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Abstract Many species that run or leap across sparsely vegetated habitats, including horses and

deer, evolved the severe reduction or complete loss of foot muscles as skeletal elements elongated

and digits were lost, and yet the developmental mechanisms remain unknown. Here, we report the

natural loss of foot muscles in the bipedal jerboa, Jaculus jaculus. Although adults have no muscles

in their feet, newborn animals have muscles that rapidly disappear soon after birth. We were

surprised to find no evidence of apoptotic or necrotic cell death during stages of peak myofiber

loss, countering well-supported assumptions of developmental tissue remodeling. We instead see

hallmarks of muscle atrophy, including an ordered disassembly of the sarcomere associated with

upregulation of the E3 ubiquitin ligases, MuRF1 and Atrogin-1. We propose that the natural loss of

muscle, which remodeled foot anatomy during evolution and development, involves cellular

mechanisms that are typically associated with disease or injury.

DOI: https://doi.org/10.7554/eLife.50645.001

Introduction
Muscles in the feet of birds, reptiles, and mammals were lost multiple times in the course of limb

evolution, usually coinciding with the loss of associated digits and elongation of remaining skeletal

elements (Hudson, 1937; Raikow, 1987; Pavaux and Lignereux, 1995; Botelho et al., 2014;

Abdala et al., 2015; Berman, 1985; Cunningham, 1883; Souza et al., 2010). Despite its frequent

occurrence, the developmental mechanisms that lead to the natural absence of adult limb muscle

are not known. We focus here on a representative example of distal limb muscle loss in the bipedal

three-toed jerboa (Jaculus jaculus), a small laboratory rodent model for evolutionary developmental

biology, to determine if evolutionary muscle loss conforms to expectations based on what was previ-

ously known about muscle cell biology.

The hindlimb architecture of the adult jerboa is strikingly similar by convergence to the more

familiar hooved animals, like horses and deer, including the disproportionately elongated foot that

lacks all intrinsic muscle (Berman, 1985; Cunningham, 1883). The tendons were retained and

expanded in each of the anatomical positions where flexor muscles are absent (Figure 1A,B and Fig-

ure 1—figure supplement 1A,B) and serve to resist hyperextension when the terminal phalanx con-

tacts the ground during locomotion (Lochner et al., 1980; Moore et al., 2017). The evolutionary

origin of jerboa intrinsic foot muscle loss lies deep in the phylogenetic tree of Dipodoid rodents.

Compared to the ancestral state, the number of intrinsic foot muscles are reduced from sixteen to

six in pygmy jerboas (Stein, 1990) which diverged from the three-toed jerboa lineage more than 20

million years ago (Wu et al., 2012; Pisano et al., 2015).

The mechanisms of limb muscle development have been extensively studied in traditional model

systems, and its degeneration has been studied after injury and during disease. Briefly, limb muscle
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progenitors are specified from mesodermal cells at the ventrolateral edge of the dermomyotome in

somites aligned with the prospective limb. These cells delaminate and migrate into the limb bud as

dorsal and ventral muscle masses that proliferate and initiate a myoblast specification program

(Chevallier et al., 1977; Christ et al., 1977; Hayashi and Ozawa, 1991; Murphy and Kardon,

2011). The muscle masses are then subdivided into individual muscle groups in response to cues

from the developing muscle connective tissue, which is derived from limb field lateral plate meso-

derm (Hayashi and Ozawa, 1991; Kardon, 1998; Kardon et al., 2003; Wortham, 1948). They then

initiate a differentiation program, which includes cell fusion to form aligned multinucleated myofib-

ers (Abmayr and Pavlath, 2012; Kelly and Zacks, 1969).

Each differentiated myofiber produces an assemblage of Z-body proteins, Actin filaments, and

non-muscle Myosin that form premyofibrils (Ono, 2010; Rhee et al., 1994; Sanger and Sanger,

2008; Sanger et al., 2002). Desmin, a-Actinin, and the Z-body portion of Titin also begin to orga-

nize (Furst et al., 1989; Sanger et al., 2002). Subsequent uncoiling of Titin increases Z-body spac-

ing, and integration of embryonic skeletal muscle Myosin results in formation of nascent myofibrils

(Ono, 2010; Sanger et al., 2010). Further maturation of the nascent myofibril into a mature myofi-

bril involves incorporation of additional proteins that are important for sarcomere structure and func-

tion, and Z-lines are aligned and properly spaced to bring sarcomeres into register (Ehler and

Gautel, 2008; Sanger et al., 2010). Failure at any point of myoblast specification, migration, myo-

fiber differentiation, or myofibril maturation compromises muscle function and manifests as muscle

degenerative disease in humans (Bönnemann and Laing, 2004; Laing and Nowak, 2005;

Morita et al., 2005).

