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Abstract Class A G-protein-coupled receptors (GPCRs) influence virtually every aspect of human

physiology. Understanding receptor activation mechanism is critical for discovering novel

therapeutics since about one-third of all marketed drugs target members of this family. GPCR

activation is an allosteric process that couples agonist binding to G-protein recruitment, with the

hallmark outward movement of transmembrane helix 6 (TM6). However, what leads to TM6

movement and the key residue level changes of this movement remain less well understood. Here,

we report a framework to quantify conformational changes. By analyzing the conformational

changes in 234 structures from 45 class A GPCRs, we discovered a common GPCR activation

pathway comprising of 34 residue pairs and 35 residues. The pathway unifies previous findings into

a common activation mechanism and strings together the scattered key motifs such as CWxP, DRY,

Na+ pocket, NPxxY and PIF, thereby directly linking the bottom of ligand-binding pocket with

G-protein coupling region. Site-directed mutagenesis experiments support this proposition and

reveal that rational mutations of residues in this pathway can be used to obtain receptors that are

constitutively active or inactive. The common activation pathway provides the mechanistic

interpretation of constitutively activating, inactivating and disease mutations. As a module

responsible for activation, the common pathway allows for decoupling of the evolution of the

ligand binding site and G-protein-binding region. Such an architecture might have facilitated

GPCRs to emerge as a highly successful family of proteins for signal transduction in nature.

Introduction
As the largest and most diverse group of membrane receptors in eukaryotes, GPCRs mediate a

wide variety of physiological functions (Lagerström and Schiöth, 2008; Rosenbaum et al., 2009;

Katritch et al., 2012; Venkatakrishnan et al., 2013; Katritch et al., 2013), including vision, olfac-

tion, taste, neurotransmission, endocrine and immune responses via more than 800 family members,

and are involved in many diseases (Rana et al., 2001; Smit et al., 2007; Vassart and Costagliola,
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2011; Thompson et al., 2014; Hauser et al., 2018). Therefore, GPCRs are important drug targets.

There are 475 marketed drugs (~34% of all FDA-approved therapeutic agent agents) targeting 108

members of the GPCR superfamily (Hauser et al., 2018; Hauser et al., 2017; Allen and Roth,

2011). Class A is the largest and most diverse GPCR subfamily in humans (Kolakowski, 1994;

Bockaert and Pin, 1999; Fredriksson et al., 2003; Isberg et al., 2016), including 388 olfactory

(Krautwurst et al., 1998; Spehr and Munger, 2009) and 286 non-olfactory receptors (Pándy-

Szekeres et al., 2018; Munk et al., 2019) (Figure 1a). They share a seven-transmembrane (7TM)

helices domain, with ligand binding pocket and G-protein-binding region located in the extracellular

and intracellular ends of the helix bundle. Responding to a wide variety of extracellular signals

ranged from small molecules to peptides even proteins, the extracellular facing ligand-binding pock-

ets have evolved to be highly diverse in both shape and sequences (Venkatakrishnan et al., 2013;

Ngo et al., 2017; Vass et al., 2018). Similarly, the G-protein-binding regions are also quite diverse

in sequences, modulating the activity of different signalling pathways by recruiting dozens of hetero-

trimeric G proteins (Rasmussen et al., 2011a; Du et al., 2019; Liu et al., 2019a), arrestins

(Gainetdinov et al., 2004; Zhou et al., 2017; Yang et al., 2018; Latorraca et al., 2018), GPCR kin-

ases (Komolov et al., 2017) in a ligand-specific manner. Residues that connect the ligand-binding

pocket to the G-protein-coupling region are significantly more conserved (Ballesteros and Wein-

stein, 1995; Isberg et al., 2015), with evolutionarily conserved sequence motifs (CWxP [Eddy et al.,

2018; Filipek, 2019; Wescott et al., 2016; Tehan et al., 2014; Holst et al., 2010; Nygaard et al.,

2009; Hofmann et al., 2009; Trzaskowski et al., 2012], PIF [Ballesteros and Weinstein, 1995;

Ishchenko et al., 2017; Schönegge et al., 2017; Kato et al., 2019] Na+ pocket [Eddy et al., 2018;

Filipek, 2019; Liu et al., 2012; Yuan et al., 2013; Fenalti et al., 2014; Katritch et al., 2014;

Figure 1. An increasing number of reported class A GPCR structures facilitates studies on common activation mechanism. (a) Distribution of structures

in different states in the non-olfactory class A GPCR tree as of October 1, 2018. (b) Common GPCR activation mechanism and the residue-level triggers

are not well understood.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. The released class A GPCR structures (as of October 1, 2018).

Source data 2. Disease mutations occurred in class A GPCRs.

Figure supplement 1. The pattern of conservation of residues and the map of number of disease-associated mutations in human class A GPCRs.
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Vickery et al., 2018; White et al., 2018; Ye et al., 2018; Chen et al., 2019], NPxxY

[Rasmussen et al., 2011a; Filipek, 2019; Wescott et al., 2016; Nygaard et al., 2009;

Hofmann et al., 2009; Trzaskowski et al., 2012; Schönegge et al., 2017; Chen et al., 2019;

Venkatakrishnan et al., 2016] and DRY [Schönegge et al., 2017; Alhadeff et al., 2018;

Jacobson et al., 2014; Feng et al., 2017; Roth et al., 2017; Shihoya et al., 2017; Yuan et al.,

2014]) scattered in the intracellular half of the 7TM domain (Figure 1—figure supplement 1).

GPCR activation is agonist binding induced G-protein recruitment (Eddy et al., 2018;

Christopoulos and Kenakin, 2002; Manglik et al., 2015; Staus et al., 2016; DeVree et al., 2016).

It is an allosteric process (Gilchrist, 2007; May et al., 2007; Christopoulos, 2014; Latorraca et al.,

2017), transducing various external stimuli into cellular responses. Understanding the activation

mechanism of GPCR is of paramount importance in pharmacology research and drug discovery. Tre-

mendous previous efforts, involving sequence analysis, structural, biophysical, biochemical and

computational approaches such as X-ray (Popov et al., 2018; Roth et al., 2008; Warne et al.,

2009; Carpenter et al., 2016; Nehmé et al., 2017; Tsai et al., 2018; Rasmussen et al., 2011b;

Pardon et al., 2014; Rosenbaum et al., 2007; Kobilka and Schertler, 2008; Cherezov et al., 2007;

Ghosh et al., 2015; Cherezov et al., 2004; Caffrey and Cherezov, 2009; Liu et al., 2013;

Weierstall et al., 2014; Stauch and Cherezov, 2018; Zhang et al., 2015), NMR (Ye et al., 2018;

Chen et al., 2019; Nygaard et al., 2013; Lamichhane et al., 2015; Isogai et al., 2016;

Sounier et al., 2015; Ye et al., 2016; Shimada et al., 2019), Cryo-EM (Liang et al., 2017;

Zhang et al., 2017; Cheng, 2018; Renaud et al., 2018), labeling biosensors (Irannejad et al., 2013;

Tian et al., 2017), FRET (Gregorio et al., 2017; Halls and Canals, 2018; Sandhu et al., 2019),

BRET (Lan et al., 2012; Lee et al., 2016; Okashah et al., 2019), DEER (Wingler et al., 2019;

Van Eps et al., 2018; Dror et al., 2015), molecular dynamic simulations (Yuan et al., 2013;

Dror et al., 2015; Dror et al., 2011a; Dror et al., 2011b; Dror et al., 2013; Miao et al., 2013;

Bhattacharya and Vaidehi, 2014; Kohlhoff et al., 2014; Ciancetta et al., 2015; Alhadeff et al.,

2018), evolutionary tracing (Madabushi et al., 2004; Schöneberg et al., 2007; Rodriguez et al.,

2010), molecular docking (Kufareva et al., 2011; Jacobson et al., 2014; Kooistra et al., 2016;

Miao et al., 2016; Feng et al., 2017; Roth et al., 2017; Lyu et al., 2019; Cooke et al., 2015) and

mutagenesis (Schönegge et al., 2017; Sung et al., 2016; Massink et al., 2015; Ragnarsson et al.,

2019; Hulme, 2013) have been made to study the allosteric nature of GPCRs including but not lim-

ited to receptor activation (Wescott et al., 2016; Tehan et al., 2014; Trzaskowski et al., 2012;

Venkatakrishnan et al., 2016; Isom and Dohlman, 2015; Okada et al., 2001; Hunyady et al.,

2003; Dalton et al., 2015; Lans et al., 2015), G protein activation (Trzaskowski et al., 2012;

Flock et al., 2017; Flock et al., 2015; Furness et al., 2016; Glukhova et al., 2018; Ilyaskina et al.,

2018; Inoue et al., 2019; Weis and Kobilka, 2018), biased agonism (McCorvy et al., 2018;

Onaran et al., 2014; Schmid et al., 2017; Smith et al., 2018; Tan et al., 2018; Whalen et al.,

2011; Wootten et al., 2018; Wootten et al., 2016; Masureel et al., 2018), ligand efficiency

(Gregorio et al., 2017; Furness et al., 2016; Livingston et al., 2018; Solt et al., 2017; Yao et al.,

2009), allosteric modulators (Thal et al., 2018; Kruse et al., 2013; Leach et al., 2007; Liu et al.,

2019b; Lu and Zhang, 2019; Robertson et al., 2018; Shao et al., 2019; Wu et al., 2019;

Zheng et al., 2016; Ortiz Zacarı́as et al., 2018; Jaeger et al., 2019; Hollingsworth et al., 2019;

