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Abstract A decline of skeletal muscle strength with aging is a primary cause of mobility loss and

frailty in older persons, but the molecular mechanisms of such decline are not understood. Here,

we performed quantitative proteomic analysis from skeletal muscle collected from 58 healthy

persons aged 20 to 87 years. In muscle from older persons, ribosomal proteins and proteins related

to energetic metabolism, including those related to the TCA cycle, mitochondria respiration, and

glycolysis, were underrepresented, while proteins implicated in innate and adaptive immunity,

proteostasis, and alternative splicing were overrepresented. Consistent with reports in animal

models, older human muscle was characterized by deranged energetic metabolism, a pro-

inflammatory environment and increased proteolysis. Changes in alternative splicing with aging

were confirmed by RNA-seq analysis. We propose that changes in the splicing machinery enables

muscle cells to respond to a rise in damage with aging.

DOI: https://doi.org/10.7554/eLife.49874.001

Introduction
One of the most striking phenotypes of aging is the decline of skeletal muscle strength, which occurs

in all aging individuals and contributes to the impairment of lower extremity performance and loss

of mobility (Cruz-Jentoft et al., 2010; Studenski et al., 2014; Cesari et al., 2015). The magnitude

of decline in strength is higher than that expected from the loss of muscle mass, suggesting that the

contractile capacity of each unit of muscle mass is progressively lower with aging. The reasons for

such a decline of contractile capacity are unclear, and several hypotheses have been proposed

(Moore et al., 2014). Studies conducted in humans by 31P magnetic resonance spectroscopy as well

as ‘ex vivo’ respirometry have shown that skeletal muscle oxidative capacity declines with aging and

such decline affects mobility performance (Gianni et al., 2004; Hepple, 2016; Zane et al., 2017;

Gonzalez-Freire et al., 2018). Ample evidence from animal models, and more limited evidence

from human studies also suggest that aging causes progressive muscle denervation, with enlarge-

ment of the motor units and degeneration of the neuromuscular junction, but whether these changes

account for the change of contractile performance of human muscle with aging has not been studied

(Wang et al., 2005; Messi et al., 2016; Delbono, 2003; Spendiff et al., 2016; Gonzalez-

Freire et al., 2014).

Currently, no treatment is available to prevent or delay the decline of muscle strength and func-

tion with aging. Thus, understanding the mechanisms driving the decline in muscle contractile
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capacity with aging is essential to identify new targets of intervention. Previous studies attempted to

address this question by performing cross-sectional untargeted proteomic analysis in skeletal muscle

biopsy specimens from young and old individuals. However, these studies were limited in size,

focused on cancer cachexia, analyzed single fibers, did not account for levels of physical activity or

did not explore the effect of aging over its continuous range and, therefore, could not distinguish

changes due to aging from those due to disease or sedentary state (Doran et al., 2009;

Murgia et al., 2017; Waldera-Lupa et al., 2014; Brocca et al., 2017; Ebhardt et al., 2017). To

overcome these earlier limitations, we have performed a quantitative mass spectrometry-based pro-

teome analysis (tandem mass tag, TMT) of skeletal muscle biopsies obtained from individuals distrib-

uted over a wide age range, who were healthy based on strict objective clinical criteria. We

characterized proteins that were overrepresented and underrepresented in older individuals and

using these data we made inferences about molecular pathways affected by aging in skeletal

muscle.

Results and discussion

Quantitative skeletal muscle proteome analysis of healthy aging
Skeletal muscle biopsies were collected from 60 healthy participants of the Genetic and Epigenetic

Study of Aging Laboratory Testing (GESTALT) aged 20 to 87 years who were defined as ‘healthy’

based on very strict evaluation criteria at the National Institute on Aging Clinical Unit in Baltimore

(Tanaka et al., 2018). Exclusion criteria included any diseases that required chronic treatment

(except for mild hypertension fully controlled with one drug only), any physical or cognitive

eLife digest As humans age, their muscles become weaker, making it increasingly harder for

them to move, a condition known as sarcopenia. Analyzing old muscles in other animals revealed

that they produce energy inefficiently, they destroy more proteins than younger muscles, and they

have high levels of molecules that cause inflammation. These characteristics may be involved in

causing muscle weakness.

Proteomics is the study of proteins, the molecules that play many roles in keeping the body

working: for example, they accelerate chemical reactions, participate in copying DNA and help cells

respond to stimuli. Using proteomics, it is possible to examine a large number of the different

proteins in a tissue, which can provide information about the state of that tissue. Ubaida-Mohien

et al. used this approach to answer the question of why muscles become weaker with age.

First, they analyzed the levels of all the proteins found in skeletal muscle collected from 58

healthy volunteers between 20 and 87 years of age. This revealed that the muscles of older people

have fewer copies of the proteins that make up ribosomes – the cellular machines that produce new

proteins – and fewer proteins involved in providing the cell with chemical energy. In contrast,

proteins implicated in the immune system, in the maintenance of existing proteins, and in

processing other molecules called RNAs were more abundant in older muscles.

Ubaida-Mohien et al. then looked more closely at changes involving RNA processing. Cells make

proteins by copying DNA sequences into an RNA template and using this template to instruct the

ribosomes on how to make the specific protein. Before the RNA can be ‘read’ by a ribosome,

however, some parts must be cut out and others added, which can lead to different versions of the

final RNA, also known as alternative transcripts.

In order to check whether the difference in the levels of proteins that process RNAs was affecting

the RNAs being produced, Ubaida-Mohien et al. extracted the RNAs from older and younger

muscles and compared them. This showed that the RNA in older people had more alternative

transcripts, confirming that the change in protein levels was having downstream effects.

Currently, it is not possible to prevent or delay the loss of muscle strength associated with aging.

Understanding how the protein make-up of muscles changes as humans grow older may help find

new ways to prevent and perhaps even reverse this decline.

DOI: https://doi.org/10.7554/eLife.49874.002
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Figure 1. Classification of age-associated proteins. (A) Effect of age on protein expression levels. The x-axis represents the size and sign of the beta

coefficient of the specific protein regressed to age (adjusted for covariates) and the y-axis represents the relative -log10 p-value. Each dot is a protein

and all significant proteins are indicated in blue and red (age-associated 1265 proteins, p<0.05). (B) The heatmap of the 1265 significantly age-

associated proteins reveals changing expression profiles across aging. (C) PLS analysis of age-associated proteins were classified into three age groups:

20–49 (young), 50–64 years (middle age), and 65+ (old) years old. (D) Percent distribution of categories of all quantified proteins, percent distribution of

the same categories among proteins that were significantly downregulated and upregulated with aging. Proteins which are not considered directly

related to mechanisms of aging are annotated as others and their subclassification is shown in the bar plot. (E–F) Log2 protein abundance of

contractile, architectural and NMJ proteins. Simple linear regression was shown for age (x-axis) and protein (y-axis) correlation, confounders were not

adjusted, and raw p-values were shown.

DOI: https://doi.org/10.7554/eLife.49874.003

The following source data and figure supplements are available for figure 1:

Source data 1. Baseline characteristics of the GESTALT skeletal muscle participants.

DOI: https://doi.org/10.7554/eLife.49874.009

Source data 2. Characteristics of participants.

DOI: https://doi.org/10.7554/eLife.49874.010

Source data 3. Complete protein dataset of skeletal muscle proteome quantified by TMT6plex.

DOI: https://doi.org/10.7554/eLife.49874.011

Source data 4. Complete peptide dataset of skeletal muscle proteome quantified by TMT6-plex.

DOI: https://doi.org/10.7554/eLife.49874.012

Source data 5. Dysregulated proteins with age.

DOI: https://doi.org/10.7554/eLife.49874.013

Figure supplement 1. Quantitative analysis of the skeletal muscle proteome with healthy aging.

Figure 1 continued on next page
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impairment, and any abnormal values in pre-defined list of blood clinical tests (see

Materials and methods for details). Participants who consented for a muscle biopsy were homo-

geneously distributed across the age strata 20–34 (n = 13), 35–49 (n = 11), 50–64 (n = 12), 65–79

(n = 12) and 80+ (n = 10), and biopsies were analyzed by tandem shotgun mass spectrometry-based

quantitative proteomics method (Figure 1—figure supplement 1, Figure 1—figure supplement 1,

Figure 1—source data 2). Using multiplexed isobaric labeling tags (TMT) and a customized analyti-

cal strategy (Kammers et al., 2015; Herbrich et al., 2013), we identified 400,000 tryptic peptides

from 6.7 million spectra (396 multiplexed MS runs from 12 TMT 6-plex experiments), which allowed

the quantification of 5891 proteins (Figure 1—source data 1, PXD011967).

To control for batch variability and avoid bias, we included a reference sample in all 12 TMT sets.

A loading normalization was implemented that assumed that the sums of all intensities from all the

proteins across the samples in a single TMT experiment were equal and that the sample loading

effects, peptide bias effects and the residual error were normally distributed across a constant vari-

ance across samples (Figure 1—figure supplement 2A). To test the effectiveness of these

approaches, we examined TMT batch effects in several analyses, allowing for experiment-specific

random effects. We then averaged the expression values from each TMT across the sample groups

and found that the ranks between TMTs were highly correlated (Figure 1—figure supplement 1B–

C, Figure 1—figure supplement 2B). Together, these findings indicate that the protein quantifica-

tion across the 12 TMT experiments was robust.