Working backward in time from the adult jerboa phenotype, we found that two of the three flexor

muscle groups differentiate as multinucleated myofibers that initiate sarcomere assembly, as in other

species. However, almost all jerboa intrinsic foot muscle is lost within a few days shortly after birth.

Despite the rapid and near complete loss of myofibers, we found no molecular or ultrastructural evi-

dence of apoptotic or necrotic cell death, no accumulation of autophagic vesicles, and no macro-

phage infiltration. Instead, we observed evidence of ordered sarcomere disassembly and

upregulation of muscle-specific ubiquitin ligases, MuRF1 and Atrogin-1. Although the ultimate fate

of intrinsic foot myofibers after loss of muscle identity remains unknown, these data suggest that the

eLife digest Intrinsic muscles are a group of muscles deep inside the hands and feet. They help

to control the precise movements required, for example, for a pianist to play their instrument or for

certain animals to climb with remarkable agility.

Some animals, such as horses and deer, have evolved in such a way that they no longer grasp

objects with hands and feet. Where intrinsic muscles were once present in the hands and feet of

their ancestors, these animals now have strong ligaments that prevent over-extension of the wrist

and ankle joints during hard landings.

Given their size, it is difficult to study horses and deer in the laboratory and understand how they

lost their intrinsic muscles during evolution. Tran et al. therefore focused on a small rodent called

the lesser Egyptian jerboa, which also displays long legs with strong ligaments and no intrinsic

muscles.

Newborn jerboas have foot muscles that look very much like the intrinsic muscles found in mice,

but these muscles disappear within 4 days of birth. A mechanism called programmed cell death is

often responsible for specific tissues disappearing during development, but the experiments of Tran

et al. revealed that this was not the case in jerboas. Instead, their intrinsic muscles were degraded

by processes triggered by genes that disassemble underused muscles. In mice and humans, fasting,

nerve injuries, or immobility trigger this type of muscle degradation, but in jerboas these processes

appear to be a normal part of development.

This unexpected discovery shows that development and disease-like processes are linked, and

that more studies of nontraditional research animals may help scientists better understand these

connections.

DOI: https://doi.org/10.7554/eLife.50645.002
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mechanism of myofiber loss is similar to atrophy, which is typically considered a pathological

response to injury or disease.

Results
The absence of intrinsic foot muscle in the adult jerboa could be due to a failure of early myoblasts

to migrate into and/or to differentiate in the distal limb. Alternatively, embryonic muscles may form

but not persist through development to the adult. In transverse sections of newborn mouse feet,

immunofluorescent detection of skeletal muscle myosin heavy chain reveals each intrinsic muscle

Figure 1. Muscles are rapidly lost in the neonatal jerboa foot. (A and B) Transverse sections of adult (A) mouse

and (B) jerboa foot. (C and D) Mean and standard deviation of the number of myofibers in transverse sections of

third digit interosseous muscle at two-day intervals from birth to postnatal day 8. (C) Mouse P0-P8, n = 3 animals

each. P0-P4 (p=0.0062), P2-P4 (p=0.0262), P0-P6 (p=0.0002), P2-P6 (p=0.0007), P6-P8 (p=0.0009). (D) Jerboa P0,

n = 4 animals; P2, P6, P8, n = 3 animals each; P4, n = 6 animals. P4-P6 (p=0.0376), P4-P8 (p=0.0002). (*p<0.05,

**p<0.01, ***p<0.001) (E and F) Representative transverse sections of interosseous muscle of the third digit of (E)

mouse and (F) jerboa at each stage. For all: top dorsal; bottom ventral.

DOI: https://doi.org/10.7554/eLife.50645.003

The following figure supplement is available for figure 1:

Figure supplement 1. Anatomy of mouse and jerboa foot.

DOI: https://doi.org/10.7554/eLife.50645.004
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group (Figure 1—figure supplement 1G). In newborn jerboas, we observed two of the three groups

of flexor muscles. While the m. lumbricales never form, the jerboa has a single m. flexor digitorum

brevis and three pinnate m. interossei that are not present in adults (Figure 1—figure supplement

1H).