Liu et al., 2017; Chaturvedi et al., 2018; Oswald et al., 2016), and inverse agonism

(Chaturvedi et al., 2018; Oswald et al., 2016; Hori et al., 2018; Nagiri et al., 2019; Peng et al.,

2018; Shihoya et al., 2017). Starting from the first structure of a GPCR-G protein complex (b2AR-

Gs) (Rasmussen et al., 2011a), the rapidly growing structures of receptor-G-protein complex have

provided excellent opportunity to better understand receptor conformation changes upon activa-

tion. Meanwhile, mutagenesis studies on different receptors also identified functional roles of key

residues in receptor activation, one good example is CXCR4 (Wescott et al., 2016), where a large-

scale mutagenesis study covering all 352 residues of the receptor identified 41 amino acids that are

required for signalling induced by agonist CXCL12. Notably, family-wide analysis on GPCR activation

with the concept of residue contacts (Venkatakrishnan et al., 2013; Flock et al., 2017;

Kayikci et al., 2018) have revealed the converged activation pathway near the G-protein-coupling

region (Venkatakrishnan et al., 2016) and selectivity determinants of GPCR–G-protein binding

(Flock et al., 2017). While these studies have provided key insights into GPCR activation mechanism

for individual receptors or specific motifs, a family-wide common activation mechanism that directly

connect ligand-binding pocket and G-protein-coupling region has yet to be discovered. Although it

Zhou et al. eLife 2019;8:e50279. DOI: https://doi.org/10.7554/eLife.50279 3 of 31

Research article Computational and Systems Biology Structural Biology and Molecular Biophysics

https://doi.org/10.7554/eLife.50279


is well established that outward movement of transmembrane helix 6 (TM6) upon ligand binding is a

common feature of receptor activation, the residue level changes that trigger the movement of TM6

remain less well understood (Figure 1b).

Receptor activation requires global reorganization of residue contacts as well as water-mediated

interactions (Yuan et al., 2014; Yuan et al., 2016; Venkatakrishnan et al., 2019). Since prior studies

primarily investigated conformational changes through visual inspection (Tehan et al., 2014;

Trzaskowski et al., 2012) or through the presence or absence of non-covalent contacts between

residues (Venkatakrishnan et al., 2016; Flock et al., 2017), we reasoned that one could gain com-

prehensive knowledge about mechanism of receptor activation by developing approaches that can

capture not just the presence or absence of a contact but also subtle, and potentially important

alterations in conformations upon receptor activation.

Results

A residue-residue contact score-based framework to characterize GPCR
conformational changes
To address this, we developed an approach to rigorously quantify residue contacts in proteins struc-

tures and infer statistically significant conformational changes. We first defined a residue-residue

contact score (RRCS) which is an atomic distance-based calculation that quantifies the strength of

contact between residue pairs (Ngo et al., 2017) by summing up all possible inter-residue heavy

atom pairs (Figure 2a and Figure 2—figure supplement 1a). We then defined DRRCS, which is the

difference in RRCS of a residue pair between any two conformational states of a receptor that quan-

titatively describes the rearrangements of residue contacts (Figure 2b and Figure 2—figure supple-

ment 1b). While RRCS can be 0 (no contact) or higher (stronger contact), DRRCS can be negative

(loss in strength of residue contact), positive (gain in strength of residue contact) or 0 (no change in

strength of residue contact). To capture the entirety of conformational changes in receptor structure

upon activation, we computed the DRRCS between the active and inactive states of a receptor and

defined two types of conformational changes (Figure 2c): (i) switching contacts: these are contacts

that are present in the inactive state but lost in the active state (or vicw versa) such as loss of intra-

helical contacts between D/E3�49 (GPCRdb numbering [Isberg et al., 2016]) and R3�50, and gain of

inter-helical hydrophobic contacts between residues at 3�40 and 6�48 upon receptor activation;

and (ii) repacking contacts: these are contacts that result in an increase or decrease in residue pack-

ing such as the decreased packing of intra-helical side-chain contacts between W6�48 and F6�44, and

the increase in inter-helical residue packing due to the translocation of N7�49 toward D2�50 upon

receptor activation. In this manner, we quantified the global, local, major and subtle conformational

changes in a systematic way (i.e. inter-helical and intra-helical, switching and repacking contacts).

We then analyzed 234 structures of 45 class A GPCRs that were grouped into three categories

(Figure 1a): (i) antagonist- or inverse agonist-bound (inactive; 142 structures from 38 receptors); (ii)

both agonist- and G protein/G protein mimetic-bound (fully active; 27 structures from eight recep-

tors); and (iii) agonist-bound (intermediate; 65 structures from 15 receptors). Among them, six recep-

tors [rhodopsin (bRho) (Li et al., 2004; Choe et al., 2011), b2-adrenergic receptor (b2AR)

(Rasmussen et al., 2011a; Cherezov et al., 2007), M2 muscarinic receptor (M2R) (Kruse et al.,

2013; Haga et al., 2012), m-opioid receptor (mOR) (Manglik et al., 2012; Huang et al., 2015), aden-

osine A2A receptor (A2AR) (Carpenter et al., 2016; Jaakola et al., 2008) and k-opioid receptor (k-

OR) (Wu et al., 2012; Che et al., 2018)] have both inactive- and active-state crystal structures avail-

able. Given that DRRCS can capture major and subtle conformational changes, we computed RRCS

for all structures and DRRCS for the six pairs of receptors and investigated the existence of a com-

mon activation pathway (i.e. a common set of residue contact changes) across class A GPCRs. Two

criteria (Figure 2d; further details in Materials and methods) were applied to identify conserved rear-

rangements of residue contacts: (i) equivalent residue pairs show a similar and substantial change in

RRCS between the active and inactive state structures of each of the six receptors (i.e. the same sign

of DRRCS and |DRRCS| > cut-off for all receptors) and (ii) family-wide comparison of the RRCS for the

142 inactive and 27 active state structures shows a statistically significant difference (p<0.001; two

sample t-test). This allowed us to reliably capture both the major rearrangements as well as subtle

but conserved conformational changes at the level of individual residues in diverse GPCRs in a
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Figure 2. Understanding GPCR activation mechanism by RRCS and DRRCS. (a) Comparison of residue contact (RC) (Venkatakrishnan et al., 2016) and

residue residue contact score (RRCS) calculations. RRCS can describe the strength of residue-residue contact quantitatively in a much more accurate

manner than the Boolean descriptor RC. (b) RRCS and DRRCS calculation for a pair of active and inactive structures can capture receptor

Figure 2 continued on next page
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statistically robust and significant manner. Consistent with this, a comparison with earlier studies

revealed that the RRCS based approach is able to capture a larger number of conserved large-scale

and subtle changes in residues contacts (Figure 2d) that would have been missed by visual inspec-

tion or residue contact presence/absence criteria alone (see Materials and methods for conceptual

advance of this approach and detailed comparison).

Discovery of a common and conserved receptor activation pathway
Remarkably, for the first time, our analysis of the structures allowed the discovery of a common and

conserved activation pathway that directly links ligand-binding pocket and G protein-coupling

regions in class A GPCRs (Figure 3). The pathway is comprised of 34 residue pairs (formed by 35 res-

idues) with conserved rearrangement of residue contacts upon activation (Figure 2d), connecting

several well-known but structurally and spatially disconnected motifs (CWxP, PIF, Na+ pocket, NPxxY

and DRY) all the way from the extracellular side (where the ligand binds) to the intracellular side

(where the G-protein binds). Inspection of the rewired contacts as a DRRCS network reveals that the

conserved receptor activation pathway is of modular nature and involves conformational changes in

four layers. In layer 1, there is a conserved signal initiation step involving changes in residue contacts

at the bottom of the ligand-binding pocket and Na+ pocket. In layer 2, critical hydrophobic contacts

are broken (i.e., opening of the hydrophobic lock). In layer 3, microswitch residues (6�37, Y7�53) are

rewired and in layer 4, the residue R3�50 and G protein contacting positions are rewired, making

them competent to bind to G protein on the cytosolic side (Figure 3). Strikingly, recently released

cryo-EM structures of four receptors (5-HT1B, rhodopsin, A1R and mOR) in complex with Gi/

o(Glukhova et al., 2018; Garcı́a-Nafrı́a et al., 2018; Kang et al., 2018; Koehl et al., 2018; Draper-

Joyce et al., 2018; Tsai et al., 2018) also support the conservation of contacts involving these 34

residue pairs (Figure 4, Figure 4—figure supplements 1 and 2). These observations highlight the

conserved and common nature of a previously undescribed activation pathway linking ligand binding

to G-protein coupling, regardless of the subtypes of intracellular effectors (i.e., Gs

(Rasmussen et al., 2011a; Carpenter et al., 2016), Gi/o(Glukhova et al., 2018; Garcı́a-Nafrı́a et al.,

2018; Kang et al., 2018; Koehl et al., 2018; Draper-Joyce et al., 2018; Tsai et al., 2018), arrestin

(Zhou et al., 2017; Kang et al., 2015) or G-protein mimetic nanobody/peptide (Rasmussen et al.,

2011b; Kruse et al., 2013; Choe et al., 2011; Huang et al., 2015; Che et al., 2018), Figure 4a).

Collectively, these findings illustrate how a combination of intra-helical and inter-helical switching

contacts as well as repacking contacts underlies the common activation mechanism of GPCRs.

