.

MRI scanning

i. Multi-shell dMRI data: The three samples were scanned on an 16.4T MR scanner (Bruker Bio-
Spin) at room temperature with D=d ¼ 20=7:1ms interfaced with an AVANCE IIIHD console
and a micro2.5 imaging probe with maximal gradient amplitude Gmax ¼ 1500mT=m. Diffu-
sion-weighting was applied using a RARE sequence in the midsagittal plane along 60 gradi-
ent directions for a densely sampled spectrum of 18 different b-values up to 100 ms/mm2.
Furthermore, TR=TE ¼ 2400=30:4ms and the spatial resolution was 100 � 100 � 850mm3.

ii. ‘dot fraction’ fim: we acquired 60 repeated measurements of diffusion-weighing applied in
the direction parallel to the average fiber direction in the corpus callosum (CC) at the maxi-
mal b-value of 100 ms/mm2. The average fiber orientation was defined as the first eigenvector
of the dyadic tensor (Jones, 2003) that was computed from the voxelwise first eigenvectors
of the diffusion tensors that were estimated by fitting the DTI model to the lowest b-values,

that is b<5ms=�m2, of the multi-shell data in each voxel within the manually segmented CC
(Basser et al., 1994).

The average SNR for Sjb¼0
was 195 and some examples of the acquired images at various low and

high b-values are shown in Figure 10, where the quality of the raw data can be evaluated. Notably,

since images are spherically averaged over many directions, the signal is characterized by high SNR

even at high b-values.

Data analysis
From the multi-shell data, the spherically-averaged signals SðbÞ are estimated per b-value as the

zeroth order spherical harmonic using a Rician maximum likelihood estimator of the even order

spherical harmonic coefficients up to the 6th order (Sijbers et al., 1998).

The spatially localized dot fraction fim is computed as the signal estimated from the repeated

(N ¼ 60) measurements in the direction parallel to the principal fibre direction using a Rician maxi-

mum likelihood estimator with pre-computed noise level (Veraart et al., 2016), normalized by the

respective non-diffusion weighted signal. We compute the dot-free signal in each voxel as follows
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S*ðbÞ ¼ SðbÞ � fim. In the remainder of the work, analyses were done on both ‘dot contaminated’ SðbÞ
and ‘dot free’ S*ðbÞ signals.

The intra-axonal radial diffusivity D̂?
a is estimated voxelwise by fitting Equation 2 with fim ¼ 0 to

S
*ðb � 20Þ using a nonlinear least squares estimator (code is available for download on GitHub

[Veraart and Novikov, 2019; https://github.com/NYU-DiffusionMRI/AxonRadiusMapping; copy

archived at https://github.com/elifesciences-publications/AxonRadiusMapping]).

Thereafter, the estimated effective axon radius rMR is derived from D̂?
a using Equation 6. The

alternative approach, that is the simultaneous estimation of D̂?
a and fim from Sðb � 20Þ is very poorly

conditioned. Hence, disentangling both parameters from only the linearly-encoded multi-shell data

is impossible, even at unrealistically high SNR.
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Figure 10. Raw data. The spherically-averaged diffusion-weighted images, prior to any other image corrections, are shown for various low and high b-

values for one rat brain sample (a) and one human subject (b).
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Histology of fixed rat brain tissue
Full details of the immunohistochemistry for sample preparation, confocal microscopy, and image

analysis are provided in Nunes et al. (2017). Study-specific elements are described below.

Sample preparation
After MRI scanning, free-floating horizontal sections 50 �m-thick were collected from the medial lat-

eral center of two rat brains, CC#1 and CC#2, corresponding to the MR imaged volume. For CC#2,

we used antibodies against neurofilaments 160/200 (axonal marker; Sigma-Aldrich, cat.# N2912) and

GFAP (astrocytes marker; ThermoFisher Scientific, cat.# PA1-10019), as well as a staining for cell

bodies using DAPI (Sigma-Adrich, cat.# D9542). For CC#1, the staining was limited to the neurofila-

ments to focus on the axon radius count.