Postnatal growth of vertebrate skeletal muscle typically involves an increase in myofiber number

(hyperplasia) within the first week, followed by an increase in myofiber size (hypertrophy)

(Chiakulas and Pauly, 1965; Gokhin et al., 2008; White et al., 2010). In order to understand the

dynamics of muscle growth and loss, we quantified the rate of myofiber hyperplasia at 2-day inter-

vals after birth of the mouse and jerboa, focusing on the representative interosseous muscle that is

associated with the third metatarsal (Figure 1E,F). As expected in the mouse, we observed a steady

increase in the average number of myofibers in cross section from birth to P8 (Figure 1C). In con-

trast, the number of myofibers in the third interosseous of the jerboa foot rapidly declines beginning

at approximately P4, and few myofibers remain by P8 (Figure 1D).

It is possible that the rate of myofiber loss outpaces a typical rate of new cell addition such that

muscles with the potential to grow are instead steadily diminished. Alternatively, myofiber loss may

be accelerated by a compromised ability to form new myofibers and to add nuclei to growing myo-

fibers. To distinguish these hypotheses, we analyzed cohorts of animals 2 days after intraperitoneal

BrdU injection at P0, P2, or P4. Since multinucleated jerboa foot myofibers are postmitotic (Fig-

ure 2—figure supplement 1), we reasoned that BrdU+ nuclei present within Dystroglycan+ myo-

fiber membranes were added by myocyte fusion during the 2-day window after they were labeled as

myoblasts or myocytes in S-phase (Figure 2A). When normalized to the total number of myofiber

nuclei, we found that myocytes fuse to form multinucleated myofibers in jerboa hand muscle at a

consistent rate from P0 to P6. However, their incorporation into jerboa foot muscle decreased signif-

icantly after P2 (Figure 2B). These results suggest that myofiber loss, which begins at P4, is pre-

ceded by reduced myogenesis.

The reduced rate of myocyte incorporation could be due to reduced numbers of muscle progeni-

tor cells or to an inability of these cells to mature and fuse. To distinguish these possibilities by quan-

tifying proliferative muscle progenitor cells, we analyzed animals 2 hr after BrdU injection at P0, P2,

and P4 and counted the number of BrdU+ nuclei located between the Dystroglycan+ myofiber

membrane and the Laminin+ basal lamina (Figure 2C). Normalized to the total number of myofibers,

we found that the number of proliferative progenitor cells in jerboa foot muscle significantly

decreased from P0 to P4 compared to hand muscles that showed no change over time (Figure 2D).

These results suggest that a reduced number of muscle progenitor cells might contribute to the

reduced prevalence of myocyte fusion events.

We next tested whether compromised proliferation and differentiation of jerboa foot muscle pro-

genitors is cell autonomous or non-cell autonomous. We isolated single cells, including myoblasts

and myocytes but excluding myofibers, by mechanical trituration and enzymatic digestion of P1 jer-

boa and mouse lower leg and foot muscles (Danoviz and Yablonka-Reuveni, 2012). After 6 days

and 9 days of culture, we detected Myogenin+ differentiating myocytes and Myosin+ fully differenti-

ated myofibers in primary cell cultures isolated from each muscle (Figure 2E). We did not detect a

significant decline in the number of differentiated cells over time (Figure 2—figure supplement 2).

Jerboa foot muscle cell differentiation and survival in vitro days after cell number begins to decline

in vivo suggests that loss of jerboa foot myofibers is initiated non-cell autonomously.

The rapid and almost complete loss of differentiated myofibers in vivo from P4 to P8 suggested

these cells die, since individual cells or groups of cells are commonly eliminated by apoptosis during

development (Brill et al., 1999; Fernández-Terán et al., 2006). We therefore tested the hypothesis

that neonatal intrinsic foot muscles undergo apoptosis by implementing the TUNEL assay to detect

DNA fragmentation and by immunofluorescent detection of cleaved Caspase-3, a key protein in the

apoptotic program (Elmore, 2007). Each revealed keratinocyte apoptosis in hair follicles, which are

known to undergo programmed cell death, as a positive control in the same tissue sections

(Magerl et al., 2001). However, TUNEL or cleaved Caspase-3-positive jerboa foot myofibers or cells

in their vicinity were an extreme rarity (0.25% of myofibers) in animals ranging from P0 to P8 and

comparable to mouse myofibers suggesting muscle is not eliminated by apoptosis (Figure 3A,B and

Figure 3—figure supplement 1).

