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Abstract Class A G-protein-coupled receptors (GPCRs) influence virtually every aspect of human
physiology. Understanding receptor activation mechanism is critical for discovering novel
therapeutics since about one-third of all marketed drugs target members of this family. GPCR
activation is an allosteric process that couples agonist binding to G-protein recruitment, with the
hallmark outward movement of transmembrane helix 6 (TM6). However, what leads to TM6
movement and the key residue level changes of this movement remain less well understood. Here,
we report a framework to quantify conformational changes. By analyzing the conformational
changes in 234 structures from 45 class A GPCRs, we discovered a common GPCR activation
pathway comprising of 34 residue pairs and 35 residues. The pathway unifies previous findings into
a common activation mechanism and strings together the scattered key motifs such as CWxP, DRY,
Na* pocket, NPxxY and PIF, thereby directly linking the bottom of ligand-binding pocket with
G-protein coupling region. Site-directed mutagenesis experiments support this proposition and
reveal that rational mutations of residues in this pathway can be used to obtain receptors that are
constitutively active or inactive. The common activation pathway provides the mechanistic
interpretation of constitutively activating, inactivating and disease mutations. As a module
responsible for activation, the common pathway allows for decoupling of the evolution of the
ligand binding site and G-protein-binding region. Such an architecture might have facilitated
GPCRs to emerge as a highly successful family of proteins for signal transduction in nature.

Introduction

As the largest and most diverse group of membrane receptors in eukaryotes, GPCRs mediate a
wide variety of physiological functions (Lagerstrém and Schiéth, 2008; Rosenbaum et al., 2009;
Katritch et al., 2012; Venkatakrishnan et al., 2013, Katritch et al., 2013), including vision, olfac-
tion, taste, neurotransmission, endocrine and immune responses via more than 800 family members,
and are involved in many diseases (Rana et al., 2001; Smit et al., 2007; Vassart and Costagliola,
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2011; Thompson et al., 2014; Hauser et al., 2018). Therefore, GPCRs are important drug targets.
There are 475 marketed drugs (~34% of all FDA-approved therapeutic agent agents) targeting 108
members of the GPCR superfamily (Hauser et al., 2018, Hauser et al., 2017; Allen and Roth,
2011). Class A is the largest and most diverse GPCR subfamily in humans (Kolakowski, 1994,
Bockaert and Pin, 1999; Fredriksson et al., 2003; Isberg et al., 2016), including 388 olfactory
(Krautwurst et al., 1998; Spehr and Munger, 2009) and 286 non-olfactory receptors (Pandy-
Szekeres et al., 2018; Munk et al., 2019) (Figure 1a). They share a seven-transmembrane (7TM)
helices domain, with ligand binding pocket and G-protein-binding region located in the extracellular
and intracellular ends of the helix bundle. Responding to a wide variety of extracellular signals
ranged from small molecules to peptides even proteins, the extracellular facing ligand-binding pock-
ets have evolved to be highly diverse in both shape and sequences (Venkatakrishnan et al., 2013,
Ngo et al., 2017; Vass et al., 2018). Similarly, the G-protein-binding regions are also quite diverse
in sequences, modulating the activity of different signalling pathways by recruiting dozens of hetero-
trimeric G proteins (Rasmussen et al., 2011a; Du et al., 2019; Liu et al., 2019a), arrestins
(Gainetdinov et al., 2004; Zhou et al., 2017, Yang et al., 2018; Latorraca et al., 2018), GPCR kin-
ases (Komolov et al., 2017) in a ligand-specific manner. Residues that connect the ligand-binding
pocket to the G-protein-coupling region are significantly more conserved (Ballesteros and Wein-
stein, 1995; Isberg et al., 2015), with evolutionarily conserved sequence motifs (CWxP [Eddy et al.,
2018; Filipek, 2019; Wescott et al., 2016; Tehan et al., 2014; Holst et al., 2010; Nygaard et al.,
2009; Hofmann et al., 2009; Trzaskowski et al., 2012], PIF [Ballesteros and Weinstein, 1995;
Ishchenko et al., 2017, Schénegge et al., 2017; Kato et al., 2019] Na* pocket [Eddy et al., 2018;
Filipek, 2019; Liu et al., 2012, Yuan et al., 2013; Fenalti et al., 2014; Katritch et al., 2014;
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Figure 1. An increasing number of reported class A GPCR structures facilitates studies on common activation mechanism. (a) Distribution of structures
in different states in the non-olfactory class A GPCR tree as of October 1, 2018. (b) Common GPCR activation mechanism and the residue-level triggers

are not well understood.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. The released class A GPCR structures (as of October 1, 2018).
Source data 2. Disease mutations occurred in class A GPCRs.

Figure supplement 1. The pattern of conservation of residues and the map of number of disease-associated mutations in human class A GPCRs.
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Vickery et al., 2018; White et al., 2018; Ye et al., 2018; Chen et al., 2019], NPxxY
[Rasmussen et al., 2011a; Filipek, 2019; Wescott et al., 2016, Nygaard et al. 2009,
Hofmann et al., 2009; Trzaskowski et al., 2012; Schénegge et al., 2017; Chen et al., 2019,
Venkatakrishnan et al., 2016] and DRY [Schénegge et al., 2017, Alhadeff et al., 2018,
Jacobson et al., 2014; Feng et al., 2017; Roth et al., 2017; Shihoya et al., 2017; Yuan et al.,
2014)) scattered in the intracellular half of the 7TM domain (Figure 1—figure supplement 1).

GPCR activation is agonist binding induced G-protein recruitment (Eddy et al., 2018;
Christopoulos and Kenakin, 2002; Manglik et al., 2015; Staus et al., 2016; DeVree et al., 2016).
It is an allosteric process (Gilchrist, 2007, May et al., 2007, Christopoulos, 2014; Latorraca et al.,
2017), transducing various external stimuli into cellular responses. Understanding the activation
mechanism of GPCR is of paramount importance in pharmacology research and drug discovery. Tre-
mendous previous efforts, involving sequence analysis, structural, biophysical, biochemical and
computational approaches such as X-ray (Popov et al., 2018; Roth et al., 2008; Warne et al.,
2009; Carpenter et al., 2016; Nehmé et al., 2017; Tsai et al., 2018; Rasmussen et al., 2011b;
Pardon et al., 2014; Rosenbaum et al., 2007; Kobilka and Schertler, 2008; Cherezov et al., 2007;
Ghosh et al., 2015; Cherezov et al., 2004; Caffrey and Cherezov, 2009; Liu et al., 2013,
Weierstall et al., 2014; Stauch and Cherezov, 2018; Zhang et al., 2015), NMR (Ye et al., 2018,
Chen et al., 2019, Nygaard et al., 2013; Lamichhane et al., 2015; Isogai et al., 2016;
Sounier et al., 2015; Ye et al., 2016, Shimada et al., 2019), Cryo-EM (Liang et al., 2017,
Zhang et al., 2017; Cheng, 2018; Renaud et al., 2018), labeling biosensors (Irannejad et al., 2013;
Tian et al., 2017), FRET (Gregorio et al., 2017; Halls and Canals, 2018; Sandhu et al., 2019),
BRET (Lan et al., 2012; Lee et al., 2016, Okashah et al., 2019), DEER (Wingler et al., 2019,
Van Eps et al., 2018; Dror et al., 2015), molecular dynamic simulations (Yuan et al., 2013;
Dror et al., 2015; Dror et al., 2011a; Dror et al., 2011b; Dror et al., 2013, Miao et al., 2013,
Bhattacharya and Vaidehi, 2014; Kohlhoff et al., 2014; Ciancetta et al., 2015; Alhadeff et al.,
2018), evolutionary tracing (Madabushi et al., 2004; Schoneberg et al., 2007; Rodriguez et al.,
2010), molecular docking (Kufareva et al., 2011; Jacobson et al., 2014; Kooistra et al., 2016;
Miao et al., 2016; Feng et al., 2017, Roth et al., 2017, Lyu et al., 2019; Cooke et al., 2015) and
mutagenesis (Schénegge et al., 2017; Sung et al., 2016; Massink et al., 2015; Ragnarsson et al.,
2019; Hulme, 2013) have been made to study the allosteric nature of GPCRs including but not lim-
ited to receptor activation (Wescott et al., 2016; Tehan et al., 2014; Trzaskowski et al., 2012,
Venkatakrishnan et al., 2016; Isom and Dohlman, 2015; Okada et al., 2001; Hunyady et al.,
2003; Dalton et al., 2015; Lans et al., 2015), G protein activation (Trzaskowski et al., 2012;
Flock et al., 2017; Flock et al., 2015; Furness et al., 2016; Glukhova et al., 2018; llyaskina et al.,
2018; Inoue et al., 2019; Weis and Kobilka, 2018), biased agonism (McCorvy et al., 2018,
Onaran et al., 2014; Schmid et al., 2017; Smith et al., 2018; Tan et al., 2018; Whalen et al.,
2011, Wootten et al., 2018, Wootten et al., 2016; Masureel et al., 2018), ligand efficiency
(Gregorio et al., 2017; Furness et al., 2016; Livingston et al., 2018; Solt et al., 2017; Yao et al.,
2009), allosteric modulators (Thal et al., 2018; Kruse et al., 2013; Leach et al., 2007; Liu et al.,
2019b; Lu and Zhang, 2019; Robertson et al., 2018; Shao et al., 2019; Wu et al., 2019,
Zheng et al., 2016; Ortiz Zacarias et al., 2018; Jaeger et al., 2019; Hollingsworth et al., 2019,
Liu et al., 2017, Chaturvedi et al., 2018; Oswald et al., 2016), and inverse agonism
(Chaturvedi et al., 2018; Oswald et al., 2016; Hori et al., 2018; Nagiri et al., 2019; Peng et al.,
2018; Shihoya et al., 2017). Starting from the first structure of a GPCR-G protein complex (B,AR-
G,) (Rasmussen et al., 2011a), the rapidly growing structures of receptor-G-protein complex have
provided excellent opportunity to better understand receptor conformation changes upon activa-
tion. Meanwhile, mutagenesis studies on different receptors also identified functional roles of key
residues in receptor activation, one good example is CXCR4 (Wescott et al., 2016), where a large-
scale mutagenesis study covering all 352 residues of the receptor identified 41 amino acids that are
required for signalling induced by agonist CXCL12. Notably, family-wide analysis on GPCR activation
with the concept of residue contacts (Venkatakrishnan et al., 2013, Flock et al., 2017,
Kayikci et al., 2018) have revealed the converged activation pathway near the G-protein-coupling
region (Venkatakrishnan et al., 2016) and selectivity determinants of GPCR-G-protein binding
(Flock et al., 2017). While these studies have provided key insights into GPCR activation mechanism
for individual receptors or specific motifs, a family-wide common activation mechanism that directly
connect ligand-binding pocket and G-protein-coupling region has yet to be discovered. Although it
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is well established that outward movement of transmembrane helix 6 (TMé) upon ligand binding is a
common feature of receptor activation, the residue level changes that trigger the movement of TM6
remain less well understood (Figure 1b).