Of the initial 5891 proteins detected, we excluded from the analysis 1511 proteins that were not

quantifiable in at least three participants per age strata (at least 15 participants total) and performed

the analysis in the remaining 4380 proteins detected in more than 15 donors (three per age strata),

which were quantified from 46,834 unique peptides and 2.7 million spectra (Figure 1—figure sup-

plement 1D). We used Partial Least Squares (PLS) analysis to explore the overall clustering of the

4380 proteins across age groups (Figure 1—figure supplement 1E). The age groups (color-coded)

were well separated along at least one axis in the three-dimensional clustering classification (Fig-

ure 1—figure supplement 1C). As expected, most of the proteins identified were classified as ‘mus-

cle proteins’, and the top 10 most abundant muscle proteins accounted for 45% of the total spectral

abundance (Figure 1—figure supplement 2C). Low-abundant mitochondrial proteins, such as car-

diac phospholamban (PLN), were also quantified.

Focus on the aging biological mechanisms
The relationship of age with the skeletal muscle proteins was estimated by linear mixed regression

models that included sex, race, level of physical activity, type I/type II muscle fiber ratio, body mass

index (BMI) and TMT batch effect as covariates (Materials and method). Of note, the age beta-coeffi-

cients (aging effect size) are small because they express the difference in protein ‘per year’ of age.

For example, the difference in protein between two individuals that differ by 20 years would be 20

times the size of the beta coefficient. We adjusted for physical activity because it both tends to

decline with age and strongly affects biological processes in muscle cells (Egan and Zierath, 2013;

McGee and Walder, 2017; Bauman et al., 2016). Previous studies demonstrated that gender and

race strongly affect body composition and muscle mass (Gallagher et al., 1997). Skeletal muscle tis-

sue includes different myofiber types: type I fibers (slow-twitch), type IIa fibers (fast-oxidative), and

IIb fibers (fast glycolytic muscle fibers containing four different myosin isoforms), each supported by

different energetic metabolism and with different protein composition. An analysis for a proxy

Figure 1 continued

DOI: https://doi.org/10.7554/eLife.49874.004

Figure supplement 2. Quantitative analysis of muscle proteome.

DOI: https://doi.org/10.7554/eLife.49874.005

Figure supplement 3. Muscle proteins and robustness of age association.

DOI: https://doi.org/10.7554/eLife.49874.006

Figure supplement 4. Disregulation of proteins involved in genomic maintenance and cellular senesncence.

DOI: https://doi.org/10.7554/eLife.49874.007

Figure supplement 5. Age-associated ribosomal biogenesis proteins.

DOI: https://doi.org/10.7554/eLife.49874.008
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measure of ‘muscle fiber ratio’ (Schiaffino and Reggiani, 2011) was estimated by calculating the

ratio of myosin 7 (MYH7), the slow-twitch fiber isoform, and the sum of fast-twitch fiber isoforms

(MYH1, MYH2 and MYH4) (Figure 1—figure supplement 3 A1-A4); as expected, the fiber ratio of

slow/fast was higher with older age (Figure 1—figure supplement 3 A5). The slight change of slow/

fast fiber ratio was significant and outweighed the wide variability among individuals (p=0.005); BMI

was adjusted because obese persons tend to have muscle fat infiltration and lower muscle quality

and muscle-fat interaction may affect muscle composition and function (Moore et al., 2014;

Silva and Martins, 2017). Gender may also have an impact on protein expression in skeletal muscle,

as males and females are known to have differences in muscle mass; however, because of the limited

sample size, we did not stratify the analysis by gender. This analysis should be done in future larger

studies.

Proteins were then deemed significantly underrepresented or overrepresented in older age

based on p-values for age-coefficients in the regression equation, calculated from Satterthwaite’s

t-tests (Figure 1—figure supplement 3B). There were 1265 proteins significantly associated with

age (p<0.05, with BH correction <0.1, 917 proteins), suggesting that approximately 29% of the skel-

etal muscle proteome changed with aging after 20 years of age (Figure 1—source data 3). Of these,

29% (361) were significantly underrepresented and 71% (904) were overrepresented with older age.

The age-associated analysis across the experimental dataset and across multiple comparisons was

highly robust (Figure 1—figure supplement 3C).

Notably, the proteins most strongly associated with older age (Figure 1A, right) were LSM14

homolog A (LSm14A, b = 0.023, p=0.0109), tissue metalloproteinase inhibitor 3 (TIMP-3, b = 0.0219,

p=0.00026) and serum amyloid P-component (APCS, b = 0.0164, p=1.26E-11). Protein LSm14A is

implicated in processing the assembly of processing bodies, involved in mRNA turnover, and can

also bind to viral nucleic acids and initiate IFN-b production, contributing to innate immunity

(Li et al., 2012). TIMP3 regulates the adipogenic differentiation of fibro/adipogenic progenitors

(FAPs) in skeletal muscle, and its overrepresentation may explain the tendency for fat infiltration in

aging muscle (Kopinke et al., 2017). Consistent with this hypothesis, Perilipin 1 (PLIN1, b = 0.014,

p=0.0003), a lipid droplet-coating protein, and adipogenesis regulatory factor (ADIRF, b = 0.01173,

p=1.78E-05), a protein that is only expressed in adipose tissue, were among the most overrepre-

sented proteins in old muscle. APCS is indicative of systemic amyloid, and its overrepresentation in

aging muscle has never been previously described.

The most underrepresented proteins (age b <�0.01 and p<0.05) with old age (Figure 1A, left)

were HLA class II histocompatibility antigen (HLA-DRB1, p=0.024), dedicator of cytokinesis protein 4

(DOCK4, p=0.025), myosin-binding protein H (MYBPH, p=0.0005), and microfibril-associated glyco-

protein 4 (MFAP4, p=0.000002). Although HLA-DRB1 is the most altered protein, it is present only

in 53% of the donors. MYBPH maintains the structural integrity of the muscle and its decreased

expression has been associated with muscle weakness in age-related disorders (Hundley et al.,

2006).

To explore differences of protein expression profiles across the lifespan, we generated a heatmap

of the 1265 age-associated proteins and looked for clusters of proteins showing parallel changes

with age (Figure 1B). Hierarchical clustering of protein expression suggested that the strongest dif-

ference was between young (20-34) and old (80+). There were small differences before the age of

50, but afterwards there was on average three log fold protein expression differences, and even

more substantial differences after the age of 64. The separation of protein expression among three

age groups (20–49, 50–64, and 65+) was confirmed by PLS analysis (Figure 1C). These findings are

consistent with changes in energy metabolism observed in rhesus monkeys and attributed to

changes in PGC-1a-driven mitochondrial biogenesis, and with data showing that the age-associated

decline of muscle strength is already detectable during the fourth decade of life and substantially

accelerates after the age of 70 (Dodds et al., 2014; Pugh et al., 2013).

Next, we grouped all quantified proteins according to the main biological mechanisms of aging

(Figure 1D.1). Because the tissue examined was skeletal muscle, we also included a category for all

contractile and architectural muscle proteins (named hereafter ‘muscle proteins’). Though the high-

est abundance proteins detected correspond to muscle proteins, the largest category were mito-

chondria proteins (15%). Each of the other categories represented <9% of total proteins. Protein

classes that differed between those underrepresented and overrepresented with older age are sum-

marized (Figure 1D.2 and 1D.3) and are described in detail in subsequent sections. Specifically,
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proteins implicated in muscle contraction, muscle architecture, mitochondria metabolism, as well as

ribosome function decreased with older age. By contrast, proteins related to genomic maintenance,

transcriptional regulators, splicing, neuromuscular junction, proteostasis, senescence and immune

function increased with age. Other smaller subcategories of proteins were also differentially abun-

dant in older muscle (Figure 1D.3).

Contractile, architectural and neuromuscular junction proteins (NMJ)
Since many proteins decreasing with age were contractile proteins, we classified these further by

function. The top 95 proteins in this class are involved in the architectural and functional stabilization

of the sarcomere, including sarcospan (SSPN, b = 0.002, p=0.016) (Figure 1E), a dystrophin-associ-

ated protein complex important for muscle regeneration, actin-binding LIM domain and actin-bind-

ing protein 1 (LIMA1, b = 0.003, p=0.009), a cytoskeleton-binding protein that stabilizes actin

filaments, and plectin (PLEC, b = 0.0007, p=0.036), a large cytoskeleton protein that preserves inter-

actions within the acto-myosin complex. Increases in delta sarcoglycan (SGCD, b = 0.0019,

p=0.00004), and gamma sarcoglycan (SGCG, b = 0.0016, p=0.0062) were consistent with mouse

studies showing that dystrophin, sarcoglycan subcomplex g- and d-sarcoglycan were overexpressed

with aging, perhaps a compensatory mechanism to avoid damage in the sarcomere during contrac-

tion or as biomarkers of continuous repair (Hughes et al., 2015). Interestingly, MAPT (tau, mostly

expressed in neurons and involved in the assembly and stabilization of microtubules), was also signif-

icantly underrepresented in older muscle (Figure 1E). A crucial component of muscle function is the

neuromuscular junction (NMJ), and since the abundance of all NMJ-related proteins increased with

age we examined the agrin signaling pathway of NMJ. Agrin (AGRN) and acetylcholine esterase

(ACHE) increased with age but not significantly (Figure 1—figure supplement 3D). By contrast, the

levels of Syne-1 which anchors both synaptic and non-synaptic myonuclei for proper neuron innerva-

tion and respiration increased with age (SYNE1 b = 0.002, p=0.005) as did beta-2-syntrophin, which

is believed to be involved in acetylcholine receptor clustering (SNTB2, b = 0.0029, p=0.0003).

