TLR5 participates in the TLR4 receptor complex and promotes MyD88-dependent signaling in environmental lung injury

  1. Salik Hussain
  2. Collin G Johnson
  3. Joseph Sciurba
  4. Xianglin Meng
  5. Vandy P Stober
  6. Caini Liu
  7. Jaime M Cyphert-Daly
  8. Katarzyna Bulek
  9. Wen Qian
  10. Alma Solis
  11. Yosuke Sakamachi
  12. Carol S Trempus
  13. Jim J Aloor
  14. Kym M Gowdy
  15. W Michael Foster
  16. John W Hollingsworth
  17. Robert M Tighe
  18. Xiaoxia Li
  19. Michael B Fessler
  20. Stavros Garantziotis  Is a corresponding author
  1. National Institute of Environmental Health Sciences, United States
  2. First Affiliated Hospital of Harbin Medical University, China
  3. Cleveland Clinic Foundation, United States
  4. East Carolina University Brody School of Medicine, United States
  5. Duke University Medical Center, United States

Abstract

Lung disease causes significant morbidity and mortality, and is exacerbated by environmental injury, e.g. through lipopolysaccharide (LPS) or ozone (O3). Toll-like receptors (TLRs) orchestrate immune responses to injury by recognizing pathogen- or danger-associated molecular patterns. TLR4, the prototypic receptor for LPS, also mediates inflammation after O3, triggered by endogenous hyaluronan. Regulation of TLR4 signaling is incompletely understood. TLR5, the flagellin receptor, is expressed in alveolar macrophages, and regulates immune responses to environmental injury. Using in vivo animal models of TLR4-mediated inflammations (LPS, O3, hyaluronan), we show that TLR5 impacts the in vivo response to LPS, hyaluronan and O3. We demonstrate that immune cells of human carriers of a dominant negative TLR5 allele have decreased inflammatory response to O3 exposure ex vivo and LPS exposure in vitro. Using primary murine macrophages, we find that TLR5 physically associates with TLR4 and biases TLR4 signaling towards the MyD88 pathway. Our results suggest an updated paradigm for TLR4/TLR5 signaling.

Data availability

Source data files have been provided

Article and author information

Author details

  1. Salik Hussain

    National Institute of Environmental Health Sciences, Research Triangle Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Collin G Johnson

    National Institute of Environmental Health Sciences, Research Triangle Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Joseph Sciurba

    National Institute of Environmental Health Sciences, Research Triangle Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Xianglin Meng

    Department of ICU, First Affiliated Hospital of Harbin Medical University, Harbin, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Vandy P Stober

    National Institute of Environmental Health Sciences, Research Triangle Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Caini Liu

    Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jaime M Cyphert-Daly

    National Institute of Environmental Health Sciences, Research Triangle Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Katarzyna Bulek

    Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8064-7047
  9. Wen Qian

    Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Alma Solis

    National Institute of Environmental Health Sciences, Research Triangle Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Yosuke Sakamachi

    National Institute of Environmental Health Sciences, Research Triangle Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Carol S Trempus

    National Institute of Environmental Health Sciences, Research Triangle Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Jim J Aloor

    East Carolina University Brody School of Medicine, Greenville, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Kym M Gowdy

    National Institute of Environmental Health Sciences, Research Triangle Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. W Michael Foster

    Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. John W Hollingsworth

    Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Robert M Tighe

    Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Xiaoxia Li

    Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4872-9525
  19. Michael B Fessler

    National Institute of Environmental Health Sciences, Research Triangle Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  20. Stavros Garantziotis

    National Institute of Environmental Health Sciences, Research Triangle Park, United States
    For correspondence
    garantziotis@niehs.nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4007-375X

Funding

National Institute of Environmental Health Sciences (Z01ES102605)

  • Stavros Garantziotis

National Institute of Environmental Health Sciences (Z01ES102005)

  • Michael B Fessler

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Mice were given access to water and chow ad libitum, and were maintained at a 12-hour dark-light cycle. All experiments are approved by the NIEHS Institutional Animal Care and Use Committee.

Human subjects: All subjects signed informed consent and all clinical research protocols were approved by the IRBs at Duke University Medical Center and the National Institute of Environmental Health Sciences, as applicable. The study described herein is using data collected as part of several clinical or translational studies (NCT01087307, NCT00341237, NCT00574158) and were approved by NIEHS and Duke IRBs (Protocol IRB approvals # 10-E-0063, 04-E-0053, 12496-CP-004)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 3,393
    views
  • 451
    downloads
  • 53
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Salik Hussain
  2. Collin G Johnson
  3. Joseph Sciurba
  4. Xianglin Meng
  5. Vandy P Stober
  6. Caini Liu
  7. Jaime M Cyphert-Daly
  8. Katarzyna Bulek
  9. Wen Qian
  10. Alma Solis
  11. Yosuke Sakamachi
  12. Carol S Trempus
  13. Jim J Aloor
  14. Kym M Gowdy
  15. W Michael Foster
  16. John W Hollingsworth
  17. Robert M Tighe
  18. Xiaoxia Li
  19. Michael B Fessler
  20. Stavros Garantziotis
(2020)
TLR5 participates in the TLR4 receptor complex and promotes MyD88-dependent signaling in environmental lung injury
eLife 9:e50458.
https://doi.org/10.7554/eLife.50458

Share this article

https://doi.org/10.7554/eLife.50458

Further reading

    1. Immunology and Inflammation
    Chan-Su Park, Jian Guan ... Scheherazade Sadegh-Nasseri
    Research Article

    The fate of developing T cells is determined by the strength of T cell receptor (TCR) signal they receive in the thymus. This process is finely regulated through the tuning of positive and negative regulators in thymocytes. The Family with sequence similarity 49 member B (Fam49b) protein is a newly discovered negative regulator of TCR signaling that has been shown to suppress Rac-1 activity in vitro in cultured T cell lines. However, the contribution of Fam49b to the thymic development of T cells is unknown. To investigate this important issue, we generated a novel mouse line deficient in Fam49b (Fam49b-KO). We observed that Fam49b-KO double positive (DP) thymocytes underwent excessive negative selection, whereas the positive selection stage was unaffected. Fam49b deficiency impaired the survival of single positive thymocytes and peripheral T cells. This altered development process resulted in significant reductions in CD4 and CD8 single-positive thymocytes as well as peripheral T cells. Interestingly, a large proportion of the TCRγδ+ and CD8αα+TCRαβ+ gut intraepithelial T lymphocytes were absent in Fam49b-KO mice. Our results demonstrate that Fam49b dampens thymocytes TCR signaling in order to escape negative selection during development, uncovering the function of Fam49b as a critical regulator of the selection process to ensure normal thymocyte development and peripheral T cells survival.

    1. Cell Biology
    2. Immunology and Inflammation
    Richard A Kahn, Harvinder Virk ... Skye Longworth
    Feature Article

    Antibodies are used in many areas of biomedical and clinical research, but many of these antibodies have not been adequately characterized, which casts doubt on the results reported in many scientific papers. This problem is compounded by a lack of suitable control experiments in many studies. In this article we review the history of the ‘antibody characterization crisis’, and we document efforts and initiatives to address the problem, notably for antibodies that target human proteins. We also present recommendations for a range of stakeholders – researchers, universities, journals, antibody vendors and repositories, scientific societies and funders – to increase the reproducibility of studies that rely on antibodies.