Receptor activation requires global reorganization of residue contacts as well as water-mediated
interactions (Yuan et al., 2014; Yuan et al., 2016; Venkatakrishnan et al., 2019). Since prior studies
primarily investigated conformational changes through visual inspection (Tehan et al., 2014;
Trzaskowski et al., 2012) or through the presence or absence of non-covalent contacts between
residues (Venkatakrishnan et al., 2016; Flock et al., 2017), we reasoned that one could gain com-
prehensive knowledge about mechanism of receptor activation by developing approaches that can
capture not just the presence or absence of a contact but also subtle, and potentially important
alterations in conformations upon receptor activation.

Results

A residue-residue contact score-based framework to characterize GPCR
conformational changes
To address this, we developed an approach to rigorously quantify residue contacts in proteins struc-
tures and infer statistically significant conformational changes. We first defined a residue-residue
contact score (RRCS) which is an atomic distance-based calculation that quantifies the strength of
contact between residue pairs (Ngo et al., 2017) by summing up all possible inter-residue heavy
atom pairs (Figure 2a and Figure 2—figure supplement 1a). We then defined ARRCS, which is the
difference in RRCS of a residue pair between any two conformational states of a receptor that quan-
titatively describes the rearrangements of residue contacts (Figure 2b and Figure 2—figure supple-
ment 1b). While RRCS can be 0 (no contact) or higher (stronger contact), ARRCS can be negative
(loss in strength of residue contact), positive (gain in strength of residue contact) or 0 (no change in
strength of residue contact). To capture the entirety of conformational changes in receptor structure
upon activation, we computed the ARRCS between the active and inactive states of a receptor and
defined two types of conformational changes (Figure 2c¢): (i) switching contacts: these are contacts
that are present in the inactive state but lost in the active state (or vicw versa) such as loss of intra-
helical contacts between D/E**4? (GPCRdb numbering [Isberg et al., 2016]) and R***°, and gain of
inter-helical hydrophobic contacts between residues at 3x40 and 6x48 upon receptor activation;
and (ii) repacking contacts: these are contacts that result in an increase or decrease in residue pack-
ing such as the decreased packing of intra-helical side-chain contacts between W°**® and F®**4, and
the increase in inter-helical residue packing due to the translocation of N”*4° toward D***° upon
receptor activation. In this manner, we quantified the global, local, major and subtle conformational
changes in a systematic way (i.e. inter-helical and intra-helical, switching and repacking contacts).
We then analyzed 234 structures of 45 class A GPCRs that were grouped into three categories
(Figure 1a): (i) antagonist- or inverse agonist-bound (inactive; 142 structures from 38 receptors); (ii)
both agonist- and G protein/G protein mimetic-bound (fully active; 27 structures from eight recep-
tors); and (iii) agonist-bound (intermediate; 65 structures from 15 receptors). Among them, six recep-
tors [rhodopsin (bRho) (Li et al., 2004; Choe et al., 2011), By-adrenergic receptor (B.AR)
(Rasmussen et al., 2011a; Cherezov et al., 2007), M2 muscarinic receptor (M2R) (Kruse et al.,
2013; Haga et al., 2012), p-opioid receptor (LOR) (Manglik et al., 2012; Huang et al., 2015), aden-
osine Ay receptor (AxaR) (Carpenter et al., 2016; Jaakola et al., 2008) and k-opioid receptor (k-
OR) (Wu et al., 2012; Che et al., 2018)] have both inactive- and active-state crystal structures avail-
able. Given that ARRCS can capture major and subtle conformational changes, we computed RRCS
for all structures and ARRCS for the six pairs of receptors and investigated the existence of a com-
mon activation pathway (i.e. a common set of residue contact changes) across class A GPCRs. Two
criteria (Figure 2d; further details in Materials and methods) were applied to identify conserved rear-
rangements of residue contacts: (i) equivalent residue pairs show a similar and substantial change in
RRCS between the active and inactive state structures of each of the six receptors (i.e. the same sign
of ARRCS and |JARRCS| > cut-off for all receptors) and (ii) family-wide comparison of the RRCS for the
142 inactive and 27 active state structures shows a statistically significant difference (p<0.001; two
sample t-test). This allowed us to reliably capture both the major rearrangements as well as subtle
but conserved conformational changes at the level of individual residues in diverse GPCRs in a
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Figure 2. Understanding GPCR activation mechanism by RRCS and ARRCS. (a) Comparison of residue contact (RC) (Venkatakrishnan et al., 2016) and
residue residue contact score (RRCS) calculations. RRCS can describe the strength of residue-residue contact quantitatively in a much more accurate
manner than the Boolean descriptor RC. (b) RRCS and ARRCS calculation for a pair of active and inactive structures can capture receptor

Figure 2 continued on next page
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Figure 2 continued

conformational change upon activation. (c) Two types of conformational changes (i.e. switching and repacking contacts) can be defined by RRCS to
quantify the global, local, major and subtle conformational changes in a systematic way. (d) Two criteria of identifying conserved residue
rearrangements upon receptor activation by RRCS and ARRCS. Thirty-four residues pairs were identified based on the criteria (see

Materials and methods, Figure 2—source datas 1 and 2 for details), only six of them were discovered before (Venkatakrishnan et al., 2016).

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Calculated RRCS of 34 residue pairs constituting the common activation pathway for released class A GPCR structures.
Source data 2. Thirty-four residue pairs show conserved rearrangements of residue contacts upon activation.
Figure supplement 1. Calculation of RRCS and ARRCS.

statistically robust and significant manner. Consistent with this, a comparison with earlier studies
revealed that the RRCS based approach is able to capture a larger number of conserved large-scale
and subtle changes in residues contacts (Figure 2d) that would have been missed by visual inspec-
tion or residue contact presence/absence criteria alone (see Materials and methods for conceptual
advance of this approach and detailed comparison).