Decline of mitochondrial proteins with age
Because of the striking difference in abundance of mitochondrial and energy metabolism proteins

with age, we studied these proteins by protein annotations using Uniprot keywords, GO ontology

terms and extensive manual curation based on the most recent literature. The coverage of mitochon-

drial proteins quantified by our analysis compared to those described in the literature ranged from

92% for TCA proteins to 52% for proteins located in outer mitochondrial membrane [possibly due to

incomplete tissue disruption (Morgenstern et al., 2017; Zhao et al., 2014)] (Figure 2A). The cover-

age of the bioenergetics and mitochondrial proteome in our dataset is similar to that reported by

other authors (Murgia et al., 2017; Morgenstern et al., 2017). Of the mitochondrial proteins identi-

fied, the abundance of 25% of them (173 proteins) changed with age, mostly (70%) declining with

age. Notably, however, outer membrane proteins were more abundant (Figure 2B); for example,

NADH-cytochrome b5 reductase 3 (CYB5R3), an NADH-dehydrogenase located in the outer mem-

brane of ER and mitochondria, whose overexpression is known to mimic many effects of caloric

restriction, was significantly overrepresented in older age (Figure 2—figure supplement 1A) (Mar-

tin-Montalvo et al., 2016; Diaz-Ruiz et al., 2018). The permanence of mitochondrial protein debris

in aging muscle has been previously reported - attributed to defective autophagy, and through to

cause activation of the inflammasome and a proinflammatory state (Ferrucci and Fabbri, 2018).

Of the enzymatic mitochondrial proteins, 99 were respiratory chain proteins (Complex I-V and

assembly complex proteins), and most of them declined with aging (28 proteins p<0.05; Figure 2C).

Surprisingly, succinate dehydrogenase complex assembly factor 2 (SDHAF2), required for covalent

FAD insertion into complex II, the electron transport chain, and the TCA cycle, were significantly

overrepresented with older age (Figure 2C inset). The reason for this exception is unclear and if rep-

licated in other analysis requires further work.

We then analyzed proteins from complex I to V and found that 16 proteins were significantly

lower at older age (Figure 2C, Figure 2—figure supplement 1B). Among 41 proteins involved in

energy production, most were underrepresented at older ages. Of 22 proteins quantified for TCA

cycle, only malate dehydrogenase (MDH1), isocitrate dehydrogenase (IDH1), fumarate hydratase

(FH) and succinate–CoA ligase (SUCLG1) (Figure 2—figure supplement 1C) were significantly lower
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at older ages. The decreasing levels of IDH-1 with age is unsurprising, as previous studies have

shown a decrease in abundance of IDH-1 in older C. elegans (Copes et al., 2015). IDH1 converts iso-

citrate to a-ketoglutarate by reducing NADP+ to NADPH in the process. In addition, to IDH1,

NADP+ is also reduced to NADPH via the mitochondrial NAD(P)-malic enzyme (ME2) (Sauer et al.,

2004) and predominantly through NNT (NAD(P) transhydrogenase) and the pentose phosphate

pathway. In our study, NNT (b = �0.003, p=0.001) significantly decreased with aging. Interestingly,

the decrease in expression levels of both NNT and IDH1 with age, suggests a decreased capacity of

the mitochondria to maintain proton gradients and results in oxidative damage. Further, NADK

(NAD+ Kinase), which is highly regulated by the redox state of the cell and regulates NADP+
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Figure 2. Functional decline of mitochondrial proteins with age. (A) Percent coverage within categories of skeletal muscle proteins compared to the

Uniprot database. The top section shows various energetics categories, while the z axis indicates the number of proteins identified for each protein

category and in parenthesis the number of proteins reported in Uniprot for the same category. (B) Subcellular location of age-associated mitochondrial

proteins based on up- or downregulation. Of note, most of the mitochondrial proteins are downregulated. (C) Age-dependent decline of respiratory

and electron transport chain proteins. All mitochondrial proteins in the respiratory and electron transport chain that are significantly associated with age

are downregulated (p<0.05) except SDHAF2. The inset panel reports data on the proteins that are significantly upregulated with aging, SDHAF2

(mitochondrial) and the membrane protein CD73.

DOI: https://doi.org/10.7554/eLife.49874.014

The following figure supplement is available for figure 2:

Figure supplement 1. Age-associated bioenergetics pathways.

DOI: https://doi.org/10.7554/eLife.49874.015
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synthesis in vivo decreased with age (NADK2, b = �0.001, p=0.052). The changes in the NADP+/

NADPH levels influence cellular metabolism, calcium signaling and anti-inflammatory processes and

regeneration of glutathione (Sheeran et al., 2010).

NAD+ declines with age in several tissues and its metabolism has been implicated in the aging

process and age-related pathologies including loss of skeletal muscle mass (Fang et al., 2016;

Goody and Henry, 2018). NAD+ is synthesized in vivo predominantly via the salvage pathway and

the de novo and Preiss-Handler pathways (Verdin, 2015; Bogan and Brenner, 2008). We specifically

examined age differences in abundance of proteins from these pathways. We found that NAM-N-

methyl transferase (NNMT, b = 0.007, p=0.016), nicotinamide ribose kinases (NMRK1, b = �0.003,

p=0.002), poly-ADP-ribose polymerases (PARP1, b = 0.002, p=0.003) and CD73 (NT5E, b = 0.004,

p=0.056) were significantly increased with at older ages, while only NMRK1 decreased with age

(Figure 2D). NAMPT, which converts NAM to NMN, was not significantly different with age while

NMRK1, which converts NR to NMN, was significantly lower in the muscle of older participants.

These findings may explain the mechanism by which NMN tends to be lower in tissue from older

compared to younger persons. Two additional mechanisms may exacerbate the decline in NMN and

NAD+ with aging, namely the increased expression levels of CD73 that converts NMN to NR and the

increase in expression levels of PARP1, which converts NAD+ into NAM and ADP-ribose.

The findings described above are consistent with those reported in model organisms, including

non-human primates, suggesting that changes in muscle with aging are characterized by profound

changes in energy metabolism and, in particular, oxidative phosphorylation, because of either

defects in mitochondrial biogenesis or impaired autophagy flux that hampers the recycling of dys-

functional mitochondria (Pugh et al., 2013; Azzu and Valencak, 2017). Changes in energy metabo-

lism occur in parallel to changes in body composition, although it is still unclear what changes occur

first (Speakman and Westerterp, 2010). In addition, changes similar to those mentioned above for

mitochondria and intramuscular lipid metabolism were previously found in muscle from frail mice,

suggesting that the pathogenesis of frailty in mice and humans may be interpreted as ‘accelerated

aging’ (Huang et al., 2019). Also, we and others have previously demonstrated that changes in skel-

etal muscle proteins that occur with aging, including those identified in this study, are partially

reversed by physical activity (Ubaida-Mohien et al., 2019; Hood et al., 2019). The partial overlap

between the effects of aging and exercise suggests that despite opposite physiologic effects, aging

and exercise affect skeletal muscle tissue though different root mechanisms (Hood et al., 2019).

This conclusion is consistent with the finding reported by Phillips et al. (2013), after analyzing gene

expression patterns in humans.

Changes of proteins involved in genomic maintenance and cellular
senescence
Most genomic maintenance proteins increased in abundance with age, especially those involved in

DNA damage recognition and repair, such as double-strand break repair protein (MRE11), X-ray

repair cross-complementing protein 5 (XRCC5), and structural maintenance of chromosomes protein

1A (SMC1A) (Figure 1—figure supplement 4A). Prelamin-A/C (LMNA), Lamin-B1 (LMNB1) and

Lamin-B2 (LMNB2), members of the LMN family of protein components of nuclear lamina that help

maintain nuclear and genome architecture, were all overrepresented with older age (Figure 1—fig-

ure supplement 4B). Sirtuin 2 (SIRT2, b = �0.0013, p=0.032), implicated in genomic stability,

metabolism and aging, was also found to be lower in older skeletal muscle (Figure 1—figure sup-

plement 4C). The increased abundance of genomic maintenance proteins may represent an attempt

to compensate for the accumulation of somatic mutations in myocytes, and especially in satellite

cells, as previously demonstrated in humans (Franco et al., 2018).

Forty proteins that in the literature have been implicated in cellular senescence were significantly

overrepresented with age. These included extracellular superoxide dismutase (SOD3, b = 0.005,

p=0.000009) and Transgelin-2 (TAGLN2, b = 0.005, p=0.0002), a potential oncogenic factor and

senescence-associated protein. Proteins that decreased with age were GOT1, MAP2K3 (b = �0.003

and �0.0021, respectively), and casein kinase II subunit alpha (CSNK2A1, b = �0.0016, p=0.014).

