TLR5 participates in the TLR4 receptor complex and promotes MyD88-dependent signaling in environmental lung injury

  1. Salik Hussain
  2. Collin G Johnson
  3. Joseph Sciurba
  4. Xianglin Meng
  5. Vandy P Stober
  6. Caini Liu
  7. Jaime M Cyphert-Daly
  8. Katarzyna Bulek
  9. Wen Qian
  10. Alma Solis
  11. Yosuke Sakamachi
  12. Carol S Trempus
  13. Jim J Aloor
  14. Kym M Gowdy
  15. W Michael Foster
  16. John W Hollingsworth
  17. Robert M Tighe
  18. Xiaoxia Li
  19. Michael B Fessler
  20. Stavros Garantziotis  Is a corresponding author
  1. National Institute of Environmental Health Sciences, United States
  2. First Affiliated Hospital of Harbin Medical University, China
  3. Cleveland Clinic Foundation, United States
  4. East Carolina University Brody School of Medicine, United States
  5. Duke University Medical Center, United States

Abstract

Lung disease causes significant morbidity and mortality, and is exacerbated by environmental injury, e.g. through lipopolysaccharide (LPS) or ozone (O3). Toll-like receptors (TLRs) orchestrate immune responses to injury by recognizing pathogen- or danger-associated molecular patterns. TLR4, the prototypic receptor for LPS, also mediates inflammation after O3, triggered by endogenous hyaluronan. Regulation of TLR4 signaling is incompletely understood. TLR5, the flagellin receptor, is expressed in alveolar macrophages, and regulates immune responses to environmental injury. Using in vivo animal models of TLR4-mediated inflammations (LPS, O3, hyaluronan), we show that TLR5 impacts the in vivo response to LPS, hyaluronan and O3. We demonstrate that immune cells of human carriers of a dominant negative TLR5 allele have decreased inflammatory response to O3 exposure ex vivo and LPS exposure in vitro. Using primary murine macrophages, we find that TLR5 physically associates with TLR4 and biases TLR4 signaling towards the MyD88 pathway. Our results suggest an updated paradigm for TLR4/TLR5 signaling.

Data availability

Source data files have been provided

Article and author information

Author details

  1. Salik Hussain

    National Institute of Environmental Health Sciences, Research Triangle Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Collin G Johnson

    National Institute of Environmental Health Sciences, Research Triangle Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Joseph Sciurba

    National Institute of Environmental Health Sciences, Research Triangle Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Xianglin Meng

    Department of ICU, First Affiliated Hospital of Harbin Medical University, Harbin, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Vandy P Stober

    National Institute of Environmental Health Sciences, Research Triangle Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Caini Liu

    Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jaime M Cyphert-Daly

    National Institute of Environmental Health Sciences, Research Triangle Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Katarzyna Bulek

    Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8064-7047
  9. Wen Qian

    Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Alma Solis

    National Institute of Environmental Health Sciences, Research Triangle Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Yosuke Sakamachi

    National Institute of Environmental Health Sciences, Research Triangle Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Carol S Trempus

    National Institute of Environmental Health Sciences, Research Triangle Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Jim J Aloor

    East Carolina University Brody School of Medicine, Greenville, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Kym M Gowdy

    National Institute of Environmental Health Sciences, Research Triangle Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. W Michael Foster

    Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. John W Hollingsworth

    Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Robert M Tighe

    Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Xiaoxia Li

    Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4872-9525
  19. Michael B Fessler

    National Institute of Environmental Health Sciences, Research Triangle Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  20. Stavros Garantziotis

    National Institute of Environmental Health Sciences, Research Triangle Park, United States
    For correspondence
    garantziotis@niehs.nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4007-375X

Funding

National Institute of Environmental Health Sciences (Z01ES102605)

  • Stavros Garantziotis

National Institute of Environmental Health Sciences (Z01ES102005)

  • Michael B Fessler

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Mice were given access to water and chow ad libitum, and were maintained at a 12-hour dark-light cycle. All experiments are approved by the NIEHS Institutional Animal Care and Use Committee.