Discovery of a common and conserved receptor activation pathway
Remarkably, for the first time, our analysis of the structures allowed the discovery of a common and
conserved activation pathway that directly links ligand-binding pocket and G protein-coupling
regions in class A GPCRs (Figure 3). The pathway is comprised of 34 residue pairs (formed by 35 res-
idues) with conserved rearrangement of residue contacts upon activation (Figure 2d), connecting
several well-known but structurally and spatially disconnected motifs (CWxP, PIF, Na* pocket, NPxxY
and DRY) all the way from the extracellular side (where the ligand binds) to the intracellular side
(where the G-protein binds). Inspection of the rewired contacts as a ARRCS network reveals that the
conserved receptor activation pathway is of modular nature and involves conformational changes in
four layers. In layer 1, there is a conserved signal initiation step involving changes in residue contacts
at the bottom of the ligand-binding pocket and Na™ pocket. In layer 2, critical hydrophobic contacts
are broken (i.e., opening of the hydrophobic lock). In layer 3, microswitch residues (6x37, Y7*53) are
rewired and in layer 4, the residue R***° and G protein contacting positions are rewired, making
them competent to bind to G protein on the cytosolic side (Figure 3). Strikingly, recently released
cryo-EM structures of four receptors (5-HT4g, rhodopsin, AiR and pOR) in complex with Gy
o(Glukhova et al., 2018; Garcia-Nafria et al., 2018; Kang et al., 2018; Koehl et al., 2018; Draper-
Joyce et al., 2018; Tsai et al., 2018) also support the conservation of contacts involving these 34
residue pairs (Figure 4, Figure 4—figure supplements 1 and 2). These observations highlight the
conserved and common nature of a previously undescribed activation pathway linking ligand binding
to G-protein coupling, regardless of the subtypes of intracellular effectors (ie., Gs
(Rasmussen et al., 2011a; Carpenter et al., 2016), G;/,(Glukhova et al., 2018, Garcia-Nafria et al.,
2018; Kang et al., 2018; Koehl et al., 2018; Draper-Joyce et al., 2018; Tsai et al., 2018), arrestin
(Zhou et al., 2017; Kang et al., 2015) or G-protein mimetic nanobody/peptide (Rasmussen et al.,
2011b; Kruse et al., 2013; Choe et al., 2011; Huang et al., 2015; Che et al., 2018), Figure 4a).
Collectively, these findings illustrate how a combination of intra-helical and inter-helical switching
contacts as well as repacking contacts underlies the common activation mechanism of GPCRs.

Molecular insights into key steps of the common activation pathway
Receptor activation is triggered by ligand binding and is characterised by movements of different
transmembrane helices. How does ligand-induced receptor activation connect the different and
highly conserved motifs, rewire residue contacts and result in the observed changes in transmem-
brane helices? To this end, we analyzed the common activation pathway in detail and mapped,
where possible, how they influence helix packing, rotation and movement (Figure 3). A qualitative
analysis suggests the presence of four layers of residues in the pathway linking the ligand binding
residues to the G-protein-binding region.

Layer 1: We did not see a single ligand-residue contact that exhibits conserved rearrangement,
which accurately reflects the diverse repertoire of ligands that bind GPCRs (Katritch et al., 2012,
Venkatakrishnan et al., 2013; Ngo et al., 2017) (Figure 3—figure supplement 1). Instead, as a first
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Figure 3. Common activation pathway of class A GPCRs. Node represents structurally equivalent residue with the GPCRdb numbering (Isberg et al.,
2016) while the width of edge is proportional to the average ARRCS among six receptors (bRho, B2AR, M2R, LOR, Az4R and k-OR). Four layers were
qualitatively defined based on the topology of the pathway and their roles in activation: signal initiation (layer 1), signal propagation (layer 2),
microswitches rewiring (layer 3) and G-protein coupling (layer 4).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Rearrangements of ligand-residue contacts in ligand-binding pocket are not conserved, reflecting diverse ligand recognition
modes.

common step, extracellular binding of diverse agonists converges to trigger an identical alteration
of the transmission switch (3x40, 5x51, 6x44 and 6x48) and Na* pocket (2x50, 3x39, 7x45 and
7x49). Specifically, the repacking of an intra-helical contact between residues at 6x48 and 6x44,
together with the switching contacts of residue at 3x40 toward 6x48 and residue at 5x51 toward
6x44, contract the TM3-5-6 interface in this layer. This reorganization initializes the rotation of the
cytoplasmic end of TMé. The collapse of Na* pocket leads to a denser repacking of the four residues
(2x50, 3x39, 7x45 and 7x49), initiating the movement of TM7 toward TM3. Remarkably, a recent
NMR study on AAR (Eddy et al., 2018) demonstrated the strong coupling between allosteric switch
D2*%% and toggle switch W¢**8, which is consistent with the present observation.

Layer 2: In parallel with these movements, two residues (6x40 and 6x41) switch their contacts
with residue at 3x43, and form new contacts instead with residues at 5x58 and 5x55, respectively.
Residues at 3x43, 6x40 and 6x41 are mainly composed of hydrophobic amino acids and referred
as hydrophobic lock (Wescott et al., 2016; Tehan et al., 2014; Han et al. 2012, Marti-
Solano et al., 2014). Its opening loosens the packing of TM3-TMé6 and facilitates the outward move-
ment of the cytoplasmic end of TM6, which is necessary for receptor activation. Additionally, N”>47
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Figure 4. The common activation mechanism is the shared portion of various downstream pathways of different class A GPCRs. (a) Intracellular binding
partners used in the active state structures. (b) Comparison of RRCS for active (green) and inactive (orange) states of eight receptors with different
intracellular binding partners, including four recently solved cryo-EM structures of Gy/,-bound receptors (5-HT15 receptor, rhodopsin, AjR and pOR)
(Tsai et al., 2018; Garcia-Nafria et al., 2018, Kang et al., 2018; Koehl et al., 2018; Draper-Joyce et al., 2018) whose resolutions were low

(usually >3.8 A for the GPCR part). Nevertheless, almost all conserved residue rearrangements in the pathway can be observed from them. Three of 34
residues pairs were shown here, see Figure 4—figure supplements 1 and 2 for the remaining 31 residue pairs.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. The switching conformation change is conserved upon receptor activation.
Figure supplement 2. The repacking conformation change is conserved upon receptor activation.

develops contacts with residue at 3x43 from nothing, facilitating the movement of TM7 toward
TM3.

Layer 3: Upon receptor activation, Y7*53 |oses its inter-helical contacts (Venkatakrishnan et al.,
2016) with residues at 1x53 and 8x50, and forms new contacts with residues at 3x43, 3x46 and
R3<%°, which were closely packed with residues in TMé. Thus, the switching of contacts by Y73
strengthens the packing of TM3-TM7, while the packing of TM3-TMé is further loosened with the
outward movement of TMé.

Layer 4: Finally, the restrains on , including more conserved, local intra-helical contacts with
D(E)3>**° and less conserved ionic lock with D( , are eliminated and R3**C is released. Notably,
the switching contacts between R®** and residue at 6x37 are essential for the release of R®**,
which breaks the remaining contacts between TM3 and TMé6 in the cytoplasmic end and drives the
outward movement of TMé. The rewired contacts of R***° and other G-protein contacting positions
(3x53, 3x54, 5x61 and 6x33) make the receptor competent to bind to G protein on the cytosolic
side.

Together, these findings demonstrate that the intra-helical/inter-helical and switching/repacking
contacts between residues is not only critical to reveal the continuous and modular nature of the
activation pathway, but also to link residue-level changes to transmembrane helix-level changes in

R3><50
E)6><30

the receptor.