Interestingly, in addition to regulating the cell cycle, CSNK2A1 plays a central role in many other bio-

logical mechanisms, including apoptosis, which is suppressed in senescent cells (Figure 1—figure

supplement 4D). These observations suggest that senescent cells from different possible origins

(e.g. myocytes, adipocytes or fibroblasts) may accumulate in old muscle. However, since previous
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studies were unable to detect direct biomarkers of senescence in human skeletal muscle, we cannot

exclude the possibility that proteins related to senescence overrepresented in this study were

expressed in intramuscular fat or other non-muscular cells (Justice et al., 2018).

Transcription and splicing
Of all the 69 age-associated transcription-regulatory proteins quantified, 61 were overrepresented

and only eight were underrepresented with older age. This last subset included kelch-like protein 31

(KLHL31, b = �0.0017, p=0.003), which is essential for muscle development and perhaps also muscle

repair (Abou-Elhamd et al., 2009). This protein is expressed before MYOD in developing skeletal

muscle and contributes to myogenic commitment, probably by acting as a transcriptional regulator

in the MAPK/JNK signaling pathway. Deficiency in KLHl31 causes congenital myopathy in mice

(Papizan et al., 2017). Of note, the levels of myocyte-specific enhancer factor 2D (MEF2D,

b = 0.003, p=0.018), essential for myogenesis and muscle regeneration and the primary regulator of

KLHL31 production, increased, possibly as a compensatory mechanism (Schiaffino et al., 2018).

Contrary to earlier reports, CTCF (b = 0.009, p=0.026), a transcriptional activator and repressor pro-

tein that fine-tunes chromatin architecture, also increased with age (Figure 3A).

A major unexpected finding of our analysis was the strong increase in the main spliceosome com-

plex proteins with aging (Figure 3—figure supplement 1A). The spliceosome comprises five small

nuclear RNAs (snRNAs), U1, U2, U4, U5, and U6, that form functional complexes with proteins to

regulate alternative splicing, a process by which different exons of one pre-mRNA are variably com-

bined to generate different proteins (Papasaikas and Valcárcel, 2016). We found differential

expression of many proteins widely distributed across the five spliceosome complexes and other

spliceosome-associated protein factors essential for mRNA maturation and gene expression

(Figure 3B). In particular, of the ~300 proteins and spliceosome-associated factors described

(Zhou et al., 2002; Rappsilber et al., 2002), we found that 99 and 57 of them, respectively, were

overrepresented in older muscle (Figure 3C). Overall, spliceosomal proteins increased by ~15%

between the ages of 20 and 87 years (Figure 3D). Spliceosome components are actively rearranged

during assembly, catalysis, disassembly and recycling, each step involving recruitment and recycling

of several proteins (Wahl et al., 2009).

To understand whether aging affects preferentially one of these biological steps, we categorized

the spliceosomal complexes and snRNPs into E complex, A complex, and B complex (assembly com-

plex, 37 proteins), Bact complex and C complex (catalysis complex, seven proteins) and snRNPs

(recycling, SART1 protein) (Figure 3E), but we found no evidence of proteins from a specific com-

plex being more overrepresented with aging than proteins from other complexes (Figure 3—figure

supplement 1B). LSm RNA-binding protein (LSM14A) was the most overrepresented assembly pro-

tein, displaying a 20-fold increase with age. The overrepresentation of spliceosomal proteins, such

as the pre-mRNA-processing-splicing factor 8 (PRPF8) (Figure 3E, inset), the key catalytic core and

the largest and most conserved protein in the spliceosome, suggests that pre-RNA processing may

be upregulated in older skeletal muscle.

Systematic changes in the splicing machinery with older age was previously suggested by epide-

miological studies (Holly et al., 2013), transcriptomic analyses of skeletal muscle biopsies

(Giresi et al., 2005; Welle et al., 2003), and human peripheral blood leukocytes (Harries et al.,

2011) of young and old individuals. In these studies, processing of mRNAs was the feature that best

discriminated between younger and older persons, suggesting that modulation of alternative splic-

ing is one of the signatures of aging (Latorre and Harries, 2017). Although the mechanisms and

consequences of the rise in splicing factors with aging are unknown, they may indicate either a dys-

regulation of the splicing apparatus or a shift toward increased splicing and/or altered splice isoform

diversity with aging (Welle et al., 2003). Consistent with this view, a defect in alternative splicing is

implicated in some fundamental mechanisms of aging, such as cellular senescence (Latorre and Har-

ries, 2017; Deschênes and Chabot, 2017), as well as in many chronic, age-related conditions, such

as Alzheimer Disease and cancer-related cachexia (Raj et al., 2018; Narasimhan et al., 2018).

Age-associated alternative splicing and splicing events
The marked rise in overrepresentation of splicing machinery proteins with aging prompted questions

about its functional consequences. Emerging literature suggest that change in expression of splicing
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factors is a major determinant for selection of specific splicing variants and changes in splicing var-

iants contributes to some aging phenotypes, including age-related diseases (Deschênes and Cha-

bot, 2017; Mazin et al., 2013). We analyzed potential differences in mRNA splicing with age (see

Materials and methods) using RNA-seq data that were available for most of the same specimens

used for the proteomic study (n = 53). Specifically, we studied a set of variations of the exon-intron

structure, known as transcriptional events, namely Alternative First exon (AF), Skipped Exon (SE),

Alternative Last exon (AL), Alternative 3’ splice-site (A3), Alternative 5’ splice-site (A5), Retained

Intron (RI) and Mutually Exclusive Exons (MX) (Alamancos et al., 2015). Donor-specific splicing index

(PSI, which measures each isoform as a % of total isoforms) was calculated for each AS event in each

sample and a linear mixed regression model was used to identify age-associated PSIs for each splic-

ing event. Analysis of 144,830 transcripts from RNA-seq datasets showed that around 3.7% of the

skeletal muscle transcripts (5459 transcripts, corresponding to 6255 events) showed relative
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Figure 3. Implications of proteins that modulate transcription and splicing. (A) Log2 protein abundance of age-associated transcriptional regulation

proteins. Simple linear regression was shown for age (x axis) and protein (y axis) correlation, unadjusted p-values were shown. (B) Spliceosome major

complex pathway protein expression abundance and dsysregulation. KEGG major spliceosome complex pathway representation and spliceosome

complex proteins quantified (associated with splicing RNAs U1, U2, U4/U6, and U5) as plotted in the side square boxes. (C) The log2 abundance

expression of 57 spliceosome complex proteins associated with age (p<0.05) are depicted as magenta circles, while all other quantified proteins are

black circles. All snRNPs and spliceosome regulatory proteins are upregulated with age. (D) The average of all age-associated spliceosome proteins

within each age group reveals an upregulation of spliceosome proteins with age. (E) Effect of age (one-year difference) on the 57 proteins of the

spliceosome major complex and color coded based on spliceosome domains. Inset (left) is a legend for the complex domains and inset (right) shows

that PRPF8 protein is robustly overrepresented with age.

DOI: https://doi.org/10.7554/eLife.49874.016

The following figure supplement is available for figure 3:

Figure supplement 1. Spliceosomal proteins and age association.

DOI: https://doi.org/10.7554/eLife.49874.017
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abundance changes with aging (Figure 4A; Figure 4—source data 1). Next, we calculated the fre-

quency and distribution of splicing events with aging as well as the directionality of such changes

and found that 2714 events were significantly less frequent at older ages and 3545 events signifi-

cantly more frequent at older ages (Figure 4B; Figure 4—source data 2). The overall number of
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Figure 4. Age-associated alternative splicing. (A) The number of participants with detected splicing variants is substantial, with >20% of the participants
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DOI: https://doi.org/10.7554/eLife.49874.018

The following source data is available for figure 4:

Source data 1. Age-associated splicing events.

DOI: https://doi.org/10.7554/eLife.49874.019

Source data 2. Age-associated positive and negative splicing events.

DOI: https://doi.org/10.7554/eLife.49874.020
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events increased slightly with older age but AS events, at least for the 6,255 AS events quantified,

increased significantly with age (r2 = 0.33, p=6.001e-06) (Figure 4C).

We then investigated whether any specific class of skeletal muscle AS events was enriched in our

age-association analysis compared to the list of splicing events described for human skeletal muscle

in the Ensembl human transcriptome (Figure 4D). The rates of observed skeletal muscle events are

very similar to those reported in the Ensembl transcriptome (Figure 4D) except for ME, A3, SE and

AF. The largest difference was in the skipped exon (SE) class of events, where a higher percentage

of transcripts were exon-skipped compared to Ensembl events, with 27% of all the skeletal muscle

AS events of the exon skipping type. A previous study reported 35% of the erythroid genes show

evidence of AF exons, indicating that alternative promoters and AF are widespread in the human

genome and play a major role in regulating expression of select isoforms in a tissue-specific manner

(Tan et al., 2006). This finding is in line with our result of 36% AF in our skeletal muscle data.