Molecular insights into key steps of the common activation pathway
Receptor activation is triggered by ligand binding and is characterised by movements of different

transmembrane helices. How does ligand-induced receptor activation connect the different and

highly conserved motifs, rewire residue contacts and result in the observed changes in transmem-

brane helices? To this end, we analyzed the common activation pathway in detail and mapped,

where possible, how they influence helix packing, rotation and movement (Figure 3). A qualitative

analysis suggests the presence of four layers of residues in the pathway linking the ligand binding

residues to the G-protein-binding region.

Layer 1: We did not see a single ligand-residue contact that exhibits conserved rearrangement,

which accurately reflects the diverse repertoire of ligands that bind GPCRs (Katritch et al., 2012;

Venkatakrishnan et al., 2013; Ngo et al., 2017) (Figure 3—figure supplement 1). Instead, as a first

Figure 2 continued

conformational change upon activation. (c) Two types of conformational changes (i.e. switching and repacking contacts) can be defined by RRCS to

quantify the global, local, major and subtle conformational changes in a systematic way. (d) Two criteria of identifying conserved residue

rearrangements upon receptor activation by RRCS and DRRCS. Thirty-four residues pairs were identified based on the criteria (see

Materials and methods, Figure 2—source datas 1 and 2 for details), only six of them were discovered before (Venkatakrishnan et al., 2016).

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Calculated RRCS of 34 residue pairs constituting the common activation pathway for released class A GPCR structures.

Source data 2. Thirty-four residue pairs show conserved rearrangements of residue contacts upon activation.

Figure supplement 1. Calculation of RRCS and DRRCS.
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common step, extracellular binding of diverse agonists converges to trigger an identical alteration

of the transmission switch (3�40, 5�51, 6�44 and 6�48) and Na+ pocket (2�50, 3�39, 7�45 and

7�49). Specifically, the repacking of an intra-helical contact between residues at 6�48 and 6�44,

together with the switching contacts of residue at 3�40 toward 6�48 and residue at 5�51 toward

6�44, contract the TM3-5-6 interface in this layer. This reorganization initializes the rotation of the

cytoplasmic end of TM6. The collapse of Na+ pocket leads to a denser repacking of the four residues

(2�50, 3�39, 7�45 and 7�49), initiating the movement of TM7 toward TM3. Remarkably, a recent

NMR study on A2AR (Eddy et al., 2018) demonstrated the strong coupling between allosteric switch

D2�50 and toggle switch W6�48, which is consistent with the present observation.

Layer 2: In parallel with these movements, two residues (6�40 and 6�41) switch their contacts

with residue at 3�43, and form new contacts instead with residues at 5�58 and 5�55, respectively.

Residues at 3�43, 6�40 and 6�41 are mainly composed of hydrophobic amino acids and referred

as hydrophobic lock (Wescott et al., 2016; Tehan et al., 2014; Han et al., 2012; Martı́-

Solano et al., 2014). Its opening loosens the packing of TM3-TM6 and facilitates the outward move-

ment of the cytoplasmic end of TM6, which is necessary for receptor activation. Additionally, N7�49

Figure 3. Common activation pathway of class A GPCRs. Node represents structurally equivalent residue with the GPCRdb numbering (Isberg et al.,

2016) while the width of edge is proportional to the average DRRCS among six receptors (bRho, b2AR, M2R, mOR, A2AR and k-OR). Four layers were

qualitatively defined based on the topology of the pathway and their roles in activation: signal initiation (layer 1), signal propagation (layer 2),

microswitches rewiring (layer 3) and G-protein coupling (layer 4).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Rearrangements of ligand-residue contacts in ligand-binding pocket are not conserved, reflecting diverse ligand recognition

modes.

Zhou et al. eLife 2019;8:e50279. DOI: https://doi.org/10.7554/eLife.50279 7 of 31

Research article Computational and Systems Biology Structural Biology and Molecular Biophysics

https://doi.org/10.7554/eLife.50279


develops contacts with residue at 3�43 from nothing, facilitating the movement of TM7 toward

TM3.

Layer 3: Upon receptor activation, Y7�53 loses its inter-helical contacts (Venkatakrishnan et al.,

2016) with residues at 1�53 and 8�50, and forms new contacts with residues at 3�43, 3�46 and

R3�50, which were closely packed with residues in TM6. Thus, the switching of contacts by Y7�53

strengthens the packing of TM3-TM7, while the packing of TM3-TM6 is further loosened with the

outward movement of TM6.

Layer 4: Finally, the restrains on R3�50, including more conserved, local intra-helical contacts with

D(E)3�49 and less conserved ionic lock with D(E)6�30, are eliminated and R3�50 is released. Notably,

the switching contacts between R3�50 and residue at 6�37 are essential for the release of R3�50,

which breaks the remaining contacts between TM3 and TM6 in the cytoplasmic end and drives the

outward movement of TM6. The rewired contacts of R3�50 and other G-protein contacting positions

(3�53, 3�54, 5�61 and 6�33) make the receptor competent to bind to G protein on the cytosolic

side.

Together, these findings demonstrate that the intra-helical/inter-helical and switching/repacking

contacts between residues is not only critical to reveal the continuous and modular nature of the

activation pathway, but also to link residue-level changes to transmembrane helix-level changes in

the receptor.

Figure 4. The common activation mechanism is the shared portion of various downstream pathways of different class A GPCRs. (a) Intracellular binding

partners used in the active state structures. (b) Comparison of RRCS for active (green) and inactive (orange) states of eight receptors with different

intracellular binding partners, including four recently solved cryo-EM structures of Gi/o-bound receptors (5-HT1B receptor, rhodopsin, A1R and mOR)

(Tsai et al., 2018; Garcı́a-Nafrı́a et al., 2018; Kang et al., 2018; Koehl et al., 2018; Draper-Joyce et al., 2018) whose resolutions were low

(usually �3.8 Å for the GPCR part). Nevertheless, almost all conserved residue rearrangements in the pathway can be observed from them. Three of 34

residues pairs were shown here, see Figure 4—figure supplements 1 and 2 for the remaining 31 residue pairs.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. The switching conformation change is conserved upon receptor activation.

Figure supplement 2. The repacking conformation change is conserved upon receptor activation.
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Common activation pathway induced changes in TM helix packing
To capture the patterns in the global movements of transmembrane helices, all inter-helical residues

pairs in the common activation pathway were used to describe the inter-helical contacts between

the cytoplasmic end of TM3 and TM6 as well as TM3 and TM7 (Figure 5a). Analysis of the RRCSTM3-

TM7 (X-axis) and RRCSTM3-TM6 (Y-axis) for each of the 234 class A GPCR structures revealed distinct

compact clusters of inactive and active states. Surprisingly, the inactive state has zero or close to

zero RRCSTM3-TM7 regardless of the wide distribution of RRCSTM3-TM6. In contrast, the active state

has a high RRCSTM3-TM7 and strictly zero RRCSTM3-TM6. Thus, receptor activation from inactive to

active state occurs as a harmonious process of inter-helical contact changes: elimination of TM3-TM6

contacts, formation of TM3-TM7 contacts and repacking of TM5-TM6 (Figure 5b and Figure 5—fig-

ure supplement 1). In terms of global conformational changes, the binding of diverse agonists con-

verges to trigger outward movement of the cytoplasmic end of TM6 and inward movement of TM7

toward TM3 (Rasmussen et al., 2011a; Nygaard et al., 2009; Venkatakrishnan et al., 2016),

thereby creating an intracellular crevice for G protein coupling (Figure 5b).

It is noteworthy that the common activation pathway we discovered in this study is not the only

pathway that connecting extracellular ligand-binding and intracellular effector coupling for class A

GPCRs -- it is likely to be a shared portion of various activation pathways of GPCR members belong-

ing to this class -- each receptor still has its unique receptor-, ligand- and effector-specific activation

pathways. In fact, research on this subject has boosted the discovery of selective and biased ligands

(McCorvy et al., 2018; Onaran et al., 2014; Schmid et al., 2017; Smith et al., 2018; Tan et al.,

2018; Whalen et al., 2011; Wootten et al., 2018; Wootten et al., 2016).

As shown in Figure 5—figure supplement 2, collapse of the Na+ pocket leads to a denser

repacking of six residues (five residue pairs), reflected by higher RRCSsodium_pocket scores in active

state than that in inactive state structures. Recently, the crystal structures (5X33 [Hori et al., 2018],

6BQG [Peng et al., 2018] and 6K1Q [Nagiri et al., 2019]) whose ligand (inverse agonist) diffuses

deep in ligand-binding pocket or even occupies the sodium binding pocket (below D2�50) were

reported. These inverse agonists disrupt the collapse of Na+ pocket by blocking the rotation of

W6�48 and/or taking the space of Na+, and stabilize the receptors in an inactive state. Indeed, these

inactive state structures showed zero RRCSTM3-TM7 but high RRCSTM3-TM6 scores. The inverse ago-

nism are not only consistent with both our activation model and mutagenesis experiments, but also

supported by the NMR study of A2AR (Eddy et al., 2018). This study demonstrated the role of

Figure 5. Common activation model of class A GPCRs reveals major changes upon GPCR activation. (a) Active and inactive state structures form

compact clusters in the 2D inter-helical contact space: RRCSTM3-TM7 (X-axis) and RRCSTM3-TM6 (Y-axis). GPCR activation is best described by the outward

movement of TM6 and inward movement of TM7, resulting in switch in the contacts of TM3 from TM6 to TM7. (b) Common activation model for class A

GPCRs. Residues are shown in circles, conserved contact rearrangements of residue pairs upon activation are denoted by lines.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Global conformational change upon activation.