Zhou et al. eLife 2019;8:e50279. DOI: https://doi.org/10.7554/eLife.50279 8 of 31


https://doi.org/10.7554/eLife.50279

LI FE Research article

Common activation pathway induced changes in TM helix packing

To capture the patterns in the global movements of transmembrane helices, all inter-helical residues
pairs in the common activation pathway were used to describe the inter-helical contacts between
the cytoplasmic end of TM3 and TM6 as well as TM3 and TM7 (Figure 5a). Analysis of the RRCSts.
7 (X-axis) and RRCStms.tme (Y-axis) for each of the 234 class A GPCR structures revealed distinct
compact clusters of inactive and active states. Surprisingly, the inactive state has zero or close to
zero RRCStp3.1wmy regardless of the wide distribution of RRCStuz.tme. In contrast, the active state
has a high RRCSty3.1m7 and strictly zero RRCStymsz.tmes. Thus, receptor activation from inactive to
active state occurs as a harmonious process of inter-helical contact changes: elimination of TM3-TMé
contacts, formation of TM3-TM7 contacts and repacking of TM5-TMé6 (Figure 5b and Figure 5—fig-
ure supplement 1). In terms of global conformational changes, the binding of diverse agonists con-
verges to trigger outward movement of the cytoplasmic end of TMé and inward movement of TM7
toward TM3 (Rasmussen et al., 2011a; Nygaard et al., 2009, Venkatakrishnan et al., 2016),
thereby creating an intracellular crevice for G protein coupling (Figure 5b).

It is noteworthy that the common activation pathway we discovered in this study is not the only
pathway that connecting extracellular ligand-binding and intracellular effector coupling for class A
GPCRs - it is likely to be a shared portion of various activation pathways of GPCR members belong-
ing to this class - each receptor still has its unique receptor-, ligand- and effector-specific activation
pathways. In fact, research on this subject has boosted the discovery of selective and biased ligands
(McCorvy et al., 2018; Onaran et al., 2014; Schmid et al., 2017, Smith et al., 2018; Tan et al.,
2018; Whalen et al., 2011; Wootten et al., 2018; Wootten et al., 2016).

As shown in Figure 5—figure supplement 2, collapse of the Na* pocket leads to a denser
repacking of six residues (five residue pairs), reflected by higher RRCSsodium_pocket SCOres in active
state than that in inactive state structures. Recently, the crystal structures (5X33 [Hori et al., 2018],
6BQG [Peng et al., 2018] and 6K1Q [Nagiri et al., 2019]) whose ligand (inverse agonist) diffuses
deep in ligand-binding pocket or even occupies the sodium binding pocket (below D?**°) were
reported. These inverse agonists disrupt the collapse of Na* pocket by blocking the rotation of
W48 and/or taking the space of Na*, and stabilize the receptors in an inactive state. Indeed, these
inactive state structures showed zero RRCSty3.tmz but high RRCStyvz.tms scores. The inverse ago-
nism are not only consistent with both our activation model and mutagenesis experiments, but also
supported by the NMR study of AyaR (Eddy et al., 2018). This study demonstrated the role of
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Figure 5. Common activation model of class A GPCRs reveals major changes upon GPCR activation. (a) Active and inactive state structures form
compact clusters in the 2D inter-helical contact space: RRCStp3.tmy (X-axis) and RRCStm3.1ms (Y-axis). GPCR activation is best described by the outward
movement of TMé6 and inward movement of TM7, resulting in switch in the contacts of TM3 from TMé to TM7. (b) Common activation model for class A
GPCRs. Residues are shown in circles, conserved contact rearrangements of residue pairs upon activation are denoted by lines.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Global conformational change upon activation.
Figure supplement 2. An inverse-agonism of class A GPCRs by preventing the collapse of Na* pocket.
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D522*%° as an allosteric link between the orthosteric ligand-binding site and the intracellular signal-

ing surface, revealing strong interactions with the toggle switch W246%*48,

Experimental validation of the modular nature of the common
activation pathway

Based on the knowledge of the common activation pathway, one would expect that mutations of
residues in the pathway are likely to severely affect receptor activation. The two extreme consequen-
ces are constitutive activation (without agonist binding) or inactivation (abolished signalling). To
experimentally test this hypothesis, we systematically designed site-directed mutagenesis for resi-
dues in the pathway on a prototypical receptor AzaR, aiming to create constitutively activating/inac-
tivating mutations (CAM/CIM), by promoting/blocking residue and helix level conformational
changes revealed in the pathway. 6/15 designed CAMs and 15/20 designed CIMs were validated by
functional cAMP accumulation assays, and none of them were reported before for A aR (Figure 6,
Figure 6—figure supplement 1 and Figure 6—source data 1). The design of functional active/inac-
tive mutants has been very challenging. However, the knowledge of common activation pathway of
GPCRs presented here greatly improves the success rate. The mechanistic interpretation of 21 suc-
cessful predicted mutants is explained below. We also discussed the 14 unsuccessful predictions in
Figure 6—source data 2. Besides, we extended mutagenesis studies to G,-coupled 5-HT; and G;-
coupled 5-HT4g receptors by designing CAM/CIMs in residues at 3x40, 3x43, 6x40, 6x44, and
7x49 (Figure 6—figure supplement 2).

In layer 1, the mutation 1923*“°N likely stabilizes the active state by forming amide-r interactions
with W246°*® and hydrogen bond with the backbone of C185°*4", which rewires the packing at
the transmission switch and initiates the outward movement of the cytoplasmic end of TM6; this
mutation elevated the basal cAMP level by sevenfold. Conversely, 1923*4°A would reduce the favor-
able contacts with W°*4® upon activation, which retards the initiation of the outward movement of
TM6; this mutation resulted in a decrease in both basal cAMP level [71% of wild-type (WT)] and ago-
nist potency (eightfold). Another example is the residue at 6x44, the mutation F242°%4*R would sta-
bilize the inactive state by forming salt bridge with D522%, which blocks the rotation of TMé and
thus abolishes G4 coupling; indeed this mutation greatly reduced basal cAMP level (to 63% WT) and
agonist potency (by 374-fold). In contrast, F242°***A would reduce contacts with W246°**8, loosen
TM3-TMé contacts, diminish the energy barrier of TMé release and make outward movement of
TMé easier; consistently this mutation elevated the basal cAMP level (by twofold) and increased the
agonist potency (by eightfold). Mutations of residues forming the Na* pocket, such as D52%*°°A and
N2807**°R, would destroy the hydrogen bond network at the Na* pocket and retard the initiation
of the inward movement of TM7. These mutations completely abolished agonist potency and greatly
reduced the basal cAMP level (to 80% and 78% of WT, respectively).

In layer 2, the mutations L953*43A/R and 1238%*%%Y would loosen the hydrophobic lock, weaken
TM3-TMé contacts, promote the outward movement of cytoplasmic end of TMé and eventually
make receptor constitutively active; this is reflected by remarkably high basal cAMP production (28-,
2- and 11-fold increase, respectively). Notably, mutations at/near the Na* pocket, L48%%4R and
N2847*4K, could lock the Na* pocket at inactive packing mode by introducing salt bridge with
D522%%, thus blocking the inward movement of TM7 toward TM3. As expected, these mutations
completely abolished agonist potency. The CIMs at/near the Na* pocket (from both layers 1 and 2)
reflect that the subtle inward movement of TM7 towards TM3 is essential for receptor activation,
which is often underappreciated and overshadowed by the movement of TMé. In line with this, two
mutations on TM7, N284”*%’A and Y288”*>3A, attenuate the TM3-TM7 contacts upon activation
and completely abolished or greatly reduced (by 16-fold) agonist potency, respectively.

In layer 3, 198*4°A likely reduces contacts with Y2883, weakens the packing between TM3-
TM7, and retards the movement of TM7 toward TM3; similarly, L235%37 A would reduce contacts
with F201°42, weaken the packing between TM5-TMé, and makes the TM6 movement toward TM5
more difficult. In line with the interpretation, these mutations resulted in reduced basal cAMP level
(72% and 71% WT, respectively) and decreased agonist potency (23- and 4-fold, respectively). These
results are consistent with previous findings on vasopressin type-2 receptor (V2R)
(Venkatakrishnan et al., 2016).
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Figure 6. Experimental validation of the common activation mechanism. (a) cAMP accumulation assay and (b) radioligand binding assay: both validated
the common activation pathway-guided design of CAMs/CIMs for AzaR. Wildtype (WT), CAMs and CIMs are shown in black, green and orange,
respectively. (c) Mechanistic interpretation of common activation pathway-guided CAMs/CIMs design. N.D.: basal activity was too high to determine an
accurate ECsg value.

The online version of this article includes the following source data and figure supplement(s) for figure 6é:

Source data 1. Functional and ligand binding properties of A;aR mutations.