We next examined whether AS events occurred in proteins connected with pathways that are

known to be dysregulated with aging; interestingly, among the top fold enriched (FE) gene ontology

(GO) biological processes associated with age, splicing changes were more frequent on those that

negatively regulated IkB kinase/NF-kB signaling (FE = 2.86, p=3.18E-04), and those that regulated

mitophagy (autophagy of mitochondria; FE = 3.71, p=2.23E-04) and fatty acid beta oxidation

(FE = 3.21, p=1.72E-04). The GO biological process with positive age-associated splicing events

were mitochondrial morphogenesis (FE = 5.15, p=8.98E-03), response to mitochondrial depolariza-

tion (FE = 4.93, p=2.46E-04), and endoplasmic reticulum calcium ion homeostasis (FE = 4.48,

p=2.31E-04). These data suggest that the upregulation of alternative splicing in skeletal muscle with

aging may react to change that occur with aging either by rising an inflammatory response or by

activating damage-response mechanisms at a time when energy becomes scarce.

Among the 5459 transcripts (from 3791 genes) that were alternatively spliced with age, 4967 tran-

scripts were protein-coding. We compared these genes with the age-associated proteins and found

that 8.9% of the age-associated alternatively spliced transcripts (385) were reflected in protein

changes (Figure 4E). This comparison of age-associated proteins and alternatively splicing mRNAs

suggests that 30% (385) of the age-associated proteins undergo alternative splicing. Among this

group, 64 proteins are involved in cellular organization or biogenesis (GO:007180), and proteins like

tubulin (TUBB2B, TUBB), profilin 2 (PFN2) and actin-related protein 2/3 complex subunit 4 (ARPC4)

are involved in the cytoskeletal regulation by Rho GTPase pathway. A further PANTHER database

classification of these proteins shows an enrichment in categories like RNA/DNA binding, cytoskele-

tal, translational and ribosomal proteins (Figure 4E protein categories). Overall, these findings sug-

gest that a large percentage of proteins that change with aging in muscle also undergo splicing

variations, and this is especially true for mitochondrial proteins, perhaps as a resilient response to

the energetic deficit that develops with aging. This hypothesis is consistent with several lines of

research suggesting that mechanisms of alternative splicing are enhanced in tissues that are highly

energetically demanding, such as muscle and brain (Pan et al., 2008). Also, higher physical activity

has been associated with downregulation of proteins from the splicing machinery (Ubaida-

Mohien et al., 2019).

Depletion of ribosomal proteins with age
Similarly, to previous studies, we found that a large number of ribosomal proteins were differentially

expressed with older age (Figure 1, Figure 1—figure supplement 5A) (Steffen and Dillin, 2016;

Kirby et al., 2015). In particular, all the 60S and 40S ribosomal proteins were globally reduced in

older muscle; exceptions included 60S ribosomal proteins RPL12 and RPL3 (RPL12, b = 0.0008,

p=0.024, RPL3, b = 0.003, p=0.016), as well as H/ACA ribonucleoprotein complex subunit 4 (DKC1,

b = 0.002, p=0.034) and nucleolar protein 58 (NOP58, b = 0.003, p=0.00007), which were overrepre-

sented in old muscle. RPL12, RPL3, and DKC1 play a role in viral mRNA translation, while NOP58 is

important for ribosomal biogenesis (Figure 1—figure supplement 5A-C). Changes in ribosome pro-

teins may signal lower ribosomal biogenesis with aging in skeletal muscle, with ensuing decline in

protein synthesis with aging (Turi et al., 2019). Over time, this defect may lead to slow turnover and

progressive damage accumulation in contractile proteins.

Ubaida-Mohien et al. eLife 2019;8:e49874. DOI: https://doi.org/10.7554/eLife.49874 12 of 27

Tools and resources Epidemiology and Global Health Human Biology and Medicine

http://amigo.geneontology.org/amigo/term/GO:0032469
https://doi.org/10.7554/eLife.49874


Differential regulation of proteins related to proteostasis in aging
Cells rely on a complex proteostatic machinery to handle protein quality control, assembly, folding

and elimination. These activities are essential for the recycling of damaged proteins or entire organ-

elles and provide critical protection against damage during conditions of metabolic or oxidative

stress. Extensive literature supports the decline of proteostasis with aging in animal models and in

humans (Kaushik and Cuervo, 2015; Charmpilas et al., 2017). Of the 239 detected proteins that

has been related to proteostasis in the literature, 31% were altered with age (p<0.05, 24
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Figure 5. Age-associated proteostasis proteins. (A) Log2 protein abundance of all 74 age-associated proteostasis proteins across all 58 donors. Rows

represent proteostasis proteins and columns represents donors. The average expression of all age-associated proteostasis proteins from each donor is

plotted at the top and bottom (gray circles) with loess curves. The top section shows downregulated clusters of proteins (average of 24 proteins) and

the bottom shows upregulated clusters of proteins (average of 54 proteins). The protein rows are ordered based on hierarchical clustering and

displayed by dendrograms. (B) Confounders-adjusted b age coefficient of age-associated proteins, showing age-differentially regulated proteostasis

proteins, over representation of proteostasis category proteins and the log2 magnitude of protein change with each year of age. (C) The increase of

autophagy protein sub category with age is shown. Except HSPA8 and EIF4G1 all other autophagy proteins are positively correlated with age. Each bar

plot shows each autophagy protein sub category and the average change over a year of age. The gene/proteins names are organized from lowest to

highest log2 expression change per year of age. (D) Raw log2 abundance of autophagy proteins TDP and CALR were shown, simple linear regression

method was used for age (x axis) and protein (y axis) correlation, of note unadjusted p-values were shown.

DOI: https://doi.org/10.7554/eLife.49874.021

The following figure supplement is available for figure 5:

Figure supplement 1. HSPA8 protein and its association with age.

DOI: https://doi.org/10.7554/eLife.49874.022
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underrepresented and 50 overrepresented with older age) (Figure 5A). Most proteins underrepre-

sented with age were chaperones, including DnaJ homolog subfamily A (DNAJA1), also named heat

shock protein (Hsp) 40 (b = �0.0021, p=0.003), Hsp27 (b = �0.004, p=0.0001), Hsp70 protein 8

(HSPA8, b = �0.002, p=2.34E-07) (Figure 5—figure supplement 1) as well as Hsp27 protein 1

(HSPB1) and protein 7 (HSPB7), Hsp10 protein 1 (HSPE1) and Hsp60 protein 1 (HSPD1). Excluding

HSPD1, the decline of these proteins with aging was previously described (Charmpilas et al., 2017;

Senf, 2013; Matsumoto et al., 2015). Other differentially expressed proteostasis-related proteins,

including PDIA6, NPM1, ANP32E, and DNAJC2, are also regulatory chaperones (Figure 5B).

The loss of chaperone function during aging may be compensated by an increase in autophagic

activity (Figure 5C), as misfolded proteins must be removed and degraded through an alternative

mechanism. Indeed, most proteostasis proteins overrepresented with aging were related to autoph-

agy except HSPA8 and Eukaryotic translation initiation factor 4 gamma 1 (EIF4G1). For example,

TDP-43, a DNA/RNA-binding protein that tends to form aggregates in tissues such as skeletal mus-

cle and brain and is both removed by autophagy and involved in autophagy maintenance, increased

significantly with aging (TARDBP, b = 0.002, p=0.0002) (Figure 5D). On the contrary, calreticulin

(CALR), a quality control chaperone induced under ER stress that stimulated autophagy, was signifi-

cantly higher in muscle of older participants (b = 0.001, p=0.022) (Figure 5D) (Yang et al., 2019). Of

note, calreticulin is used by macrophages to tag cells to be removed by programmed cell phagocy-

tosis (Krysko et al., 2018). Consistent with this finding, CALR is considered a main biomarker of

age-related diseases and frailty (Cardoso et al., 2018). Overall, our findings are consistent with the

ample evidence in the literature that aging is associated with a decline in chaperone-mediated

autophagy, and that proteostatic mechanisms are important for aging and longevity (Cuervo and

Wong, 2014; Sands et al., 2017). However, we also found in older muscle a general increase in pro-

teins implicated in macroautophagy, possibly representing a compensatory mechanism.