Confocal microscopy
A Zeiss LSM 710 laser scanning confocal microscope was used for immunohistochemistry image

acquisition. A tile scan using a 10� objective (EC Plan Neofluar, numerical aperture = 0.3, Zeiss, Ger-

many) was used to cover the entire CC. Various ROIs were imaged using a 63� immersion objective

(Plan Apochromat, numerical aperture = 1.4, Zeiss, Germany) in confocal mode, with pixel resolution

of 65 � 65 � 150 nm3 and field-of-view of 135 � 135 mm2 (Figure 11). The placement of the ROIs is

shown in Figures 4 and 5 for CC#1. and CC#2, respectively.

Confocal microscopy data analysis
Images were processed using the ImageJ software. Noise suppression of the confocal single frames

was done using a subsequent application of a 2D anisotropic diffusion filter and bandpass filtering in

the frequency domain, (Nunes et al., 2017). Thereafter, axons were identified as particles with a

minimum area size of 0.2 mm2 and a circularity larger than 0.4 in the confocal images that were

stained for neurofilaments. The number of extracted axons varied from about 500 to 2000, depend-

ing on the placement of the ROI. The long axes of fitted ellipsoids served as proxies for the respec-

tive axon radii. For each ROI, we obtain a distribution of axon radii hðrÞ from which we compute the

associate effective radius reff using Equation 9.

In vivo MRI of human brain
Ethics
Data were acquired after obtaining written informed consent and consent to publish. The project

was approved by the Cardiff University School of Psychology Ethics Committee (approval number

EC.06.05.02.891).

Subjects
Four healthy volunteers (3 males and 1 female between 22 and 45 years) were recruited for this

study. We will refer to the human subjects as 22M, 25F, 32M, and 45M to encode both the age and

gender. The data were collected under the approval of the Cardiff University School of Psychology

Ethics Committee.

MRI scanning
All four subjects were scanned on a Siemens Connectom 3T MR scanner using a 32-channel receiver

coil. The 300 mT/m gradient system was used to achieve b-values up to 25ms=�m2. The diffusion

gradients were characterized by D=d ¼ 30=13ms and maximal gradient amplitude of 289 mT/m. Dif-

fusion weighting was applied along 60 isotropically distributed gradient directions (Jones et al.,

1999) for b ¼ 1, 3, 5, 7, 9, 11, 12.1, 13.5, 15, 16.9, 19.1, 21.7, and 25ms=�m2, with TR/TE : 3500/

62ms, matrix: 74 � 74, and 42 slices with a spatial resolution of 3 � 3 � 3mm3. The average SNR for

Sjb¼0
was 52. See Figure 11 for the image quality and contrast at various b-values.

The dot compartment was not measured directly (see Dhital et al., 2018 and Tax et al., 2019).
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Data analysis
Image processing was done according to the DESIGNER pipeline (Ades-Aron et al., 2018) using the

FSL (Smith et al., 2004) and MRtrix (Tournier et al., 2019) software packages. In particular, MPPCA

noise estimation and denoising (Veraart et al., 2016) were used for estimating noise maps sðxÞ by
exploiting the inherent redundancy in dMRI data. The positive signal bias, inherent to low-SNR mag-

nitude MR data, was removed by using the method of moments (Koay and Basser, 2006), where

the denoised signal was used as a proxy for the Rician expectation value. Denoised and Rice-floor-

corrected images were subsequently corrected for Gibbs ringing (Kellner et al., 2016), geometric

eddy current distortions and subject motion (Andersson and Sotiropoulos, 2016). The pipeline is

available on https://github.com/NYU-DiffusionMRI/DESIGNER (Ades-Aron and Veraart, 2018). We

used tract-density imaging (Calamante et al., 2010) based on whole-brain probabilistic fiber-track-

ing (Tournier et al., 2019) of the b ¼ 5ms=�m2-shell for identifying all WM voxels. To avoid voxels

affected by partial voluming with the gray matter (GM), an additional, more conservative, segmenta-

tion was obtained by omitting all voxels with a fractional anisotropy smaller than 0.6. In addition, the

cortical GM was segmented using FreeSurfer (Dale et al., 1999).

Figure 11. For two brain samples, MR scanning (a, color encoded FA map) was followed by low (b) and high (c) resolution confocal microscopy with

staining for neurofilaments to identify the axons. The low-resolution image was used to position various ROIs, whereas the axon caliber distributions

were extracted from the high-resolution image of the corresponding ROIs. The long axes of fitted ellipsoids served as proxies for the respective axon

diameters (d).
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