Source data 2. Analysis of the 14 unsuccessful predictions of A;aR CAMs/CIMs.

Figure supplement 1. Experimental validation of common activation pathway-guided CAM/CIM design for A 2A R.

Figure supplement 2. Experimental validation of common activation pathway-guided CAM/CIM design for G¢-coupled 5-HT; and Gj-coupled 5-HT1g
receptors.
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In layer 4, D1013**°N likely diminishes its intra-helical interaction with R1023**° and thus makes
the release of the latter easier, which in turn promotes G-protein recruitment. Consistent with this
possibility, this mutation led to a greatly elevated basal cAMP level (eightfold).

Despite these A AR mutants greatly affect receptor activation, our radioligand binding assay
shows that they generally retain the agonist binding ability, with the exception of two CIMs:
W246°748A and N2847 45K (Figure 6b,c and Figure 6—source data 1). This suggests that the com-
mon activation pathway is of modular nature and that such an organization allows for a significant
number of residues involved in agonist binding to be uncoupled from receptor activation/inactiva-
tion and G-protein binding.

As shown in Figure 6—figure supplements 2 and 5-HT; receptor mutations F336°*#*R and
N3807**°K completely abolished agonist potency and greatly reduced the basal cAMP level, which
is remarkably consistent with the observation on A,4R, highlighting the crucial role of the highly con-
served residues F&*%* and N7*47. Beyond G,-coupled AR and 5-HT; receptor, we also validated
this mutation design in Gj-coupled 5-HT;g receptor. Indeed, two CIMs, 11373%4°N and F323%*%H
greatly reduced receptor-mediated G; activity compared to WT, whereas three CAMs, L173%*%3A in
G.-coupled 5-HT; receptor, F323%**A and 11373*%°A in G;-coupled 5-HT;g receptor, were verified
to promote their basal activities, consistent with the observation on CAMs (L95%<43A, F2425<44A
and 1923*4%A) designed for A aR.

The common pathway allows mechanistic interpretation of mutations
Four hundred thirty five disease-associated mutations were collected, among which 28% can be
mapped to the common activation pathway, much higher than that to the ligand-binding and G-pro-
tein-binding regions (20% and 7%, respectively) (Figure 7a,b). Furthermore, 272 CAMs/CIMs from
41 receptors (Figure 7c) were mined from the literature for the 14 hub residues (i.e. residues that
have more than one edges in the pathway).

The average number of disease-associated mutations in the common activation pathway is much
higher than that of ligand-binding pocket, G-protein-binding site, and residues in other regions (2.5-
, 3.5- and 3.5-fold, respectively), reflecting the enrichment of disease-associated mutations on the
pathway (Figure 7a). Within this pathway, the enrichment of disease mutations and CAMs/CIMs in
layers 1 and 2 is noteworthy, which highlights the importance of signal initiation and hydrophobic
lock opening, and further supports the modular and hierarchical nature of GPCR activation (Figures 3
and 5b). Notably, for certain residues, such as D250 and Y7*%3, only loss-of-function disease muta-
tions or CIMs were observed (Figure 7), implying they are indispensable for receptor activation and
the essential role of TM7 movement (Figures 3 and 5).

The functional consequence of these single point mutations can be rationalized by analysing if
they are stabilizing/destabilizing the contacts in the common activation pathway or promoting/
retarding the required helix movement upon activation (Figure 7b and Figure 7—figure supple-
ment 1). For example, 11303*43N/F (layer 2) in V2R was reported as a gain-/loss-of-function mutation
that causes nephrogenic syndrome of inappropriate antidiuresis (Erdélyi et al., 2015) or nephro-
genic diabetes insipidus (Pasel, 2000), respectively. 1130®***N/F likely loosens/stabilizes the hydro-
phobic lock, weakens/strengthens the TM3-TMé packing and leads to constitutively active/inactive
receptors. Another example is T58"*%3M in rhodopsin, which was reported as a loss-of-function
mutation that causes retinitis pigmentosa 4 (Napier et al., 2015). T58"*>3M likely increases hydro-
phobic contacts with Y3067*%3 and P3037*°°, which retards the inward movement of TM7 towards
TM3 and eventually decreases G-protein recruitment. As in the case of disease-associated mutations,
CAMs/CIMs that have been previously reported in the literature can also be interpreted by the
framework of common activation pathway (Figure 7—figure supplement 1b). For example,
F248%<%%Y in CXCR4 (Wescott et al., 2016) was reported as a CIM. This residue likely forms hydro-
gen bond with §123%%37 which blocks the rotation of the cytoplasmic end of TMé, and decreases
G-protein engagement.

Not surprisingly, the 35 residues constituting the pathway are highly conserved across class A
GPCRs, dominated by physiochemically similar amino acids (Figure 7—figure supplement 2). The
average sequence similarity of these positions across 286 non-olfactory class A receptors is 66.2%,
significantly higher than that of ligand-binding pockets (31.9%) or signaling protein-coupling regions
(35.1%). Together, these observations suggest that the modular and hierarchical nature of the activa-
tion pathway allows decoupling of the ligand-binding pocket, G-protein-binding site and the
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Figure 7. Importance of the common activation pathway in pathophysiological and biological contexts. (a) Comparison of disease-associated mutations
in the common activation pathway (further decomposed into layers 1-4), ligand-binding pocket, G-protein-coupling region and other regions. Red line
denotes the mean value. (b) Mapping of disease-associated mutations in class A GPCRs to the common activation pathway. (c) Key roles of the residues
Figure 7 continued on next page
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Figure 7 continued

constituting the common activation pathway have been reported in numerous experimental studies on class A GPCRs. Two hundred seventy two (272)
CAMs/CIMs from 41 receptors were mined from the literature for the 14 hub residues (i.e. residues that have more than one edges in the pathway).
The online version of this article includes the following source data and figure supplement(s) for figure 7:

Source data 1. Constitutively activating/inactivating mutations for the 14 hub residues in the common activation pathway.
Figure supplement 1. The common activation pathway can be used to mechanistically interpret disease-associated mutations and CAMs/CIMs.
Figure supplement 2. Residues in the common activation pathway are more conserved than other functional regions of GPCR.

residues contributing to the common activation mechanism. Such an organization of the receptor
might facilitate the uneven sequence conservation between different regions of GPCRs, confers their
functional diversity in ligand recognition and G-protein binding while still retaining a common activa-
tion mechanism.

Discussion

Using a novel, quantitative residue contact descriptor, RRCS, and a family-wide comparison across
234 structures from 45 class A GPCRs, we reveal a common activation pathway that directly links
ligand-binding pocket and G-protein-coupling region. Key residues that connect the different mod-
ules allows for the decoupling of a large number of residues in the ligand-binding site, G-protein
contacting region and residues involved in the activation pathway. Such an organization may have
facilitated the rapid expansion of GPCRs through duplication and divergence, allowing them to
evolve independently and bind to diverse ligands due to removal of the constraint (i.e., between a
large number of ligand-binding residues and those involved in receptor activation). This model uni-
fies many previous important motifs and observations on GPCR activation in the literature (CWxP,
PIF, Na* pocket, NPxxY, DRY and hydrophobic lock) and is consistent with numerous experimental
findings.

We focused on the common activation pathway (i.e. the common part of activation mechanism
shared by all class A GPCRs and various intracellular effectors) in this study. Obviously, individual
class A receptor naturally has its intrinsic activation mechanism(s), as a result of the diversified
sequences, ligands and physiological functions. Indeed, receptor-specific activation pathways
(including mechanisms of orthosteric, positive or negative allosteric modulators, biased signaling/
selectivity of downstream effectors) have been revealed by both experimental studies including bio-
physical (such as X-ray, cryo-EM, NMR, FRET/BRET and DEER), biochemical and computational
approaches (such as evolutionary trace analysis and molecular dynamics simulations), especially for
the prototypical receptors such as rhodopsin, Bz-adrenergic and A, receptors. These studies dem-
onstrated the complexity and plasticity of signal transduction of GPCRs. The computational frame-
work we have developed may assist us in better understanding the mechanism of allosteric
modulation, G-protein selectivity and diverse activation processes via intermediate states as more
GPCR structures become available. While we interpret the changes as a linear set of events, future
studies aiming at understanding dynamics could provide further insights into how the common acti-
vation mechanism operates in individual receptors.