Pro-inflammatory and anti-inflammatory immune proteins of aging
muscle
Of the 32 immune-related age-associated proteins that were quantified (Figure 6A), three broad

themes emerged from the aging muscle immune proteome (Figure 6B–D). First, many proteins pre-

viously linked to macrophage function (such as CD14, LGALS3, CAPG, INPPL1 and MAST2) were

dysregulated in aging muscle, with skewing towards a pro-inflammatory phenotype. For example,

the overrepresentation with aging of proteins such as Monocyte differentiation antigen CD14

(CD14, b = 0.003, p=0.009), Interferon-induced, double-stranded RNA-activated protein kinase

(E2AK2, b = 0.0008 p=0.046) and ASC (PYCARD) (b = 0.006, p=0.025) can be viewed as being pro-

inflammatory via their proposed role in lipid sensing and NF-kB activation (Figure 6B.1)

(Bryan et al., 2009; Sarkar et al., 2006). Interestingly, we also identified proteins that were concur-

rently downregulated, such as Microtubule-associated serine/threonine-protein kinase 2 (MAST2,

b = �0.002, p=0.023) and Phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase 2 (INPPL1,

b = �0.0009, p=0.036), that could accentuate the inflammatory phenotype by attenuating the nega-

tive regulation of NF-kB (Figure 6B.2) (Kalesnikoff et al., 2002; Tridandapani et al., 2002). Thus,

increased expression of NF-kB activators and decreased expression of NF-kB attenuators may syner-

gize to elevate chronic inflammation in aging muscle. We also noted increased expression of high

mobility group protein B2 (HMGB2, b = 0.004, p=0.001), a well-known ‘alarmin’ (Taniguchi et al.,

2018) that is released from dying cells or within neutrophil extracellular traps (NETs), that may fur-

ther exacerbate the inflammatory milieu. Cumulatively, our observations are consistent with the

enrichment of macrophages accumulation in aging muscle. Of note, a number of epidemiological

studies have found that chronic inflammation is a risk factor for the development of sarcopenia, while

the development of a proinflammatory state in adult mouse appears to interfere with tissue mainte-

nance and repair, as evidenced by the fact that pharmacological inhibition of Jak2 and Stat3 activi-

ties stimulate the expansion of satellite cells in culture and their engraftment in vivo

(Costamagna et al., 2015; Price et al., 2014; Roth et al., 2006). Interestingly, caloric restriction,

one of the most effective interventions to counteracts aging in animal models, is associated with

reduced inflammation in human muscle, as well as the reversal of some of the other age-related

changes identified in this study, such as the increase in molecular chaperones (Yang et al., 2016).

Second, we found evidence of an anti-inflammatory activity that could potentially offset the pro-

inflammatory milieu of aging muscle (Figure 6C). This was most evident in strong age-associated
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upregulation of annexin A1 (ANXA1, b = 0.008, p=0.00001), a protein that has been linked to resolu-

tion of inflammation (Gobbetti and Cooray, 2016). Elevated levels of adiponectin (ADIPOQ,

b = 0.002, p=0.008), a chemokine produced exclusively by adipocytes, likely reflected increased adi-

pogenic activity in aging muscle. However, it is interesting to note that ADIPOQ has also been pro-

posed to inhibit endothelial NF-kB activation (Ehsan et al., 2016; Chen et al., 2017) and may,

thereby, have context-dependent anti-inflammatory functions. Finally, erbin (ERBIN, b = 0.002,

p=0.019), a nuclear lamina-associated protein that was overrepresented with age in our studies, has

been implicated in reducing NF-kB activation by some stimuli (McDonald et al., 2005), with associ-

ated reduction in pro-inflammatory gene expression.

Third, coordinate upregulation of several members of the alternate complement pathway, such as

CFAH (b = 0.003, p=0.028), and CFAD (b = 0.003, p=0.039) and modulators of complement activity

such as CD antigen CD55 (DAF and CD55, b = 0.006, p=0.00007) indicate ongoing innate immune

activity in aging muscle (Figure 6D). Whether this trend reflects increased presence of dying cells

and cell debris or below-threshold autoimmune activity remains to be determined. The latter could

be mediated, for example, by Immunoglobulin heavy constant gamma 4 (IGHG4, b = 0.008,

p=0.019) which we found to be increased with age. This antibody isotype has been implicated in the

generation of autoantibodies against muscle-specific kinases that are prevalent in certain forms of

myasthenia gravis (Hoch et al., 2001). The possible connection between the aging muscle and

chronic neurodegenerative disorders in which destruction of self-tissue by complement has been

ascribed a causative role (McGeer et al., 2017) is an intriguing area for future investigation.

Conclusions
The biological mechanisms that mediate the deleterious effect of aging on skeletal muscle are still

controversial, as some evidence suggested that the decline of mitochondrial content, volume and

M
Y

O
1

8
A

M
A

S
T

2

S
IR

T
2

IN
P

P
L

1

E
IF

2
A

K
2

P
C

B
P

2

P
R

K
C

Q

T
O

L
L

IP

O
T

U
B

1

C
H

ID
1

P
E

C
A

M
1

S
A

M
H

D
1

D
B

N
L

E
R

B
IN

A
D

IP
O

Q

A
T

G
5

E
R

A
P

1

C
F

H

C
F

D

C
D

1
4

C
F

I
C

A
P

G

H
M

G
B

2

C
7

C
F

H
R

2

P
Y

C
A

R
D

C
D

5
5

IG
H

G
4

A
N

X
A

1

Age Associated Imm

A
g

e
 B

e
ta

 C
o

e
ff

ic
ie

n
t

Antibodies

Antigen Presentation

Complement

Immunity

Inflammasome

nfkb

Innate immunity/Lipid sensing and regulation

A B.1
Monocyte differentiation antigen (CD14)

Pro-inflammatory proteins

Age (years)

P
ro

te
in

 A
b
u
n
d
a
n
c
e
 (

L
o
g
2
)

  r
2

= ,  p =

Interfer b
vated protein kinase (EIF2AK2)

Age (years)

P
ro

te
in

 A
b
u
n
d
a
n
c
e
 (

L
o
g
2
)

  r
2

= ,  p =

Interfer b
vated protein kinase (EIF2AK2)

Age (years)

P
ro

te
in

 A
b
u
n
d
a
n
c
e
 (

L
o
g
2
)

  r
2

= ,  p =

C
Annexin A1 (ANXA1)

Age (years)

P
ro

te
in

 A
b
u
n
d
a
n
c
e
 (

L
o
g
2
)

  r
2

= ,  p =

Adiponectin (ADIPOQ)

Age (years)

P
ro

te
in

 A
b
u
n
d
a
n
c
e
 (

L
o
g
2
)

  r
2

= ,  p =

Erbin (ERBIN)

Age (years)

P
ro

te
in

 A
b
u
n
d
a
n
c
e
 (

L
o
g
2
)

  r
2

= ,  p =

Anti-inflammatory proteins D Alternate complement pathway

Complement factor H (CFAH)

Age (years)

P
ro

te
in

 A
b
u
n
d
a
n
c
e
 (

L
o
g
2
)

  r
2

= ,  p =

Complement factor D (CFD)

Age (years)

P
ro

te
in

 A
b
u
n
d
a
n
c
e
 (

L
o
g
2
)

  r
2

= ,  p =

CD antigen CD55

Age (years)

P
ro

te
in

 A
b
u
n
d
a
n
c
e
 (

L
o
g
2
)

  r
2

= ,  p =

B.2 Phosphatid

Age (years)

P
ro

te
in

 A
b
u

n
d

a
n

c
e

 (
L

o
g

2
)

  r
2

= ,  p =

Microtub
rotein kinase 2 (MAST2)

Age (years)

P
ro

te
in

 A
b
u

n
d

a
n

c
e

 (
L

o
g

2
)

  r
2

= ,  p =

Figure 6. Age-associated immune proteins. (A) Immune-related proteins are depicted; the x axis shows the genes that code for age-differentially

regulated proteins, while the y axis shows the log2 fold expression difference associated with age. The increase in innate immune signaling and lipid

responses may indicate a reaction to adipocytes muscle infiltration, which in turn causes activation of innate immune signaling. (B–D) Examples of

dysregulated proteins are shown from (B.1-B.4) pro-inflammatory. (C) Anti-Inflammatory. (D) Complement pathway proteins. Inflammasome adaptor

protein PYCARD is positively associated with age, and the abundance of this protein is a key mechanism by which IL-1b pathway activation is regulated.

In B-D raw log2 protein abundance and unadjusted p-values are shown.

DOI: https://doi.org/10.7554/eLife.49874.023
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energetic efficiency plays a primary role, while other evidence showed show no significant change

for the same parameters with aging, especially if the level of physical activity was considered

(Distefano and Goodpaster, 2018). To investigate systematically the changes in expressed proteins

that might drive the decline in skeletal muscle function, we conducted an in-depth quantitative mea-

surement of age-related changes in protein abundance in human skeletal muscle. While we did not

use model systems or in vivo experiments, because of the careful design of the study, the selection

of a healthy population, the depth of protein detection and rigorous analysis made it possible to

produce a descriptive quantitative dataset to show aging-associated molecular changes. We used a

MS-based isobaric relative quantitative approach for proteome analysis that provides broad cover-

age of the proteins of human skeletal muscle in very healthy individuals over a wide age range and

we adjusted our analysis for potential confounders. The biological function of most of the proteins

reported in this study was gathered by an extensive review of the literature and instead of relying

only on annotation of Uniprot or GO database, we manually curated the functional classification

used in the analysis. We present evidence that our approach is robust and sensitive to true biological

variability. We confirmed the altered expression of proteins implicated in pathways differentially

active in human skeletal muscle with aging, including more highly abundant mitochondrial proteins

and less abundant inflammatory proteins. We also identified subsets of proteins increasing with age

that were not previously described, namely proteins implicated in alternative splicing and autoph-

agy. An important limitation of this work is that proteomic analysis provides a static image of the

protein concentration at one point in time and does not typically inform on the dynamics of protein

accumulation or protein loss, the subcellular localization of proteins, or their post-translational modi-

fication (e.g. phosphorylation, ubiquitylation). Addressing these important parameters will help us

interpret more fully the biological meaning of our findings and will be addressed as these studies

progress (Miller et al., 2019). Our work complements a great deal of evidence from animal models

that important metabolic and regulatory changes occur with aging in skeletal muscle, provides a rich

resource to study the effect of aging on skeletal muscle proteome in humans and sets the stage for

future research on the mechanisms driving the age-associated decline in muscle function.