Figure supplement 2. An inverse-agonism of class A GPCRs by preventing the collapse of Na+ pocket.
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D522�50 as an allosteric link between the orthosteric ligand-binding site and the intracellular signal-

ing surface, revealing strong interactions with the toggle switch W2466�48.

Experimental validation of the modular nature of the common
activation pathway
Based on the knowledge of the common activation pathway, one would expect that mutations of

residues in the pathway are likely to severely affect receptor activation. The two extreme consequen-

ces are constitutive activation (without agonist binding) or inactivation (abolished signalling). To

experimentally test this hypothesis, we systematically designed site-directed mutagenesis for resi-

dues in the pathway on a prototypical receptor A2AR, aiming to create constitutively activating/inac-

tivating mutations (CAM/CIM), by promoting/blocking residue and helix level conformational

changes revealed in the pathway. 6/15 designed CAMs and 15/20 designed CIMs were validated by

functional cAMP accumulation assays, and none of them were reported before for A2AR (Figure 6,

Figure 6—figure supplement 1 and Figure 6—source data 1). The design of functional active/inac-

tive mutants has been very challenging. However, the knowledge of common activation pathway of

GPCRs presented here greatly improves the success rate. The mechanistic interpretation of 21 suc-

cessful predicted mutants is explained below. We also discussed the 14 unsuccessful predictions in

Figure 6—source data 2. Besides, we extended mutagenesis studies to Gs-coupled 5-HT7 and Gi-

coupled 5-HT1B receptors by designing CAM/CIMs in residues at 3�40, 3�43, 6�40, 6�44, and

7�49 (Figure 6—figure supplement 2).

In layer 1, the mutation I923�40N likely stabilizes the active state by forming amide-p interactions

with W2466�48 and hydrogen bond with the backbone of C1855�461, which rewires the packing at

the transmission switch and initiates the outward movement of the cytoplasmic end of TM6; this

mutation elevated the basal cAMP level by sevenfold. Conversely, I923�40A would reduce the favor-

able contacts with W6�48 upon activation, which retards the initiation of the outward movement of

TM6; this mutation resulted in a decrease in both basal cAMP level [71% of wild-type (WT)] and ago-

nist potency (eightfold). Another example is the residue at 6�44, the mutation F2426�44R would sta-

bilize the inactive state by forming salt bridge with D522�50, which blocks the rotation of TM6 and

thus abolishes Gs coupling; indeed this mutation greatly reduced basal cAMP level (to 63% WT) and

agonist potency (by 374-fold). In contrast, F2426�44A would reduce contacts with W2466�48, loosen

TM3-TM6 contacts, diminish the energy barrier of TM6 release and make outward movement of

TM6 easier; consistently this mutation elevated the basal cAMP level (by twofold) and increased the

agonist potency (by eightfold). Mutations of residues forming the Na+ pocket, such as D522�50A and

N2807�45R, would destroy the hydrogen bond network at the Na+ pocket and retard the initiation

of the inward movement of TM7. These mutations completely abolished agonist potency and greatly

reduced the basal cAMP level (to 80% and 78% of WT, respectively).

In layer 2, the mutations L953�43A/R and I2386�40Y would loosen the hydrophobic lock, weaken

TM3-TM6 contacts, promote the outward movement of cytoplasmic end of TM6 and eventually

make receptor constitutively active; this is reflected by remarkably high basal cAMP production (28-,

2- and 11-fold increase, respectively). Notably, mutations at/near the Na+ pocket, L482�46R and

N2847�49K, could lock the Na+ pocket at inactive packing mode by introducing salt bridge with

D522�50, thus blocking the inward movement of TM7 toward TM3. As expected, these mutations

completely abolished agonist potency. The CIMs at/near the Na+ pocket (from both layers 1 and 2)

reflect that the subtle inward movement of TM7 towards TM3 is essential for receptor activation,

which is often underappreciated and overshadowed by the movement of TM6. In line with this, two

mutations on TM7, N2847�49A and Y2887�53A, attenuate the TM3-TM7 contacts upon activation

and completely abolished or greatly reduced (by 16-fold) agonist potency, respectively.

In layer 3, I983�46A likely reduces contacts with Y2887�53, weakens the packing between TM3-

TM7, and retards the movement of TM7 toward TM3; similarly, L2356�37A would reduce contacts

with F2015�62, weaken the packing between TM5-TM6, and makes the TM6 movement toward TM5

more difficult. In line with the interpretation, these mutations resulted in reduced basal cAMP level

(72% and 71% WT, respectively) and decreased agonist potency (23- and 4-fold, respectively). These

results are consistent with previous findings on vasopressin type-2 receptor (V2R)

(Venkatakrishnan et al., 2016).
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Figure 6. Experimental validation of the common activation mechanism. (a) cAMP accumulation assay and (b) radioligand binding assay: both validated

the common activation pathway-guided design of CAMs/CIMs for A2AR. Wildtype (WT), CAMs and CIMs are shown in black, green and orange,

respectively. (c) Mechanistic interpretation of common activation pathway-guided CAMs/CIMs design. N.D.: basal activity was too high to determine an

accurate EC50 value.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Functional and ligand binding properties of A2AR mutations.

Source data 2. Analysis of the 14 unsuccessful predictions of A2AR CAMs/CIMs.

Figure supplement 1. Experimental validation of common activation pathway-guided CAM/CIM design for A 2A R.

Figure supplement 2. Experimental validation of common activation pathway-guided CAM/CIM design for Gs-coupled 5-HT7 and Gi-coupled 5-HT1B
receptors.
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In layer 4, D1013�49N likely diminishes its intra-helical interaction with R1023�50 and thus makes

the release of the latter easier, which in turn promotes G-protein recruitment. Consistent with this

possibility, this mutation led to a greatly elevated basal cAMP level (eightfold).

Despite these A2AR mutants greatly affect receptor activation, our radioligand binding assay

shows that they generally retain the agonist binding ability, with the exception of two CIMs:

W2466�48A and N2847�45K (Figure 6b,c and Figure 6—source data 1). This suggests that the com-

mon activation pathway is of modular nature and that such an organization allows for a significant

number of residues involved in agonist binding to be uncoupled from receptor activation/inactiva-

tion and G-protein binding.

As shown in Figure 6—figure supplements 2 and 5-HT7 receptor mutations F3366�44R and

N3807�49K completely abolished agonist potency and greatly reduced the basal cAMP level, which

is remarkably consistent with the observation on A2AR, highlighting the crucial role of the highly con-

served residues F6�44 and N7�49. Beyond Gs-coupled A2AR and 5-HT7 receptor, we also validated

this mutation design in Gi-coupled 5-HT1B receptor. Indeed, two CIMs, I1373�40N and F3236�44H

greatly reduced receptor-mediated Gi activity compared to WT, whereas three CAMs, L1733�43A in

Gs-coupled 5-HT7 receptor, F3236�44A and I1373�40A in Gi-coupled 5-HT1B receptor, were verified

to promote their basal activities, consistent with the observation on CAMs (L953�43A, F2426�44A

and I923�40A) designed for A2AR.

The common pathway allows mechanistic interpretation of mutations
Four hundred thirty five disease-associated mutations were collected, among which 28% can be

mapped to the common activation pathway, much higher than that to the ligand-binding and G-pro-

tein-binding regions (20% and 7%, respectively) (Figure 7a,b). Furthermore, 272 CAMs/CIMs from

41 receptors (Figure 7c) were mined from the literature for the 14 hub residues (i.e. residues that

have more than one edges in the pathway).

The average number of disease-associated mutations in the common activation pathway is much

higher than that of ligand-binding pocket, G-protein-binding site, and residues in other regions (2.5-

, 3.5- and 3.5-fold, respectively), reflecting the enrichment of disease-associated mutations on the

pathway (Figure 7a). Within this pathway, the enrichment of disease mutations and CAMs/CIMs in

layers 1 and 2 is noteworthy, which highlights the importance of signal initiation and hydrophobic

lock opening, and further supports the modular and hierarchical nature of GPCR activation (Figures 3

and 5b). Notably, for certain residues, such as D2�50 and Y7�53, only loss-of-function disease muta-

tions or CIMs were observed (Figure 7), implying they are indispensable for receptor activation and

the essential role of TM7 movement (Figures 3 and 5).

The functional consequence of these single point mutations can be rationalized by analysing if

they are stabilizing/destabilizing the contacts in the common activation pathway or promoting/

retarding the required helix movement upon activation (Figure 7b and Figure 7—figure supple-

ment 1). For example, I1303�43N/F (layer 2) in V2R was reported as a gain-/loss-of-function mutation

that causes nephrogenic syndrome of inappropriate antidiuresis (Erdélyi et al., 2015) or nephro-

genic diabetes insipidus (Pasel, 2000), respectively. I1303�43N/F likely loosens/stabilizes the hydro-

phobic lock, weakens/strengthens the TM3-TM6 packing and leads to constitutively active/inactive

receptors. Another example is T581�53M in rhodopsin, which was reported as a loss-of-function

mutation that causes retinitis pigmentosa 4 (Napier et al., 2015). T581�53M likely increases hydro-

phobic contacts with Y3067�53 and P3037�50, which retards the inward movement of TM7 towards

TM3 and eventually decreases G-protein recruitment. As in the case of disease-associated mutations,

CAMs/CIMs that have been previously reported in the literature can also be interpreted by the

framework of common activation pathway (Figure 7—figure supplement 1b). For example,

F2486�44Y in CXCR4 (Wescott et al., 2016) was reported as a CIM. This residue likely forms hydro-

gen bond with S1233�39, which blocks the rotation of the cytoplasmic end of TM6, and decreases

G-protein engagement.