Given the common nature of this pathway, we envision that the knowledge obtained from this
study can not only be used to mechanistically interpret the effect of mutations in biological and
pathophysiological context but also to rationally introduce mutations in other receptors by promot-
ing/blocking residue and helix level movements that are essential for activation. Such protein engi-
neering approaches may enable us to make receptors in specific conformational states to accelerate
structure determination studies using X-ray crystallography or electron microscopy and functional
investigation in the future. The method developed here could also be readily adapted to map allo-
steric pathways and reveal mechanisms of action for other key biological systems such as kinases,
ion channels and transcription factors.
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Glossary

Transmembrane domains (TMD): the core domain exists in all GPCRs, and consists of seven-trans-
membrane helices (TM1-7) that are linked by three extracellular loops (ECL1-3) and three intracellu-
lar loops (ICL1-3).

GPCRdb numbering scheme: a structure-based numbering system for GPCRs (Isberg et al.,
2016; Isberg et al., 2015), an improved version of sequence-based Ballesteros—Weinstein number-
ing (Ballesteros and Weinstein, 1995) that considers structural distortions such as helical bulges or
constrictions. The most conserved residue in a helix n is designated nx50, while other residues on
the helix are numbered relative to this position.

Node: a point in a network at which lines intersect, branch or terminate. In this case, nodes repre-
sent amino acid residues.

Edge: a connection between the nodes in a network. In this case, an edge represents a residue-
residue contact.

Hub: a node with two or more edges in a network.

Constitutively activating mutation (CAM): a mutant that could increase the inherent basal activity
of the receptor by activating the G-protein-signaling cascade in the absence of agonist.

Constitutively inactivating mutation (CIM): a mutant completely abolishes receptor signalling.

GPCR structure data set

As of October 1, 2018, there are 234 released structures of 45 class A GPCRs with resolution better
than 3.8 A (Figure 1—source data 1), which covers 71% (203 out of 286 receptors, including 158
receptors that have no structures but share >50% sequence similarity in the TMD with the 45 struc-
ture-determined receptors) of class A GPCRs (Figure 1a). Based on the type of bound ligand and
effector, these structures could be classified into three states: inactive state (antagonist or inverse
agonist-bound, 142 structures from 38 receptors), active state (both agonist- and G protein/G pro-
tein mimetic-bound, 27 structures from eight receptors) and intermediate state (only agonist-bound,
65 structures from 15 receptors). In this study, we primarily focused on conformational comparison
between inactive- and active- state structures, while also investigating the intermediate state struc-
tures. In the structure data set, seven receptors have both inactive and active structures: rhodopsin
(bRho), B,-adrenergic receptor (B,AR), M2 muscarinic receptor (M2R), p-opioid receptor (LOR),
adenosine Apa receptor (AzaR), x-opioid receptor (k-OR) and adenosine A receptor (AqaR), the
active state structure of which was recently determined by cryo-EM. In addition, 32 receptors have
either inactive or active structures (Figure 1—source data 1).

Calculation of residue-residue contact score (RRCS)

We developed a much finer distance-based method (than coarse-grained Boolean descriptors such
as contact map and residues contact [Venkatakrishnan et al., 2016; Kayikci et al., 2018,
Eldridge et al., 1997, Verdonk et al., 2003; Wang et al., 2017, Adhikari and Cheng, 2016]),
namely residue-residue contact score (RRCS). For a pair of residues, RRCS is calculated by summing
up a plateau-linear-plateau form atomic contact score adopted from GPCR-ColNPocket (Ngo et al.,
2017, Kufareva et al., 2011, Kufareva and Abagyan, 2012; Kufareva et al., 2014a;
Kufareva et al., 2013; Kufareva et al., 2014b; Marsden and Abagyan, 2004) for each possible
inter-residue heavy atom pairs (Figure 2—figure supplement 1a). GPCR-ColNPocket is a modified
version of the hydrophobic term of ChemScore (Eldridge et al., 1997, Verdonk et al., 2003) that
has been successfully used to describe hydrophobic contribution to binding free energy between
ligand and protein. RRCS can describe the strength of residue-residue contact quantitatively in a
much more accurate manner than Boolean descriptors (Venkatakrishnan et al., 2016; Flock et al.,
2017). For example, Boolean descriptors do not capture side chain repacking if the backbone atoms
of the two residues are close to each other (e.g. translocation of Y”*5® away from residue at 2x43
upon GPCR activation) and local contacts involving adjacent residues (residues within four/six amino

E3><49

acids in protein sequence) (e.g., disengagement between D/ and R®*%%), while both cases can

be well reflected by the change of RRCS (Figure 2¢ and Figure 2—figure supplement 1b).
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All RRCS data can be found in Figure 2—source data 1. The computational details are described
as below:

1. For the residue pairs between adjacent residues that are within four amino acids in protein
sequence, only side chain heavy atom pairs were considered, atom pairs involving in backbone
atoms (Ca, C, O, N) were excluded, since the latter seldom change during GPCR activation.
For other residue pairs, all possible heavy atom pairs (including backbone atoms) were
included when calculating RRCS.

2. Atomic contact scores are solely based on interatomic distance, and they are treated equally
without weighting factors such as atom type or contact orientation. In principle, weighting of
atomic contact by atom type and/or orientation would improve residue-residue contact score.
However, parameterization of atom type or contact orientation is relatively arbitrary, subjective
and complicated, especially considering the lipid bilayer environment surrounding GPCRs. Our
preliminary study for 12 structures from six receptors (bRho, f2AR, M2R, LOR, A,AR and k-OR)
revealed that amino acids with hydrophobic side chains (one-letter code: A, V, |, L, M, P, F, Y,
W) contribute to the majority (~88%) of residue pairs. Meanwhile, ionic lock opening of well-
known motif DRY upon receptor activation can be adequately reflected by RRCS change
between D/E***? and R®*°°, These results suggest that interatomic distance-dependent resi-
due pair contact score may represent an acceptable approximation of actual (either hydropho-
bic or charge-charge) interaction energies (Ngo et al., 2017) and is accurate enough for
identifying conserved rearrangements of residue contacts upon receptor activation.

3. The quality of structures is extremely important for RRCS calculation. We adopted two criteria
to exclude unreliable structures and residues: (a) crystal structures whose resolution is >3.8 A.
Structures in this category are: 5DGY (7.70 A), 2137 (4.20 A), 2136 (4.10 A), 5TE5 (4.00 A),
4GBR (4.00 A), 5NJ6 (4.00 A), 5V54 (3.90 A), 2135 (3.80 A), 5D5B (3.80 A), 4XT3 (3.80 A); (b)
residues whose residue-based real-space R-value (RSR [Jones et al., 1991]) is greater than
0.35. RSR is measure of how well ‘observed’ and calculated electron densities agree for a resi-
due. RSR ranges from 0 (perfect match) to 1 (no match); RSR greater than 0.4 indicates a poor
fit (Smart et al., 2018). Here we adopted a stricter cut-off, 0.35. Among the 234 class A GPCR
structures, 156 have available RSR information (Kleywegt et al., 2004) (http://eds.bmc.uu.se),
with 8.8% residues have RSR >0.35 and they are omitted in our analysis. For the 35 residues
that constitute the common activation pathway, 255 out of 5460 RSR data points (~4.7%, lower
than 8.8% for all residues) were omitted for having RSR values > 0.35.

4. For structures with multiple chains, RRCS were the average over all chains. For residues with
multiple alternative conformations, RRCS was the sum of individual values multiplied by the
weighting factor: occupancy value extracted from PDB files. Small molecule/peptide ligand, or
intracellular binding partner (G protein or its mimetic) was treated as a single residue.

5. For the family-wide comparison of conformational changes upon activation, structurally equiva-
lent residues are numbered by GPCRdb numbering scheme (Isberg et al., 2016; Isberg et al.,
2015). Of the 35 residues in the common activation pathway, their GPCRdb numbering in all
structures is almost identical to the Ballesteros—Weinstein numbering (Ballesteros and Wein-
stein, 1995), the exceptions are residues at 6x37, 6x41 and 6x44 for five receptors: FFART,
P2Y4, P2Yq,, F2R and PAR2, which are all from the delta branch of class A family.