Materials and methods

Study design and participants
Muscle biopsies analyzed in this study were collected from participants from the Genetic and Epige-

netic Study of Aging and Laboratory Testing (GESTALT). Participants were enrolled in GESTALT if

they were free of major diseases, except for controlled hypertension or a history of cancer that had

been clinically silent for at least 10 years, were not chronically on medications (except one antihyper-

tensive drug), had no physical or cognitive impairments, had a BMI less than 30 kg/m2, and did not

train professionally. Inclusion criteria were gathered from information on medical history, physical

exams, and blood test interpreted by a trained nurse practitioner (Schrack et al., 2014). Participants

were evaluated at the Clinical Research Unit of the National Institute on Aging Intramural Research

Program. Data and muscle specimens from 60 participants were available for this study. However,

two participants were excluded because the muscle specimen provided was too small to obtain reli-

able proteomic data. Therefore, data from 58 participants dispersed over a wide age-range (20–34

y, n = 13; 35–49 y, n = 11; 50–64 y, n = 12; 65–79 y, n = 12; 80+ y, n = 10) were used for this study.

Anthropometric parameters were objectively assessed. The level of physical activity was determined

using an interview-administered standardized questionnaire originally developed for the Health,

Aging and Body Composition Study (Brach et al., 2004) and modeled after the Leisure-Time Physi-

cal Activity questionnaire (Taylor et al., 1978). Total participation time in moderate to vigorous

physical activity per week was calculated by multiplying frequency by amount of time performed for

each activity, summing all of the activities, then dividing by two to derive minutes of moderate to

vigorous physical activity per week, the following categories were used: <30 min per week of high

intensity physical activity was considered ‘not active’ and coded as 0; high-intensity physical

activity �30 and<75 min was considered ‘moderately active’ and coded as 1, high-intensity physical

activity �75 and<150 min was considered ‘active’ and coded as 2, and high-intensity physical

activity �150 min was considered to ‘highly active’ and coded as 3. An ordinal variable from 0 to 3

was used in the analysis. The GESTALT protocol is approved by the Intramural Research Program of
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the US National Institute on Aging and the Institutional Review Board of the National Institute of

Environmental Health Sciences. All participants provided written, informed consent at every visit.

Muscle biopsies
The depth of the subcutaneous fat (uncompressed and compressed) was determined using MRI

images of the middle thigh performed on the previous day. A region above the vastus lateralis mus-

cle was marked at the mid-point of a line drawn between the great trochanter and the mid-patella

upper margin. The skin was prepped with povidone–iodine (Betadine) and ethyl alcohol, and the

outside areas covered with sterile drapes. The biopsy site was anesthetized intradermally using a 27-

gauge needle and then subcutaneously using a 23-gauge x 1 1/2 -inch needle, follow by an 18-

gauge spinal needle, with ~15 mL of 1% lidocaine with sodium bicarbonate. The operator was care-

ful that the anesthetic was infiltrated in the subcutaneous tissue and above the muscle fascia but not

the muscle fibers not to distort the tissue structure and induce a gene expression response. A 6-mm

Bergstrom biopsy needle was inserted through the skin and fascia incision into the muscle, and mus-

cle tissue samples were obtained using a standard method. Biopsy specimens cut into small sections

were snap frozen in liquid nitrogen and subsequently stored at �80˚C until used for analyses.

Sample preparation and protein extraction
On average 8 mg of muscle tissue was pulverized in liquid nitrogen and mixed with the lysis buffer

containing protease inhibitor cocktail (8 M Urea, 2M Thiourea, 4% CHAPS, 1% Triton X-100, 50 mM

Tris, pH 8.5 (Sigma)). Protein concentration was determined using commercially available 2-D quant

kit (GE Healthcare Life Sciences). Sample quality was confirmed using NuPAGE protein gels stained

with fluorescent SyproRuby protein stain (Thermo Fisher).

In order to remove detergents and lipids 300 mg of muscle tissue lysate were precipitated using

standard methanol/chloroform extraction protocol (Bligh and Dyer, 1959). Proteins were resus-

pended in concentrated urea buffer (8 M Urea, 2 M Thiourea, 150 mM NaCl (Sigma)), reduced with

50 mM DTT for 1 hr at 36˚C and alkylated with 100 mM iodoacetamide for 1 hr at 36˚C in the dark.

The concentrated urea was diluted 12 times with 50 mM ammonium bicarbonate buffer and proteins

were digested for 18 hr at 36˚C using trypsin/LysC mixture (Promega) in 1:50 (w/w) enzyme to pro-

tein ratio. Protein digests were desalted on 10 � 4.0 mm C18 cartridge (Restek, cat# 917450210)

using Agilent 1260 Bio-inert HPLC system with the fraction collector. Purified peptides were speed

vacuum-dried and stored at �80˚C until further processing.

Tandem Mass Tags (TMT) labeling was used to perform quantitative proteomics. Each TMT label-

ing reaction contains six labels to be multiplexed in a single MS run. Donor IDs were blinded, and

samples were randomized to prevent TMT bias. Each TMT 6-plex set included one donor from each

of the five age groups and one reference sample. 5 muscle samples 100 mg each corresponding to

five different age groups and one separately prepared master reference sample were labeled with

6-plex tandem mass spectrometry tags using a standard TMT labeling protocol (Thermo Fisher). 200

femtomole of bacterial beta-galactosidase digest (SCIEX) was spiked into each sample prior to TMT

labeling to control for labeling efficiency and overall instrument performance. Labeled peptides

from six different TMT channels were combined into one experiment and fractionated.

High-pH RPLC fractionation and concatenation strategy
High-pH RPLC fractionation was performed on Agilent 1260 bio-inert HPLC system using 3.9 mm X

5 mm XBridge BEH Shield RP18 XP VanGuard cartridge and 4.6 mm X 250 mm XBridge Peptide

BEH C18 column (Waters). Solvent composition was as follows: 10 mM ammonium formate (pH 10)

as mobile phase (A) and 10 mM ammonium formate and 90% ACN (pH 10) as mobile-phase B

(Wang et al., 2011).

TMT-labeled peptides prepared from the skeletal muscle tissues were separated using a linear

organic gradient that went from 5% to 50% B in 100 min. Initially, 99 fractions were collected during

each LC run at 1 min interval each. Three individual high-pH fractions were concatenated into 33

combined fractions with the 33 min interval between each fraction (fractions 1, 34, 67 = combined

fraction 1, fractions 2, 35, 68 = combined fraction two and so on). Combined fractions were speed

vacuum dried, desalted and stored at �80˚C until final LC-MS/MS analysis.

Ubaida-Mohien et al. eLife 2019;8:e49874. DOI: https://doi.org/10.7554/eLife.49874 17 of 27

Tools and resources Epidemiology and Global Health Human Biology and Medicine

https://doi.org/10.7554/eLife.49874


LC-MS/MS analyses
Purified peptide fractions from skeletal muscle tissues were analyzed using UltiMate 3000 Nano LC

Systems coupled to the Q Exactive HF mass spectrometer (Thermo Scientific, San Jose, CA). Each

fraction was separated on a 35 cm capillary column (3 mm C18 silica, Hamilton, HxSil cat# 79139)

with 150 um ID on a linear organic gradient using 650 nl/min flow rate. Gradient went from 5% to

35% B in 205 min. Mobile phases A and B consisted of 0.1% formic acid in water and 0.1% formic

acid in acetonitrile, respectively. Tandem mass spectra were obtained using Q Exactive HF mass

spectrometer with the heated capillary temperature +280˚C and spray voltage set to 2.5 kV. Full

MS1 spectra were acquired from 300 to 1500 m/z at 120,000 resolution and 50 ms maximum accu-

mulation time with automatic gain control [AGC] set to 3 � 106. Dd-MS2 spectra were acquired

using dynamic m/z range with fixed first mass of 100 m/z. MS/MS spectra were resolved to 30,000

with 155 ms of maximum accumulation time and AGC target set to 2 � 105. Twelve most abundant

ions were selected for fragmentation using 30% normalized high collision energy. A dynamic exclu-

sion time of 40 s was used to discriminate against the previously analyzed ions.