Not surprisingly, the 35 residues constituting the pathway are highly conserved across class A

GPCRs, dominated by physiochemically similar amino acids (Figure 7—figure supplement 2). The

average sequence similarity of these positions across 286 non-olfactory class A receptors is 66.2%,

significantly higher than that of ligand-binding pockets (31.9%) or signaling protein-coupling regions

(35.1%). Together, these observations suggest that the modular and hierarchical nature of the activa-

tion pathway allows decoupling of the ligand-binding pocket, G-protein-binding site and the
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Figure 7. Importance of the common activation pathway in pathophysiological and biological contexts. (a) Comparison of disease-associated mutations

in the common activation pathway (further decomposed into layers 1–4), ligand-binding pocket, G-protein-coupling region and other regions. Red line

denotes the mean value. (b) Mapping of disease-associated mutations in class A GPCRs to the common activation pathway. (c) Key roles of the residues

Figure 7 continued on next page
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residues contributing to the common activation mechanism. Such an organization of the receptor

might facilitate the uneven sequence conservation between different regions of GPCRs, confers their

functional diversity in ligand recognition and G-protein binding while still retaining a common activa-

tion mechanism.

Discussion
Using a novel, quantitative residue contact descriptor, RRCS, and a family-wide comparison across

234 structures from 45 class A GPCRs, we reveal a common activation pathway that directly links

ligand-binding pocket and G-protein-coupling region. Key residues that connect the different mod-

ules allows for the decoupling of a large number of residues in the ligand-binding site, G-protein

contacting region and residues involved in the activation pathway. Such an organization may have

facilitated the rapid expansion of GPCRs through duplication and divergence, allowing them to

evolve independently and bind to diverse ligands due to removal of the constraint (i.e., between a

large number of ligand-binding residues and those involved in receptor activation). This model uni-

fies many previous important motifs and observations on GPCR activation in the literature (CWxP,

PIF, Na+ pocket, NPxxY, DRY and hydrophobic lock) and is consistent with numerous experimental

findings.

We focused on the common activation pathway (i.e. the common part of activation mechanism

shared by all class A GPCRs and various intracellular effectors) in this study. Obviously, individual

class A receptor naturally has its intrinsic activation mechanism(s), as a result of the diversified

sequences, ligands and physiological functions. Indeed, receptor-specific activation pathways

(including mechanisms of orthosteric, positive or negative allosteric modulators, biased signaling/

selectivity of downstream effectors) have been revealed by both experimental studies including bio-

physical (such as X-ray, cryo-EM, NMR, FRET/BRET and DEER), biochemical and computational

approaches (such as evolutionary trace analysis and molecular dynamics simulations), especially for

the prototypical receptors such as rhodopsin, b2-adrenergic and A2A receptors. These studies dem-

onstrated the complexity and plasticity of signal transduction of GPCRs. The computational frame-

work we have developed may assist us in better understanding the mechanism of allosteric

modulation, G-protein selectivity and diverse activation processes via intermediate states as more

GPCR structures become available. While we interpret the changes as a linear set of events, future

studies aiming at understanding dynamics could provide further insights into how the common acti-

vation mechanism operates in individual receptors.

Given the common nature of this pathway, we envision that the knowledge obtained from this

study can not only be used to mechanistically interpret the effect of mutations in biological and

pathophysiological context but also to rationally introduce mutations in other receptors by promot-

ing/blocking residue and helix level movements that are essential for activation. Such protein engi-

neering approaches may enable us to make receptors in specific conformational states to accelerate

structure determination studies using X-ray crystallography or electron microscopy and functional

investigation in the future. The method developed here could also be readily adapted to map allo-

steric pathways and reveal mechanisms of action for other key biological systems such as kinases,

ion channels and transcription factors.

Figure 7 continued

constituting the common activation pathway have been reported in numerous experimental studies on class A GPCRs. Two hundred seventy two (272)

CAMs/CIMs from 41 receptors were mined from the literature for the 14 hub residues (i.e. residues that have more than one edges in the pathway).

The online version of this article includes the following source data and figure supplement(s) for figure 7:

Source data 1. Constitutively activating/inactivating mutations for the 14 hub residues in the common activation pathway.

Figure supplement 1. The common activation pathway can be used to mechanistically interpret disease-associated mutations and CAMs/CIMs.

Figure supplement 2. Residues in the common activation pathway are more conserved than other functional regions of GPCR.
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Materials and methods

Glossary
Transmembrane domains (TMD): the core domain exists in all GPCRs, and consists of seven-trans-

membrane helices (TM1–7) that are linked by three extracellular loops (ECL1-3) and three intracellu-

lar loops (ICL1-3).

GPCRdb numbering scheme: a structure-based numbering system for GPCRs (Isberg et al.,

2016; Isberg et al., 2015), an improved version of sequence-based Ballesteros–Weinstein number-

ing (Ballesteros and Weinstein, 1995) that considers structural distortions such as helical bulges or

constrictions. The most conserved residue in a helix n is designated n�50, while other residues on

the helix are numbered relative to this position.

Node: a point in a network at which lines intersect, branch or terminate. In this case, nodes repre-

sent amino acid residues.

Edge: a connection between the nodes in a network. In this case, an edge represents a residue-

residue contact.

Hub: a node with two or more edges in a network.

Constitutively activating mutation (CAM): a mutant that could increase the inherent basal activity

of the receptor by activating the G-protein-signaling cascade in the absence of agonist.

Constitutively inactivating mutation (CIM): a mutant completely abolishes receptor signalling.

GPCR structure data set
As of October 1, 2018, there are 234 released structures of 45 class A GPCRs with resolution better

than 3.8 Å (Figure 1—source data 1), which covers 71% (203 out of 286 receptors, including 158

receptors that have no structures but share >50% sequence similarity in the TMD with the 45 struc-

ture-determined receptors) of class A GPCRs (Figure 1a). Based on the type of bound ligand and

effector, these structures could be classified into three states: inactive state (antagonist or inverse

agonist-bound, 142 structures from 38 receptors), active state (both agonist- and G protein/G pro-

tein mimetic-bound, 27 structures from eight receptors) and intermediate state (only agonist-bound,

65 structures from 15 receptors). In this study, we primarily focused on conformational comparison

between inactive- and active- state structures, while also investigating the intermediate state struc-

tures. In the structure data set, seven receptors have both inactive and active structures: rhodopsin

(bRho), b2-adrenergic receptor (b2AR), M2 muscarinic receptor (M2R), m-opioid receptor (mOR),

adenosine A2A receptor (A2AR), k-opioid receptor (k-OR) and adenosine A1A receptor (A1AR), the

active state structure of which was recently determined by cryo-EM. In addition, 32 receptors have

either inactive or active structures (Figure 1—source data 1).

Calculation of residue-residue contact score (RRCS)
We developed a much finer distance-based method (than coarse-grained Boolean descriptors such

as contact map and residues contact [Venkatakrishnan et al., 2016; Kayikci et al., 2018;

Eldridge et al., 1997; Verdonk et al., 2003; Wang et al., 2017; Adhikari and Cheng, 2016]),

namely residue-residue contact score (RRCS). For a pair of residues, RRCS is calculated by summing

up a plateau-linear-plateau form atomic contact score adopted from GPCR–CoINPocket (Ngo et al.,

2017; Kufareva et al., 2011; Kufareva and Abagyan, 2012; Kufareva et al., 2014a;

Kufareva et al., 2013; Kufareva et al., 2014b; Marsden and Abagyan, 2004) for each possible

inter-residue heavy atom pairs (Figure 2—figure supplement 1a). GPCR–CoINPocket is a modified

version of the hydrophobic term of ChemScore (Eldridge et al., 1997; Verdonk et al., 2003) that

has been successfully used to describe hydrophobic contribution to binding free energy between

ligand and protein. RRCS can describe the strength of residue-residue contact quantitatively in a

much more accurate manner than Boolean descriptors (Venkatakrishnan et al., 2016; Flock et al.,

2017). For example, Boolean descriptors do not capture side chain repacking if the backbone atoms

of the two residues are close to each other (e.g. translocation of Y7�53 away from residue at 2�43

upon GPCR activation) and local contacts involving adjacent residues (residues within four/six amino

acids in protein sequence) (e.g., disengagement between D/E3�49 and R3�50), while both cases can

be well reflected by the change of RRCS (Figure 2c and Figure 2—figure supplement 1b).
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All RRCS data can be found in Figure 2—source data 1. The computational details are described

as below:

1. For the residue pairs between adjacent residues that are within four amino acids in protein
sequence, only side chain heavy atom pairs were considered, atom pairs involving in backbone
atoms (Ca, C, O, N) were excluded, since the latter seldom change during GPCR activation.
For other residue pairs, all possible heavy atom pairs (including backbone atoms) were
included when calculating RRCS.

2. Atomic contact scores are solely based on interatomic distance, and they are treated equally
without weighting factors such as atom type or contact orientation. In principle, weighting of
atomic contact by atom type and/or orientation would improve residue-residue contact score.
However, parameterization of atom type or contact orientation is relatively arbitrary, subjective
and complicated, especially considering the lipid bilayer environment surrounding GPCRs. Our
preliminary study for 12 structures from six receptors (bRho, b2AR, M2R, mOR, A2AR and k-OR)
revealed that amino acids with hydrophobic side chains (one-letter code: A, V, I, L, M, P, F, Y,
W) contribute to the majority (~88%) of residue pairs. Meanwhile, ionic lock opening of well-
known motif DRY upon receptor activation can be adequately reflected by RRCS change
between D/E3�49 and R3�50. These results suggest that interatomic distance-dependent resi-
due pair contact score may represent an acceptable approximation of actual (either hydropho-
bic or charge-charge) interaction energies (Ngo et al., 2017) and is accurate enough for
identifying conserved rearrangements of residue contacts upon receptor activation.