Identification of conserved rearrangements of residue contacts upon
activation
Using RRCS, structural information of TMD and helix eight in each structure can be decomposed
into 400 ~ 500 residue pairs with positive RRCS. ARRCS, defined as RRCS,ive — RRCSinactives reflects
the change of RRCS for a residue pair from inactive- to active- state (Figure 2b-d and Figure 2—fig-
ure supplement 1b). To identify residue pairs with conserved conformational rearrangements upon
activation across class A GPCRs, two rounds of selections (Figure 2d and Figure 2—source data 1)
were performed: (i) identification of conserved rearrangements of residue contacts upon activation
for six receptors (bRho, B2AR, M2R, LOR, AAR and k-OR), that is equivalent residue pairs show a
similar and substantial change in RRCS between the active and inactive state structure of each of the
six receptors (the same sign of ARRCS and |ARRCS| > 0.2 for all receptors) and (ii) family-wide RRCS
comparison between the 142 inactive and 27 active state structures to identify residues pairs of sta-
tistically significant different (p<0.001; two sample t-test) RRCS upon activation.

Round 1. Identification of conserved rearrangements of residue contacts. Six receptors with avail-
able inactive- and active- state structures were analyzed using ARRCS to identify residue pairs that
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share similar conformational changes. Twelve representative crystal structures (high-resolution, no
mutation or one mutation in TMD without affecting receptor signalling) were chosen in this stage:
six inactive state structures (PDB codes 1GZM for bRho, 2RH1 for B,AR, 3UON for M2R, 4DKL for
UOR, 3EML for AR and 4DJH for x-OR) and six active state structures (3PQR for bRho, 3SNé for
B2AR, 4AMQS for M2R, 5C1M for uOR, 5G53 for ApaR and 6B73 for k-OR) (Figure 2d, Figure 2—fig-
ure supplement 1c and Figure 2—source data 1). Each receptor has approximately 600 residues
pairs that have positive RRCS. Roughly one quarter are newly formed during receptor activation
(RRCSinactive = 0 and RRCS,.ive >0); another quarter lose their contacts upon receptor activation
(RRCSinactive >0 and RRCS,ctive = 0); and the remaining appear in both the inactive- or active- state
structures (RRCSnactive >0 and RRCS,ive >0), the contact rearrangement of which can only be
reflected by ARRCS, but not Boolean descriptors.

To identify residue pairs that share conserved rearrangements of residue contacts upon activa-
tion, two steps are performed to qualify residue pairs for the next round. Firstly, residue pairs with
same sign of ARRCS and |[ARRCS| > 0.2 for all six receptors were identified. There are 32 intra-recep-
tor residues pairs (1x49:7x50, 1x53:7x53, 1x53:7x54, 2x37:2x40, 2x42:4x45, 2x43:7x53,
2x45:4x50, 2x46:2x50, 2x50:3x39, 2x57:7x42, 3x40:6x48, 3x43:6x40, 3x43:6x41,
3%x43:7x49, 3x43:7x53, 3x46:6x37, 3x46:7x53, 3x49:3x50, 3x50:3x53, 3x50:6x37, 350:7x53,
3x51:5x57, 5x51:6x44, 5x58:6x40, 5x62:6x37, 6x40:7x49, 6x44:6x48, 7x50:7x55,
7x52:7x53, 7x53:8x50, 7x54:8x50 and 7x54:8x51) and five receptor-G protein/its mimetic resi-
due pairs (3x50:G protein, 3x53:G protein, 3x54:G protein, 5x61:G protein and 6x33:G protein)
that meet this criterion. Secondly, we also investigated residue pairs with ARRCS that are conserved
in five receptors (i.e., with one receptor as exception). Considering there is no Na* pocket for rho-
dopsin, three residue pairs (2x50:7x49, 6x44:7x45 and 6x48:7x45) around Na* pocket were ana-
lyzed for five receptors but not bRho. Additionally, three residue pairs have 0 (3x46:3x50,
5x55:6x41) or negative (7x45:7x49) ARRCS for k-OR but positive ARRCS for the other five recep-
tors. As for 3x46:3x50, nanobody-stabilized active structures (B,AR: 3P0G, 4LDO, 4LDL, 4LDE,
4QKX; and WOR: 5C1M) generally have lower contact scores (<0.4) compared with G-protein-bound
active-state structures (2.17 for 3SNé of B,AR, 2.57 for 5G53 of A,AR and 6.93 for 3PQR of bRho).
For these residue pairs, we added newly determined G;-bound active AR and 5-HT,g receptor and
found that they have positive ARRCS, like other five receptors (Figure 4—figure supplements 1 and
2). Thus, these three residue pairs (3x46:3x50, 5x55:6x41 and 7x45:7x49) were retained. Totally,
six residue pairs with conserved ARRCS in five receptors were rescued. Taken together, 38 intra-
receptor residue pairs and five receptor-G protein/its mimetic residue pairs were identified to have
conserved rearrangements of residue contacts upon activation.

Round 2. Family-wide conservation analysis of residue contact pattern. To investigate the conser-
vation of residue contact pattern for the 38 intra-receptor residue pairs across these functionally
diverse receptors, two-tailed unpaired t-test between inactive state (142 inactive structures from 38
receptors) and active state (27 active structures from eight receptors) groups were performed
(Figure 2d and Figure 2—source data 2). Thirty one residue pairs have significantly different RRCS
between inactive- and active-state (p<107>). As rhodopsin lacks the Na* pocket, all rhodopsin struc-
tures were neglected in the analysis of 3 residue pairs around the pocket (2x50:7x49, 6x44:7x45
and 6x48:7x45), which have good p value (<1073) for these non-rhodopsin class A GPCRs. Four res-
idue pairs were filtered out in this round due to their poor p value, that is there are no statistically
significant difference in RRCS between inactive and active states (p=0.01 for 2x37:2x40, 0.96 for
2x42:4x45, 0.02 for 2x45:4x50 and 0.014 for 2x57:7x42).

Finally, 34 intra-receptor residue pairs (Figure 2d, Figure 4—figure supplements 1 and 2) and
five receptor-G-protein residue pairs were identified with conserved rearrangements of residue con-
tacts upon activation, including all six residues pairs identified by the previous RC approaches
(Venkatakrishnan et al., 2016).

Sequence analysis of class A GPCRs

The alignment of 286 non-olfactory, class A human GPCRs were obtained from the GPCRdb
(Isberg et al., 2016; Isberg et al., 2015). The distribution of sequence similarity/identity across class
A GPCRs were extracted from the sequence similarity/identity matrix for different structural regions
using ‘Similarity Matrix’ tool in GPCRdb. The sequence conservation score (Figure 1—figure supple-
ment 1) for all residue positions across 286 non-olfactory class A GPCRs were evaluated by the
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Protein Residue Conservation Prediction (Capra and Singh, 2007) tool with scoring method 'Prop-
erty Entropy’ (Mirny and Shakhnovich, 1999). Sequence conservation analysis (Figure 7—figure
supplement 2) were visualized by WebLogo3 (Crooks et al., 2004) with sequence alignment files
from GPCRdb as the input.

CAM/CIM in class A GPCRs

For the 14 hub residues in the common activation pathway, we collected the functional mutation
data from the literature and GPCRdb (Isberg et al., 2016; Isberg et al., 2015). Mutations with
‘more than two fold-increase in basal activity/constitutively active’ or ‘abolished effect’ compared to
the wild-type receptor were selected. Together, 272 mutations from 41 class A GPCRs on the 14
hub residues were collected, including the mutations we designed and validated in this study (Fig-
ure 7—source data 1).

Disease-associated mutations in class A GPCRs

To reveal the relationship between disease-associated mutations and related phenotypes of different
transmembrane regions (Vassart and Costagliola, 2011, Thompson et al., 2014; Tao, 2006;
Tao, 2008), we collected disease-associated mutation information for all 286 non-olfactory class A
GPCRs by database integration and literature investigation. Four commonly used databases (UniProt
[The UniProt Consortium, 2017], OMIM [Amberger et al., 2011], Ensembl [Zerbino et al., 2018]
and GPCRdb [Isberg et al., 2016; Isberg et al., 2015]) were first filtered by disease mutations and
then merged. Totally 435 disease mutations from 61 class A GPCRs were collected (Figure 1—
source data 2).

