TLR5 participates in the TLR4 receptor complex and promotes MyD88-dependent signaling in environmental lung injury
Abstract
Lung disease causes significant morbidity and mortality, and is exacerbated by environmental injury, e.g. through lipopolysaccharide (LPS) or ozone (O3). Toll-like receptors (TLRs) orchestrate immune responses to injury by recognizing pathogen- or danger-associated molecular patterns. TLR4, the prototypic receptor for LPS, also mediates inflammation after O3, triggered by endogenous hyaluronan. Regulation of TLR4 signaling is incompletely understood. TLR5, the flagellin receptor, is expressed in alveolar macrophages, and regulates immune responses to environmental injury. Using in vivo animal models of TLR4-mediated inflammations (LPS, O3, hyaluronan), we show that TLR5 impacts the in vivo response to LPS, hyaluronan and O3. We demonstrate that immune cells of human carriers of a dominant negative TLR5 allele have decreased inflammatory response to O3 exposure ex vivo and LPS exposure in vitro. Using primary murine macrophages, we find that TLR5 physically associates with TLR4 and biases TLR4 signaling towards the MyD88 pathway. Our results suggest an updated paradigm for TLR4/TLR5 signaling.
Data availability
Source data files have been provided
Article and author information
Author details
Funding
National Institute of Environmental Health Sciences (Z01ES102605)
- Stavros Garantziotis
National Institute of Environmental Health Sciences (Z01ES102005)
- Michael B Fessler
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: Mice were given access to water and chow ad libitum, and were maintained at a 12-hour dark-light cycle. All experiments are approved by the NIEHS Institutional Animal Care and Use Committee.
Human subjects: All subjects signed informed consent and all clinical research protocols were approved by the IRBs at Duke University Medical Center and the National Institute of Environmental Health Sciences, as applicable. The study described herein is using data collected as part of several clinical or translational studies (NCT01087307, NCT00341237, NCT00574158) and were approved by NIEHS and Duke IRBs (Protocol IRB approvals # 10-E-0063, 04-E-0053, 12496-CP-004)
Copyright
This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
Metrics
-
- 3,447
- views
-
- 455
- downloads
-
- 55
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Genetics and Genomics
- Immunology and Inflammation
Systemic lupus erythematosus (SLE) is an autoimmune disease, the pathophysiology and genetic basis of which are incompletely understood. Using a forward genetic screen in multiplex families with SLE, we identified an association between SLE and compound heterozygous deleterious variants in the non-receptor tyrosine kinases (NRTKs) ACK1 and BRK. Experimental blockade of ACK1 or BRK increased circulating autoantibodies in vivo in mice and exacerbated glomerular IgG deposits in an SLE mouse model. Mechanistically, NRTKs regulate activation, migration, and proliferation of immune cells. We found that the patients’ ACK1 and BRK variants impair efferocytosis, the MERTK-mediated anti-inflammatory response to apoptotic cells, in human induced pluripotent stem cell (hiPSC)-derived macrophages, which may contribute to SLE pathogenesis. Overall, our data suggest that ACK1 and BRK deficiencies are associated with human SLE and impair efferocytosis in macrophages.
-
- Immunology and Inflammation
The adaptive T cell response is accompanied by continuous rewiring of the T cell’s electric and metabolic state. Ion channels and nutrient transporters integrate bioelectric and biochemical signals from the environment, setting cellular electric and metabolic states. Divergent electric and metabolic states contribute to T cell immunity or tolerance. Here, we report in mice that neuritin (Nrn1) contributes to tolerance development by modulating regulatory and effector T cell function. Nrn1 expression in regulatory T cells promotes its expansion and suppression function, while expression in the T effector cell dampens its inflammatory response. Nrn1 deficiency in mice causes dysregulation of ion channel and nutrient transporter expression in Treg and effector T cells, resulting in divergent metabolic outcomes and impacting autoimmune disease progression and recovery. These findings identify a novel immune function of the neurotrophic factor Nrn1 in regulating the T cell metabolic state in a cell context-dependent manner and modulating the outcome of an immune response.