Proteomics informatics
The mgf files generated (using MSConvert, ProteoWizard 3.0.6002) from the raw data from each

sample fraction was searched with Mascot 2.4.1 and X!Tandem CYCLONE (2010.12.01.1) using the

SwissProt Human sequences from Uniprot (Version Year 2015, 20,200 sequences, appended with

115 contaminants) database. The search engine was set with the following search parameters:

TMT6plex lysine and n-terminus as fixed modifications and variable modifications of carbamido-

methyl cysteine, deamidation of asparagine and glutamate, carbamylation of lysine and n-terminus

and oxidized methionine. A peptide mass tolerance of 20 ppm and 0.08 Da, respectively, and two

missed cleavages were allowed for precursor and fragment ions in agreement with the known mass

accuracy of the instrument. Mascot and X!Tandem search engine results were analyzed in Scaffold Q

+ 4.4.6 (Proteome Software, Inc, RRID:SCR_014345). The TMT channels’ isotopic purity was cor-

rected according to the TMT kit.peptide and protein probability was calculated by PeptideProphet

(Keller et al., 2002) and ProteinProphet probability model (Nesvizhskii et al., 2003). The Peptide-

Prophet model fits the peptide-spectrum matches into two distributions, one an extreme value dis-

tribution for the incorrect matches, and the other a normal distribution for correct matches. The

protein was filtered at thresholds of 0.01% peptide FDR, 1% protein FDR and requiring a minimum

of 1 unique peptide for protein identification. We allow single peptide hits for two reasons: first, any

peptide that is quantifiable is detected at least across 25% of all samples (n = 58); second, we iden-

tify proteins with more than one search engine, so the protein identification is confirmed at least

twice, even for single-peptide hits. For these reasons, the even single peptides are unlikely to be

random hits. As for single peptide quantification, the spectrum-to-spectrum variability is no higher

between spectra from the same peptide than between spectra from different peptides from the

same protein. Therefore, it is unlikely that there is any differential ‘bias’ in reporter ions from peptide

to peptide. More importantly, TMT is taken as relative, not absolute, quantification. So even if there

were such a bias, it would be the same across samples, so the relative quantification would not be

affected. Reporter ion quantitative values were extracted from Scaffold and decoy spectra, contami-

nant spectra and peptide spectra shared between more than one protein were removed. Typically,

spectra are shared between proteins if the two proteins share most of their sequence, usually for

protein isoforms. Reporter ions were retained for further analyses if they were exclusive to only one

protein, and they were identified in all six channels across each TMT set. Since we have multiple age

group across each TMT experiment, we analyzed the proteins for missing reporter ion intensity.

For this analysis, the protein with missing reporter ion in some of the channels (not more than

two channels) for each TMT experiment was identified and missing value imputation was performed

using multiple imputation with chained equations (MICE) R library by predictive mean matching.

Mean imputation was performed <0.01% in one or two TMT channels in most of the TMT experi-

ments, except TMTset1 (the missing reporter ion for channel 5 is 0.03%). The reporter ion intensity

from the proteins derived from the imputation method (on an average <10 proteins) were

concatenated with reporter ion intensity identified in all six channels and further analysis performed

using adjudicated values. The log2 transformed reporter ion abundance was normalized by median

subtraction from all reporter ion intensity spectra belonging to a protein across all channels
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(Kammers et al., 2015; Herbrich et al., 2013). Relative protein abundance was estimated by

median of all peptides for a protein combined. Protein sample loading effects from sample prepara-

tions were corrected by median polishing, that is subtracting the channel median from the relative

abundance estimate across all channels to have a median zero as described elsewhere

(Kammers et al., 2015; Herbrich et al., 2013). Quantified proteins were clustered together if they

shared common peptides and corresponding gene names were assigned to each protein for simplic-

ity and data representation. Annotation of the proteins were performed by manual curation and

combining information from Uniprot, GO and PANTHER database. Further bioinformatics analysis

was performed using R programming language (3.4.0) and the free libraries available on

Bioconductor.

Linear mixed effect model and statistical analyses
Linear mixed regression model was implemented to examine age effects and the data was adjusted

for physical activity, gender, race, bmi, type I and type II myosin fiber ratio and TMT mass spectrom-

etry experiments. Protein significance from the regression model was determined with p-values

derived from lmerTest. Partial Least Square analysis (PLS) was used to derive models with classifica-

tion that maximized the variance between age groups. PLS loadings were derived from linear model

adjusted protein results. The regression model was performed using R 3.3.4 (R Development Core

Team, 2016) with lme4 v1.1. library. Heat maps and hierarchical cluster analysis were performed

using the non-linear minimization package in R (Gaujoux and Seoighe, 2010). GraphPad PRISM

6.07 and R packages were used for statistical analysis and generation of figures. STRING analysis

(10.5 version) was used for obtaining protein-protein interaction network. Enrichment analysis was

performed by GeneSet Enrichment Analysis (GSEA) and PANTHER, the pathways were mapped and

visualized by Cytoscape 3.0 (Shannon et al., 2003). One-way ANOVA, nonparametric, and chi-

square tests (continuous and categorical variables) were used to test for sample differences between

age groups.

RNA extraction and purification
Total RNA was prepared by lysing cell pellets (2 � 106) in 700 ml Qiazol and extracted using Qiagen

miRNeasy mini kit according to the manufacturer’s recommendation (Qiagen Inc, CA) from the same

samples (n = 54). Small ribosomal RNA was further depleted using Qiagen GeneRead rRNA Deple-

tion Nano Kit. Total RNA quality and quantity was checked using RNA-6000 nano kits on the Agilent

2100-Bioanalyzer. 375 ng of high-quality RNA was used for first-strand and second-strand cDNA syn-

thesis followed by single primer isothermal amplification (SPIA) using NuGEN Ovation RNA–Seq Sys-

tem V2 kits according to manufacturer’s protocol. This kit amplified both polyA-tailed and non-

polyA tailed RNA and removed ribosomal RNA. The amplified cDNA was sheared using Bioruptor

(Diagenode) to an average size of 150–250 bases. The sequencing library was prepared using Illu-

mina ChIP-Seq kits according to the manufacturer’s protocol (Illumina, San Diego, CA). In short, the

ends of the fragments were repaired using T4 DNA polymerase, E. coli DNA Pol I large fragment

(Klenow polymerase), and T4 polynucleotide kinase (PNK) and an A-overhang was added to the 3’

end. Adapters were ligated to the DNA fragments and size-selected (250–350 bases) on a 4.5% aga-

rose gel. An 18-cycle PCR amplification was performed followed by a second 4.5% agarose gel size

selection before cluster generation in cbot2 and sequencing with Illumina Hiseq2500 sequencer

using V4 reagents. Single-read sequencing was performed for 138 cycles and Real-Time Analysis

(RTA) v1.18.66.3 generated the base-call files (BCL files). BCL files were de-multiplexed and con-

verted to standard FASTQ files using bcl2fastq program (v2.17.1.14).

RNA-Seq quantification and splicing analysis
The quality of the bases was checked using FASTQC program (v11.2) before and after adapter

removal and last base trimming by cutadapt program (v1.9). The cleaned FASTQ files were aligned,

quantified and annotated to the human hg19 genome using Salmon (Patro et al., 2017) with the

concept of quasi-mapping with two phase inference procedure for gene model annotations. The GC

bias corrected, quantified transcript isoform abundance values (TPM) were used for further computa-

tion of relative abundance of the events or transcripts isoforms known as percent spliced-in (PSI) by

SUPPA (Alamancos et al., 2015). Since the variability of low-expressed genes between biological
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replicates were reported, the transcript data were filtered for the transcripts which were expressed

in at least three donors per each age group. Thus, we excluded ~23% of the transcripts from total

transcript quantification for further splicing analysis. Events coordinates are extracted from the

Ensembl annotation (GRCh37.75) and alternative splicing events were generated. PSI values of alter-

native splicing events for each transcript from each sample (n = 53) were estimated and the PSI val-

ues showing a good agreement with the RNA seq data were kept for further analysis. The

magnitude of the PSI change (differential splicing) across the age were calculated with a linear mixed

model analysis performed on the PSI to estimate the age-related splicing changes of the transcript

isoform. The PSI regression model was adjusted with the aging confounders as same as described

above for protein regression model except fiber ratio. For transcript data, we used RNA experiment

batches as a random effect. The age beta coefficient for each alternative splicing event transcript

PSI was reported as the magnitude to the splicing event-specific PSI change with age. Significance

of the alternative splicing events was calculated by lmerTest and was reported if the observation

had a p-value<0.05 at transcript level for age beta coefficient.

Age-association of proteins and transcripts
Proteins or transcripts either significantly upregulated or down regulated with age, present in 50%

of the samples or at least in three samples for each age group, and significant (p<0.05) were consid-

ered as age-associated. Age-association was measured by linear mixed model adjusted for con-

founders of aging phenotype either in protein analysis or in RNAseq analysis and were further

filtered for significance calculation. Age beta coefficient for each protein or transcript were calcu-

lated from log2 normalized data on which a mixed linear regression model was applied. Thus, the

age beta coefficient represents the mean log2 fold expression per year of age. LmerTest was used

for calculating p-values from t-tests via Satterthwaite’s degrees of freedom method. Any protein or

transcript was represented as age-associated if the p-value for the protein or transcript was <0.05.

p-Values for multiple comparisons were adjusted using Benjamini-Hochberg method in R and

adjusted p-values were reported on related tables (figure source data). Age-associated proteins and

age-associated alternatively spliced transcripts were further analyzed into two categories, either

age-association beta coefficient (<0) was under represented with age–indicating a decrease in the

abundance of the protein with a year of age or age-association beta coefficient (>0) was over repre-

sented with age-indicating the abundance of the protein was increased with a year of age. For sim-

plicity of reporting, we calculated the enrichment of these proteins/transcripts over the total age-

associated protein/transcripts and reported as underrepresented and overrepresented with age.

Data availability
The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium

via the PRIDE partner repository with the dataset identifier PXD011967 (Ubaida-Mohien et al.,

2019). RNASeq data is deposited in GEO (GSE129643).
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