Human subjects: All subjects signed informed consent and all clinical research protocols were approved by the IRBs at Duke University Medical Center and the National Institute of Environmental Health Sciences, as applicable. The study described herein is using data collected as part of several clinical or translational studies (NCT01087307, NCT00341237, NCT00574158) and were approved by NIEHS and Duke IRBs (Protocol IRB approvals # 10-E-0063, 04-E-0053, 12496-CP-004)

Reviewing Editor

  1. Jos WM van der Meer, Radboud University Medical Centre, Netherlands

Version history

  1. Received: July 23, 2019
  2. Accepted: January 24, 2020
  3. Accepted Manuscript published: January 28, 2020 (version 1)
  4. Version of Record published: February 20, 2020 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 3,052
    Page views
  • 419
    Downloads
  • 42
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Salik Hussain
  2. Collin G Johnson
  3. Joseph Sciurba
  4. Xianglin Meng
  5. Vandy P Stober
  6. Caini Liu
  7. Jaime M Cyphert-Daly
  8. Katarzyna Bulek
  9. Wen Qian
  10. Alma Solis
  11. Yosuke Sakamachi
  12. Carol S Trempus
  13. Jim J Aloor
  14. Kym M Gowdy
  15. W Michael Foster
  16. John W Hollingsworth
  17. Robert M Tighe
  18. Xiaoxia Li
  19. Michael B Fessler
  20. Stavros Garantziotis
(2020)
TLR5 participates in the TLR4 receptor complex and promotes MyD88-dependent signaling in environmental lung injury
eLife 9:e50458.
https://doi.org/10.7554/eLife.50458

Further reading

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Roshni Roy, Pei-Lun Kuo ... Luigi Ferrucci
    Research Article Updated

    Age-associated DNA methylation in blood cells convey information on health status. However, the mechanisms that drive these changes in circulating cells and their relationships to gene regulation are unknown. We identified age-associated DNA methylation sites in six purified blood-borne immune cell types (naive B, naive CD4+ and CD8+ T cells, granulocytes, monocytes, and NK cells) collected from healthy individuals interspersed over a wide age range. Of the thousands of age-associated sites, only 350 sites were differentially methylated in the same direction in all cell types and validated in an independent longitudinal cohort. Genes close to age-associated hypomethylated sites were enriched for collagen biosynthesis and complement cascade pathways, while genes close to hypermethylated sites mapped to neuronal pathways. In silico analyses showed that in most cell types, the age-associated hypo- and hypermethylated sites were enriched for ARNT (HIF1β) and REST transcription factor (TF) motifs, respectively, which are both master regulators of hypoxia response. To conclude, despite spatial heterogeneity, there is a commonality in the putative regulatory role with respect to TF motifs and histone modifications at and around these sites. These features suggest that DNA methylation changes in healthy aging may be adaptive responses to fluctuations of oxygen availability.

    1. Immunology and Inflammation
    2. Neuroscience
    René Lemcke, Christine Egebjerg ... Birgitte R Kornum
    Research Article

    Infection with Influenza A virus (IAV) causes the well-known symptoms of the flu, including fever, loss of appetite, and excessive sleepiness. These responses, mediated by the brain, will normally disappear once the virus is cleared from the system, but a severe respiratory virus infection may cause long-lasting neurological disturbances. These include encephalitis lethargica and narcolepsy. The mechanisms behind such long lasting changes are unknown. The hypothalamus is a central regulator of the homeostatic response during a viral challenge. To gain insight into the neuronal and non-neuronal molecular changes during an IAV infection, we intranasally infected mice with an H1N1 virus and extracted the brain at different time points. Using single-nucleus RNA sequencing (snRNA-seq) of the hypothalamus, we identify transcriptional effects in all identified cell populations. The snRNA-seq data showed the most pronounced transcriptional response at 3 days past infection, with a strong downregulation of genes across all cell types. General immune processes were mainly impacted in microglia, the brain resident immune cells, where we found increased numbers of cells expressing pro-inflammatory gene networks. In addition, we found that most neuronal cell populations downregulated genes contributing to the energy homeostasis in mitochondria and protein translation in the cytosol, indicating potential reduced cellular and neuronal activity. This might be a preventive mechanism in neuronal cells to avoid intracellular viral replication and attack by phagocytosing cells. The change of microglia gene activity suggest that this is complemented by a shift in microglia activity to provide increased surveillance of their surroundings.