3. The quality of structures is extremely important for RRCS calculation. We adopted two criteria
to exclude unreliable structures and residues: (a) crystal structures whose resolution is �3.8 Å.
Structures in this category are: 5DGY (7.70 Å), 2I37 (4.20 Å), 2I36 (4.10 Å), 5TE5 (4.00 Å),
4GBR (4.00 Å), 5NJ6 (4.00 Å), 5V54 (3.90 Å), 2I35 (3.80 Å), 5D5B (3.80 Å), 4XT3 (3.80 Å); (b)
residues whose residue-based real-space R-value (RSR [Jones et al., 1991]) is greater than
0.35. RSR is measure of how well ‘observed’ and calculated electron densities agree for a resi-
due. RSR ranges from 0 (perfect match) to 1 (no match); RSR greater than 0.4 indicates a poor
fit (Smart et al., 2018). Here we adopted a stricter cut-off, 0.35. Among the 234 class A GPCR
structures, 156 have available RSR information (Kleywegt et al., 2004) (http://eds.bmc.uu.se),
with 8.8% residues have RSR >0.35 and they are omitted in our analysis. For the 35 residues
that constitute the common activation pathway, 255 out of 5460 RSR data points (~4.7%, lower
than 8.8% for all residues) were omitted for having RSR values > 0.35.

4. For structures with multiple chains, RRCS were the average over all chains. For residues with
multiple alternative conformations, RRCS was the sum of individual values multiplied by the
weighting factor: occupancy value extracted from PDB files. Small molecule/peptide ligand, or
intracellular binding partner (G protein or its mimetic) was treated as a single residue.

5. For the family-wide comparison of conformational changes upon activation, structurally equiva-
lent residues are numbered by GPCRdb numbering scheme (Isberg et al., 2016; Isberg et al.,
2015). Of the 35 residues in the common activation pathway, their GPCRdb numbering in all
structures is almost identical to the Ballesteros–Weinstein numbering (Ballesteros and Wein-
stein, 1995), the exceptions are residues at 6�37, 6�41 and 6�44 for five receptors: FFAR1,
P2Y1, P2Y12, F2R and PAR2, which are all from the delta branch of class A family.

Identification of conserved rearrangements of residue contacts upon
activation
Using RRCS, structural information of TMD and helix eight in each structure can be decomposed

into 400 ~ 500 residue pairs with positive RRCS. DRRCS, defined as RRCSactive � RRCSinactive, reflects

the change of RRCS for a residue pair from inactive- to active- state (Figure 2b–d and Figure 2—fig-

ure supplement 1b). To identify residue pairs with conserved conformational rearrangements upon

activation across class A GPCRs, two rounds of selections (Figure 2d and Figure 2—source data 1)

were performed: (i) identification of conserved rearrangements of residue contacts upon activation

for six receptors (bRho, b2AR, M2R, mOR, A2AR and k-OR), that is equivalent residue pairs show a

similar and substantial change in RRCS between the active and inactive state structure of each of the

six receptors (the same sign of DRRCS and |DRRCS| > 0.2 for all receptors) and (ii) family-wide RRCS

comparison between the 142 inactive and 27 active state structures to identify residues pairs of sta-

tistically significant different (p<0.001; two sample t-test) RRCS upon activation.

Round 1. Identification of conserved rearrangements of residue contacts. Six receptors with avail-

able inactive- and active- state structures were analyzed using DRRCS to identify residue pairs that
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share similar conformational changes. Twelve representative crystal structures (high-resolution, no

mutation or one mutation in TMD without affecting receptor signalling) were chosen in this stage:

six inactive state structures (PDB codes 1GZM for bRho, 2RH1 for b2AR, 3UON for M2R, 4DKL for

mOR, 3EML for A2AR and 4DJH for k-OR) and six active state structures (3PQR for bRho, 3SN6 for

b2AR, 4MQS for M2R, 5C1M for mOR, 5G53 for A2AR and 6B73 for k-OR) (Figure 2d, Figure 2—fig-

ure supplement 1c and Figure 2—source data 1). Each receptor has approximately 600 residues

pairs that have positive RRCS. Roughly one quarter are newly formed during receptor activation

(RRCSinactive = 0 and RRCSactive >0); another quarter lose their contacts upon receptor activation

(RRCSinactive >0 and RRCSactive = 0); and the remaining appear in both the inactive- or active- state

structures (RRCSinactive >0 and RRCSactive >0), the contact rearrangement of which can only be

reflected by DRRCS, but not Boolean descriptors.

To identify residue pairs that share conserved rearrangements of residue contacts upon activa-

tion, two steps are performed to qualify residue pairs for the next round. Firstly, residue pairs with

same sign of DRRCS and |DRRCS| > 0.2 for all six receptors were identified. There are 32 intra-recep-

tor residues pairs (1�49:7�50, 1�53:7�53, 1�53:7�54, 2�37:2�40, 2�42:4�45, 2�43:7�53,

2�45:4�50, 2�46:2�50, 2�50:3�39, 2�57:7�42, 3�40:6�48, 3�43:6�40, 3�43:6�41,

3�43:7�49, 3�43:7�53, 3�46:6�37, 3�46:7�53, 3�49:3�50, 3�50:3�53, 3�50:6�37, 350:7�53,

3�51:5�57, 5�51:6�44, 5�58:6�40, 5�62:6�37, 6�40:7�49, 6�44:6�48, 7�50:7�55,

7�52:7�53, 7�53:8�50, 7�54:8�50 and 7�54:8�51) and five receptor-G protein/its mimetic resi-

due pairs (3�50:G protein, 3�53:G protein, 3�54:G protein, 5�61:G protein and 6�33:G protein)

that meet this criterion. Secondly, we also investigated residue pairs with DRRCS that are conserved

in five receptors (i.e., with one receptor as exception). Considering there is no Na+ pocket for rho-

dopsin, three residue pairs (2�50:7�49, 6�44:7�45 and 6�48:7�45) around Na+ pocket were ana-

lyzed for five receptors but not bRho. Additionally, three residue pairs have 0 (3�46:3�50,

5�55:6�41) or negative (7�45:7�49) DRRCS for k-OR but positive DRRCS for the other five recep-

tors. As for 3�46:3�50, nanobody-stabilized active structures (b2AR: 3P0G, 4LDO, 4LDL, 4LDE,

4QKX; and mOR: 5C1M) generally have lower contact scores (<0.4) compared with G-protein-bound

active-state structures (2.17 for 3SN6 of b2AR, 2.57 for 5G53 of A2AR and 6.93 for 3PQR of bRho).

For these residue pairs, we added newly determined Gi-bound active A1AR and 5-HT1B receptor and

found that they have positive DRRCS, like other five receptors (Figure 4—figure supplements 1 and

2). Thus, these three residue pairs (3�46:3�50, 5�55:6�41 and 7�45:7�49) were retained. Totally,

six residue pairs with conserved DRRCS in five receptors were rescued. Taken together, 38 intra-

receptor residue pairs and five receptor-G protein/its mimetic residue pairs were identified to have

conserved rearrangements of residue contacts upon activation.

Round 2. Family-wide conservation analysis of residue contact pattern. To investigate the conser-

vation of residue contact pattern for the 38 intra-receptor residue pairs across these functionally

diverse receptors, two-tailed unpaired t-test between inactive state (142 inactive structures from 38

receptors) and active state (27 active structures from eight receptors) groups were performed

(Figure 2d and Figure 2—source data 2). Thirty one residue pairs have significantly different RRCS

between inactive- and active-state (p<10�5). As rhodopsin lacks the Na+ pocket, all rhodopsin struc-

tures were neglected in the analysis of 3 residue pairs around the pocket (2�50:7�49, 6�44:7�45

and 6�48:7�45), which have good p value (<10�3) for these non-rhodopsin class A GPCRs. Four res-

idue pairs were filtered out in this round due to their poor p value, that is there are no statistically

significant difference in RRCS between inactive and active states (p=0.01 for 2�37:2�40, 0.96 for

2�42:4�45, 0.02 for 2�45:4�50 and 0.014 for 2�57:7�42).

Finally, 34 intra-receptor residue pairs (Figure 2d, Figure 4—figure supplements 1 and 2) and

five receptor-G-protein residue pairs were identified with conserved rearrangements of residue con-

tacts upon activation, including all six residues pairs identified by the previous RC approaches

(Venkatakrishnan et al., 2016).

Sequence analysis of class A GPCRs
The alignment of 286 non-olfactory, class A human GPCRs were obtained from the GPCRdb

(Isberg et al., 2016; Isberg et al., 2015). The distribution of sequence similarity/identity across class

A GPCRs were extracted from the sequence similarity/identity matrix for different structural regions

using ‘Similarity Matrix’ tool in GPCRdb. The sequence conservation score (Figure 1—figure supple-

ment 1) for all residue positions across 286 non-olfactory class A GPCRs were evaluated by the
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Protein Residue Conservation Prediction (Capra and Singh, 2007) tool with scoring method ’Prop-

erty Entropy’ (Mirny and Shakhnovich, 1999). Sequence conservation analysis (Figure 7—figure

supplement 2) were visualized by WebLogo3 (Crooks et al., 2004) with sequence alignment files

from GPCRdb as the input.