Pathway-guided CAM/CIM design in A;AR

We designed mutations for a prototypical receptor A aR, guided by the common activation path-
way, aiming to get constitutively active/inactive receptor. Mutations that can either stabilize active
or inactive state structures of A aR or promote/block conformational changes upon activation were
designed (Figure 6c and Figure 6—figure supplement 1) and tested by a functional cAMP accumu-
lation assay. The inactive state structure 3EML and active state structure 5G53 were used. In silico
mutagenesis was performed by Residue Scanning module in BioLuminate (Beard et al., 2013). Side-
chain prediction with backbone sampling and a cut-off value of 6 A were applied during the scan-
ning. AStability is the change of receptor stability when introducing a mutation. We filtered the
mutations by one of the following criteria: (i) AStability in active and inactive structures have opposite
signs; or (ii) AStability in active and inactive structures have the same sign, but favorable interactions
such as hydrogen bonds, salt bridge or pi-pi stacking exist in only one structure that can promote/
block conformational changes upon activation. Totally, 15 and 20 mutations were predicted to be
CAMs and CIMs, respectively. (Figure 6c and Figure 6—figure supplement 1).

cAMP accumulation assays

()AzaR. The desired mutations were introduced into amino-terminally Flag tag-labeled human A;AR
in the pcDNA3.1 vector (Invitrogen, Carlsbad, CA). This construct displayed equivalent pharmaco-
logical features to that of untagged human receptor based on radioligand binding and cAMP assays
(Massink et al., 2015). The mutants were constructed by PCR-based site-directed mutagenesis
(Muta-directTM kit, Beijing SBS Genetech Co., Ltd., China). Sequences of receptor clones were con-
firmed by DNA sequencing. HEK-293 cells (obtained from ATCC and confirmed as negative for
mycoplasma contamination) were seeded onto 6-well cell culture plates. After overnight culture, the
cells were transiently transfected with WT or mutant DNA using Lipofectamine 2000 transfection
reagent (Invitrogen). After 24 hr, the transfected cells were seeded onto 384-well plates (3,000 cells
per well). cAMP accumulation was measured using the LANCE cAMP kit (PerkinElmer, Boston, MA)
according to the manufacturer’s instructions. Briefly, transfected cells were incubated for 40 min in
assay buffer (DMEM, 1 mM 3-isobutyl-1-methylxanthine) with different concentrations of agonist
[CGS21680 (179 pM to 50 uM)]. The reactions were stopped by addition of lysis buffer containing
LANCE reagents. Plates were then incubated for 60 min at room temperature and time-resolved
FRET signals were measured at 625 nm and 665 nm by an EnVision multilabel plate reader (Perki-
nElmer). The cAMP response is depicted relative to the maximal response of CGS21680 (100%) at
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the WT AzaR. (i) 5-HT g receptor. cAMP accumulation was measured using LANCE cAMP kit (Perki-
nElmer). Briefly, HEK293T (obtained from and certified by the Cell Bank at the Chinese Academy of
Science and confirmed as negative for mycoplasma contamination) cells were transfected with plas-
mids bearing WT or mutant 5-HTg receptor. Cells were collected 24 hr post-transfection and used
to seed white poly-D-lysine coated 384-well plates at a density of 2,000 cells per well. Cells were
incubated for a further 24 hr at 37°C. Cells were then incubated for 30 min in assay buffer (HBSS, 5
mM HEPES, 0.1% BSA, 0.5 mM 3-isobutyl-1-methylxanthine) with constant Forsklin (800 nM) and dif-
ferent concentrations of dihydroergotamine (DHE, 0.64 pM to 50 nM) at 37°C. The reactions were
stopped by addition of lysis buffer containing LANCE reagents. Plates were then incubated for 60
min at room temperature, and time-resolved FRET signals were measured after excitation at 620 nm
and 650 nm by EnVision (PerkinElmer).

CGS21680 binding assay

CGS21680 (a specific adenosine Aza subtype receptor agonist) binding was analyzed using plasma
membranes prepared from HEK-293 cells transiently expressing WT and mutant AzaRs. Approxi-
mately 1.2x 108 transfected HEK-293 cells were harvested, suspended in 10 ml ice-cold membrane
buffer (50 mM Tris-HCI, pH 7.4) and centrifuged for 5 min at 700 g. The resulting pellet was resus-
pended in ice-cold membrane buffer, homogenized by Dounce Homogenizer (Wheaton, Millville,
NJ) and centrifuged for 20 min at 50,000 g. The pellet was resuspended, homogenized, centrifuged
again and the precipitate containing the plasma membranes was then suspended in the membrane
buffer containing protease inhibitor (Sigma-Aldrich, St. Louis, MO) and stored at —80°C. Protein con-
centration was determined using a protein BCA assay kit (Pierce Biotechnology, Pittsburgh, PA). For
homogeneous binding, cell membrane homogenates (10 Lg protein per well) were incubated in
membrane binding buffer (50 mM Tris-HCI, 10 mM NaCl, 0.1 mM EDTA, pH 7.4) with constant con-
centration of [2H]-CGS21680 (1 nM, PerkinElmer) and serial dilutions of unlabeled CGS21680 (0.26
nM to 100 uM) at room temperature for 3 hr. Nonspecific binding was determined in the presence
of 100 uM CGS21680. Following incubation, the samples were filtered rapidly in vacuum through
glass fiber filter plates (PerkinElmer). After soaking and rinsing four times with ice-cold PBS, the fil-
ters were dried and counted for radioactivity in a MicroBeta2 scintillation counter (PerkinElmer).

Surface expression of A;ARs

HEK293 cells were seeded into six-well plate and incubated overnight. After transient transfection
with WT or mutant plasmids for 24 hr, the cells were collected and blocked with 5% BSA in PBS at
room temperature for 15 min and incubated with primary anti-Flag antibody (1:100, Sigma-Aldrich)
at room temperature for 1 hr. The cells were then washed three times with PBS containing 1% BSA
followed by 1 hr incubation with anti-rabbit Alexa-488-conjugated secondary antibody (1:1000, Cell
Signaling Technology, Danvers, MA) at 4°C in the dark. After three washes, the cells were resus-
pended in 200 ul of PBS containing 1% BSA for detection in a NovoCyte flow cytometer (ACEA Bio-
sciences, San Diego, CA) utilizing laser excitation and emission wavelengths of 488 nm and 519 nm,
respectively. For each assay point, approximately 15,000 cellular events were collected, and the total
fluorescence intensity of positive expression cell population was calculated.

Plasmid constructs of 5-HT; receptor

A plasmid encoding the 5-HT; receptor was obtained from PRESTO-Tango Kit produced by Addg-
ene (Watertown, MA). 5-HT; coding sequence was amplified and ligated into the pRluc8-N1 vector
to produce WT 5-HT7-Rluc8. Mutant 5-HT,-Rluc8 receptors were generated from this plasmid using
the Quikchange mutagenesis kit (Agilent Technologies, Santa Clara, CA). A plasmid encoding the
Nluc-EPAC-VV cAMP sensor was kindly provided by Kirill Martemyanov (The Scripps Research Insti-
tute, Jupiter, FL) and has been described previously. (Masuho et al., 2015) All plasmid constructs
were verified by DNA sequencing.

Cell transfection

HEK293 cells cultured in 6-well plates were transiently transfected with the above plasmids (3.0 ug
DNA) in growth medium using linear polyethyleneimine MAX (Polysciences, Warrington, PA) at an
N/P ratio of 20 and used for experimentation 12-48 hr thereafter.
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BRET cAMP and trafficking assays

HEK 293 cells transiently transfected with WT or mutant 5-HT; receptor plasmids plus either the
Nluc-EPAC-VV cAMP sensor (at a 15:1 ratio) or Venus-kras (at a 1:8 ratio) (Tian et al., 2017) were
incubated for 24 hr. After washing twice with PBS, they were transferred to opaque black 96-well
plates. Steady-state BRET measurements were made using a Mithras LB940 photon-counting plate
reader (Berthold Technologies GmbH, Bad Wildbad, Germany). Furimazine (NanoGlo; 1:1000, Prom-
ega) for cAMP measurement or coelenterazine h (5 uM; Nanolight, Pinetop, AZ) for trafficking assay
was added followed by BRET signal detection and calculation at an emission intensity of 520-545
nm divided by that of 475-495 nm.

Data and materials availability

The open source code is available at GitHub (Zhou, 2019; copy archived at https://github.com/eli-
fesciences-publications/RRCS). For availability of codes that were developed in-house, please con-
tacts the corresponding authors. All data are available in the main text or the source data.
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