CAM/CIM in class A GPCRs
For the 14 hub residues in the common activation pathway, we collected the functional mutation

data from the literature and GPCRdb (Isberg et al., 2016; Isberg et al., 2015). Mutations with

‘more than two fold-increase in basal activity/constitutively active’ or ‘abolished effect’ compared to

the wild-type receptor were selected. Together, 272 mutations from 41 class A GPCRs on the 14

hub residues were collected, including the mutations we designed and validated in this study (Fig-

ure 7—source data 1).

Disease-associated mutations in class A GPCRs
To reveal the relationship between disease-associated mutations and related phenotypes of different

transmembrane regions (Vassart and Costagliola, 2011; Thompson et al., 2014; Tao, 2006;

Tao, 2008), we collected disease-associated mutation information for all 286 non-olfactory class A

GPCRs by database integration and literature investigation. Four commonly used databases (UniProt

[The UniProt Consortium, 2017], OMIM [Amberger et al., 2011], Ensembl [Zerbino et al., 2018]

and GPCRdb [Isberg et al., 2016; Isberg et al., 2015]) were first filtered by disease mutations and

then merged. Totally 435 disease mutations from 61 class A GPCRs were collected (Figure 1—

source data 2).

Pathway-guided CAM/CIM design in A2AR
We designed mutations for a prototypical receptor A2AR, guided by the common activation path-

way, aiming to get constitutively active/inactive receptor. Mutations that can either stabilize active

or inactive state structures of A2AR or promote/block conformational changes upon activation were

designed (Figure 6c and Figure 6—figure supplement 1) and tested by a functional cAMP accumu-

lation assay. The inactive state structure 3EML and active state structure 5G53 were used. In silico

mutagenesis was performed by Residue Scanning module in BioLuminate (Beard et al., 2013). Side-

chain prediction with backbone sampling and a cut-off value of 6 Å were applied during the scan-

ning. DStability is the change of receptor stability when introducing a mutation. We filtered the

mutations by one of the following criteria: (i) DStability in active and inactive structures have opposite

signs; or (ii) DStability in active and inactive structures have the same sign, but favorable interactions

such as hydrogen bonds, salt bridge or pi-pi stacking exist in only one structure that can promote/

block conformational changes upon activation. Totally, 15 and 20 mutations were predicted to be

CAMs and CIMs, respectively. (Figure 6c and Figure 6—figure supplement 1).

cAMP accumulation assays
(i)A2AR. The desired mutations were introduced into amino-terminally Flag tag-labeled human A2AR

in the pcDNA3.1 vector (Invitrogen, Carlsbad, CA). This construct displayed equivalent pharmaco-

logical features to that of untagged human receptor based on radioligand binding and cAMP assays

(Massink et al., 2015). The mutants were constructed by PCR-based site-directed mutagenesis

(Muta-directTM kit, Beijing SBS Genetech Co., Ltd., China). Sequences of receptor clones were con-

firmed by DNA sequencing. HEK-293 cells (obtained from ATCC and confirmed as negative for

mycoplasma contamination) were seeded onto 6-well cell culture plates. After overnight culture, the

cells were transiently transfected with WT or mutant DNA using Lipofectamine 2000 transfection

reagent (Invitrogen). After 24 hr, the transfected cells were seeded onto 384-well plates (3,000 cells

per well). cAMP accumulation was measured using the LANCE cAMP kit (PerkinElmer, Boston, MA)

according to the manufacturer’s instructions. Briefly, transfected cells were incubated for 40 min in

assay buffer (DMEM, 1 mM 3-isobutyl-1-methylxanthine) with different concentrations of agonist

[CGS21680 (179 pM to 50 mM)]. The reactions were stopped by addition of lysis buffer containing

LANCE reagents. Plates were then incubated for 60 min at room temperature and time-resolved

FRET signals were measured at 625 nm and 665 nm by an EnVision multilabel plate reader (Perki-

nElmer). The cAMP response is depicted relative to the maximal response of CGS21680 (100%) at
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the WT A2AR. (ii) 5-HT1B receptor. cAMP accumulation was measured using LANCE cAMP kit (Perki-

nElmer). Briefly, HEK293T (obtained from and certified by the Cell Bank at the Chinese Academy of

Science and confirmed as negative for mycoplasma contamination) cells were transfected with plas-

mids bearing WT or mutant 5-HT1B receptor. Cells were collected 24 hr post-transfection and used

to seed white poly-D-lysine coated 384-well plates at a density of 2,000 cells per well. Cells were

incubated for a further 24 hr at 37˚C. Cells were then incubated for 30 min in assay buffer (HBSS, 5

mM HEPES, 0.1% BSA, 0.5 mM 3-isobutyl-1-methylxanthine) with constant Forsklin (800 nM) and dif-

ferent concentrations of dihydroergotamine (DHE, 0.64 pM to 50 nM) at 37˚C. The reactions were

stopped by addition of lysis buffer containing LANCE reagents. Plates were then incubated for 60

min at room temperature, and time-resolved FRET signals were measured after excitation at 620 nm

and 650 nm by EnVision (PerkinElmer).

CGS21680 binding assay
CGS21680 (a specific adenosine A2A subtype receptor agonist) binding was analyzed using plasma

membranes prepared from HEK-293 cells transiently expressing WT and mutant A2ARs. Approxi-

mately 1.2�108 transfected HEK-293 cells were harvested, suspended in 10 ml ice-cold membrane

buffer (50 mM Tris-HCl, pH 7.4) and centrifuged for 5 min at 700 g. The resulting pellet was resus-

pended in ice-cold membrane buffer, homogenized by Dounce Homogenizer (Wheaton, Millville,

NJ) and centrifuged for 20 min at 50,000 g. The pellet was resuspended, homogenized, centrifuged

again and the precipitate containing the plasma membranes was then suspended in the membrane

buffer containing protease inhibitor (Sigma-Aldrich, St. Louis, MO) and stored at �80˚C. Protein con-

centration was determined using a protein BCA assay kit (Pierce Biotechnology, Pittsburgh, PA). For

homogeneous binding, cell membrane homogenates (10 mg protein per well) were incubated in

membrane binding buffer (50 mM Tris-HCl, 10 mM NaCl, 0.1 mM EDTA, pH 7.4) with constant con-

centration of [3H]-CGS21680 (1 nM, PerkinElmer) and serial dilutions of unlabeled CGS21680 (0.26

nM to 100 mM) at room temperature for 3 hr. Nonspecific binding was determined in the presence

of 100 mM CGS21680. Following incubation, the samples were filtered rapidly in vacuum through

glass fiber filter plates (PerkinElmer). After soaking and rinsing four times with ice-cold PBS, the fil-

ters were dried and counted for radioactivity in a MicroBeta2 scintillation counter (PerkinElmer).

Surface expression of A2ARs
HEK293 cells were seeded into six-well plate and incubated overnight. After transient transfection

with WT or mutant plasmids for 24 hr, the cells were collected and blocked with 5% BSA in PBS at

room temperature for 15 min and incubated with primary anti-Flag antibody (1:100, Sigma-Aldrich)

at room temperature for 1 hr. The cells were then washed three times with PBS containing 1% BSA

followed by 1 hr incubation with anti-rabbit Alexa-488-conjugated secondary antibody (1:1000, Cell

Signaling Technology, Danvers, MA) at 4˚C in the dark. After three washes, the cells were resus-

pended in 200 ml of PBS containing 1% BSA for detection in a NovoCyte flow cytometer (ACEA Bio-

sciences, San Diego, CA) utilizing laser excitation and emission wavelengths of 488 nm and 519 nm,

respectively. For each assay point, approximately 15,000 cellular events were collected, and the total

fluorescence intensity of positive expression cell population was calculated.

Plasmid constructs of 5-HT7 receptor
A plasmid encoding the 5-HT7 receptor was obtained from PRESTO-Tango Kit produced by Addg-

ene (Watertown, MA). 5-HT7 coding sequence was amplified and ligated into the pRluc8-N1 vector

to produce WT 5-HT7-Rluc8. Mutant 5-HT7-Rluc8 receptors were generated from this plasmid using

the Quikchange mutagenesis kit (Agilent Technologies, Santa Clara, CA). A plasmid encoding the

Nluc-EPAC-VV cAMP sensor was kindly provided by Kirill Martemyanov (The Scripps Research Insti-

tute, Jupiter, FL) and has been described previously. (Masuho et al., 2015) All plasmid constructs

were verified by DNA sequencing.

Cell transfection
HEK293 cells cultured in 6-well plates were transiently transfected with the above plasmids (3.0 mg

DNA) in growth medium using linear polyethyleneimine MAX (Polysciences, Warrington, PA) at an

N/P ratio of 20 and used for experimentation 12–48 hr thereafter.
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BRET cAMP and trafficking assays
HEK 293 cells transiently transfected with WT or mutant 5-HT7 receptor plasmids plus either the

Nluc-EPAC-VV cAMP sensor (at a 15:1 ratio) or Venus-kras (at a 1:8 ratio) (Tian et al., 2017) were

incubated for 24 hr. After washing twice with PBS, they were transferred to opaque black 96-well

plates. Steady-state BRET measurements were made using a Mithras LB940 photon-counting plate

reader (Berthold Technologies GmbH, Bad Wildbad, Germany). Furimazine (NanoGlo; 1:1000, Prom-

ega) for cAMP measurement or coelenterazine h (5 mM; Nanolight, Pinetop, AZ) for trafficking assay

was added followed by BRET signal detection and calculation at an emission intensity of 520–545

nm divided by that of 475–495 nm.

Data and materials availability
The open source code is available at GitHub (Zhou, 2019; copy archived at https://github.com/eli-

fesciences-publications/RRCS). For availability of codes that were developed in-house, please con-

tacts the corresponding authors. All data are available in the main text or the source data.
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B, Wüthrich K, Zhao Q. 2019. Human substance P receptor binding mode of the antagonist drug aprepitant by
NMR and crystallography. Nature Communications 10:638. DOI: https://doi.org/10.1038/s41467-019-08568-5,
PMID: 30733446

Cheng Y. 2018. Single-particle cryo-EM-How did it get here and where will it go. Science 361:876–880.
DOI: https://doi.org/10.1126/science.aat4346, PMID: 30166484

Cherezov V, Peddi A, Muthusubramaniam L, Zheng YF, Caffrey M. 2004. A robotic system for crystallizing
membrane and soluble proteins in lipidic mesophases. Acta Crystallographica Section D Biological
Crystallography 60:1795–1807. DOI: https://doi.org/10.1107/S0907444904019109, PMID: 15388926

Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI,
Kobilka BK, Stevens RC. 2007. High-resolution crystal structure of an engineered human beta2-adrenergic G
protein-coupled receptor. Science 318:1258–1265. DOI: https://doi.org/10.1126/science.1150577, PMID: 17
962520

Choe H-W, Kim YJ, Park JH, Morizumi T, Pai EF, Krauß N, Hofmann KP, Scheerer P, Ernst OP. 2011. Crystal
structure of metarhodopsin II. Nature 471:651–655. DOI: https://doi.org/10.1038/nature09789

Christopoulos A. 2014. Advances in G protein-coupled receptor allostery: from function to structure. Molecular
Pharmacology 86:463–478. DOI: https://doi.org/10.1124/mol.114.094342, PMID: 25061106

Christopoulos A, Kenakin T. 2002. G protein-coupled receptor allosterism and complexing. Pharmacological
Reviews 54:323–374. DOI: https://doi.org/10.1124/pr.54.2.323, PMID: 12037145

Ciancetta A, Sabbadin D, Federico S, Spalluto G, Moro S. 2015. Advances in computational techniques to study
GPCR-Ligand recognition. Trends in Pharmacological Sciences 36:878–890. DOI: https://doi.org/10.1016/j.tips.
2015.08.006, PMID: 26538318

Cooke RM, Brown AJH, Marshall FH, Mason JS. 2015. Structures of G protein-coupled receptors reveal new
opportunities for drug discovery. Drug Discovery Today 20:1355–1364. DOI: https://doi.org/10.1016/j.drudis.
2015.08.003

Crooks GE, Hon G, Chandonia JM, Brenner SE. 2004. WebLogo: a sequence logo generator. Genome Research
14:1188–1190. DOI: https://doi.org/10.1101/gr.849004, PMID: 15173120

Dalton JA, Lans I, Giraldo J. 2015. Quantifying conformational changes in GPCRs: glimpse of a common
functional mechanism. BMC Bioinformatics 16:124. DOI: https://doi.org/10.1186/s12859-015-0567-3, PMID: 25
902715

DeVree BT, Mahoney JP, Vélez-Ruiz GA, Rasmussen SG, Kuszak AJ, Edwald E, Fung JJ, Manglik A, Masureel M,
Du Y, Matt RA, Pardon E, Steyaert J, Kobilka BK, Sunahara RK. 2016. Allosteric coupling from G protein to the
agonist-binding pocket in GPCRs. Nature 535:182–186. DOI: https://doi.org/10.1038/nature18324,
PMID: 27362234

Draper-Joyce CJ, Khoshouei M, Thal DM, Liang Y-L, Nguyen ATN, Furness SGB, Venugopal H, Baltos J-A,
Plitzko JM, Danev R, Baumeister W, May LT, Wootten D, Sexton PM, Glukhova A, Christopoulos A. 2018.
Structure of the adenosine-bound human Adenosine A1 receptor–Gi complex. Nature 558:559–563.
DOI: https://doi.org/10.1038/s41586-018-0236-6

Zhou et al. eLife 2019;8:e50279. DOI: https://doi.org/10.7554/eLife.50279 22 of 31

Research article Computational and Systems Biology Structural Biology and Molecular Biophysics

https://doi.org/10.1146/annurev-pharmtox-010510-100553
https://doi.org/10.1146/annurev-pharmtox-010510-100553
http://www.ncbi.nlm.nih.gov/pubmed/20868273
https://doi.org/10.1002/humu.21466
http://www.ncbi.nlm.nih.gov/pubmed/21472891
https://doi.org/10.1016/S1043-9471(05)80049-7
https://doi.org/10.1371/journal.pone.0082849
http://www.ncbi.nlm.nih.gov/pubmed/24340062
https://doi.org/10.1016/j.bpj.2014.06.015
http://www.ncbi.nlm.nih.gov/pubmed/25028884
https://doi.org/10.1093/emboj/18.7.1723
http://www.ncbi.nlm.nih.gov/pubmed/10202136
https://doi.org/10.1038/nprot.2009.31
http://www.ncbi.nlm.nih.gov/pubmed/19390528
https://doi.org/10.1093/bioinformatics/btm270
http://www.ncbi.nlm.nih.gov/pubmed/17519246
https://doi.org/10.1038/nature18966
http://www.ncbi.nlm.nih.gov/pubmed/27462812
https://doi.org/10.1016/j.tibs.2018.04.003
http://www.ncbi.nlm.nih.gov/pubmed/29735399
https://doi.org/10.1016/j.cell.2017.12.011
http://www.ncbi.nlm.nih.gov/pubmed/29307491
https://doi.org/10.1038/s41467-019-08568-5
http://www.ncbi.nlm.nih.gov/pubmed/30733446
https://doi.org/10.1126/science.aat4346
http://www.ncbi.nlm.nih.gov/pubmed/30166484
https://doi.org/10.1107/S0907444904019109
http://www.ncbi.nlm.nih.gov/pubmed/15388926
https://doi.org/10.1126/science.1150577
http://www.ncbi.nlm.nih.gov/pubmed/17962520
http://www.ncbi.nlm.nih.gov/pubmed/17962520
https://doi.org/10.1038/nature09789
https://doi.org/10.1124/mol.114.094342
http://www.ncbi.nlm.nih.gov/pubmed/25061106
https://doi.org/10.1124/pr.54.2.323
http://www.ncbi.nlm.nih.gov/pubmed/12037145
https://doi.org/10.1016/j.tips.2015.08.006
https://doi.org/10.1016/j.tips.2015.08.006
http://www.ncbi.nlm.nih.gov/pubmed/26538318
https://doi.org/10.1016/j.drudis.2015.08.003
https://doi.org/10.1016/j.drudis.2015.08.003
https://doi.org/10.1101/gr.849004
http://www.ncbi.nlm.nih.gov/pubmed/15173120
https://doi.org/10.1186/s12859-015-0567-3
http://www.ncbi.nlm.nih.gov/pubmed/25902715
http://www.ncbi.nlm.nih.gov/pubmed/25902715
https://doi.org/10.1038/nature18324
http://www.ncbi.nlm.nih.gov/pubmed/27362234
https://doi.org/10.1038/s41586-018-0236-6
https://doi.org/10.7554/eLife.50279


Dror RO, Arlow DH, Maragakis P, Mildorf TJ, Pan AC, Xu H, Borhani DW, Shaw DE. 2011a. Activation mechanism
of the b2-adrenergic receptor. PNAS 108:18684–18689. DOI: https://doi.org/10.1073/pnas.1110499108,
PMID: 22031696

Dror RO, Pan AC, Arlow DH, Borhani DW, Maragakis P, Shan Y, Xu H, Shaw DE. 2011b. Pathway and mechanism
of drug binding to G-protein-coupled receptors. PNAS 108:13118–13123. DOI: https://doi.org/10.1073/pnas.
1104614108, PMID: 21778406

Dror RO, Green HF, Valant C, Borhani DW, Valcourt JR, Pan AC, Arlow DH, Canals M, Lane JR, Rahmani R, Baell
JB, Sexton PM, Christopoulos A, Shaw DE. 2013. Structural basis for modulation of a G-protein-coupled
receptor by allosteric drugs. Nature 503:295–299. DOI: https://doi.org/10.1038/nature12595, PMID: 24121438

Dror RO, Mildorf TJ, Hilger D, Manglik A, Borhani DW, Arlow DH, Philippsen A, Villanueva N, Yang Z, Lerch MT,
Hubbell WL, Kobilka BK, Sunahara RK, Shaw DE. 2015. SIGNAL TRANSDUCTION. Structural basis for
nucleotide exchange in heterotrimeric G proteins. Science 348:1361–1365. DOI: https://doi.org/10.1126/
science.aaa5264, PMID: 26089515

Du Y, Duc NM, Rasmussen SGF, Hilger D, Kubiak X, Wang L, Bohon J, Kim HR, Wegrecki M, Asuru A, Jeong KM,
Lee J, Chance MR, Lodowski DT, Kobilka BK, Chung KY. 2019. Assembly of a GPCR-G protein complex. Cell
177:1232–1242. DOI: https://doi.org/10.1016/j.cell.2019.04.022, PMID: 31080064

Eddy MT, Lee M-Y, Gao Z-G, White KL, Didenko T, Horst R, Audet M, Stanczak P, McClary KM, Han GW,
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Schöneberg T, Hofreiter M, Schulz A, Römpler H. 2007. Learning from the past: evolution of GPCR functions.
Trends in Pharmacological Sciences 28:117–121. DOI: https://doi.org/10.1016/j.tips.2007.01.001, PMID: 172
80721
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