Alternatively, myofiber loss may occur through a cell death mechanism that is first characterized

by plasma membrane permeability, such as necrosis (Vanden Berghe et al., 2014). To test this
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hypothesis, we injected Evans blue dye (EBD), a fluorescent molecule that accumulates in cells with

compromised plasma membranes (Hamer et al., 2002; Matsuda et al., 1995), into the peritoneum

of P3 and P4 neonatal jerboas 24 hr before euthanasia. Although we detected EBD in mechanically

injured myofibers of the gastrocnemius as a control, we saw no EBD fluorescence in jerboa foot myo-

fibers or in surrounding cells (Figure 3C and Figure 3—figure supplement 2). We also saw no

Figure 2. The rate of myocyte fusion is reduced prior to myofiber loss. (A) Newly fused nuclei within Dystroglycan

+ myofiber membranes (arrow) can be distinguished two days after labeling with BrdU. (B) The mean and standard

deviation of BrdU+ myonuclei (putative fusion events) normalized to all myofiber nuclei in sections of jerboa hand

and foot muscles at intervals from P0 to P6. Foot at P0-P2, P2-P4, P4-P6, Hand at P0-P2, P4-P6, n = 3 animals each.

Hands at P2-P4, n = 4 animals. (C) Proliferative muscle progenitor cells that are BrdU+ are found outside

Dystroglycan+ membrane and inside the Laminin+ basal lamina (Arrow). (D) The mean and standard deviation of

BrdU+ muscle progenitor cells was normalized to the number of myofibers in sections of jerboa hand and foot

muscles at P0, P2, and P4. n = 4 animals each. (E) Differentiated myofibers after 6 days of culturing primary muscle

progenitor cells isolated from lower leg and foot muscles of mouse and jerboa. Green, Myogenin; Magenta,

Myosin.

DOI: https://doi.org/10.7554/eLife.50645.005

The following figure supplements are available for figure 2:

Figure supplement 1. Jerboa foot muscles are postmitotic.

DOI: https://doi.org/10.7554/eLife.50645.006

Figure supplement 2. Persistence of differentiated muscle cells in culture after loss in vivo.

DOI: https://doi.org/10.7554/eLife.50645.007
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Figure 3. There is no evidence of apoptosis, necrosis, or macrophage infiltration. (A and B) TUNEL and cleaved

Caspase-3 staining for apoptotic nuclei in transverse sections of third digit interosseous muscle in the P6 jerboa

foot and of positive control (TUNEL, n = 3 animals; cleaved Caspase-3, n = 2 animals). See also Figure 3—figure

supplement 1 for more stages. (C) EBD detection in transverse section of third digit interosseous muscle in the P5

jerboa foot and of positive control (n = 5 animals). See also Figure 3—figure supplement 2 for more stages. (D)

Annexin V immunofluorescence in longitudinal section of third digit interosseous muscle in the P6 jerboa foot and

of positive control (n = 3 animals). See also Figure 3—figure supplement 2 for more stages. (E) CD45

immunofluorescence in transverse section of third digit interosseous muscle in the P6 jerboa foot and of positive

control (n = 3 animals). See also Figure 3—figure supplement 3 for more stages and for an additional

macrophage marker, F4/80.

DOI: https://doi.org/10.7554/eLife.50645.008

The following figure supplements are available for figure 3:

Figure supplement 1. No evidence of jerboa foot muscle apoptosis.

DOI: https://doi.org/10.7554/eLife.50645.009

Figure supplement 2. No evidence of jerboa foot muscle necrosis.

DOI: https://doi.org/10.7554/eLife.50645.010

Figure supplement 3. No macrophage infiltration into jerboa foot muscle.

DOI: https://doi.org/10.7554/eLife.50645.011
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Annexin V immunofluorescence on the surface of jerboa foot myofibers, another hallmark of dying

cells that flip Annexin V to the outer plasma membrane (Figure 3D and Figure 3—figure supple-

ment 2).

Since we observed no direct evidence of cell death, we asked whether there was an immune

response that might be an indirect proxy for undetected death. Dying muscle cells frequently recruit

phagocytic macrophages that engulf cellular debris (Arnold et al., 2007; Londhe and Guttridge,

2015; Tidball and Wehling-Henricks, 2007). We predicted that myofibers that die by any mecha-

nism that produces cellular debris might recruit macrophages that are detectable by expression of

the F4/80 glycoprotein. However, consistent with the lack of evidence of cell death in the jerboa

foot, no F4/80+ macrophages were found among myofibers from birth to P7 (Figure 3—figure sup-

plement 3). Since immune cells other than mature macrophages might be recruited to a site of cell

death, we also assessed expression of CD45 and found no evidence of T-cells, B-cells, dendritic cells,

natural killer cells, monocytes, or granulocytes near jerboa foot myofibers from P4 to P8 (Figure 3E

and Figure 3—figure supplement 3).

The absence of any clear indication of muscle cell death motivated us to re-evaluate muscle matu-

ration at greater resolution in order to capture the earliest detectable signs of muscle cell loss. We

collected transmission electron micrographs of jerboa hand and foot muscle at P0, P2, and P4. We

identified criteria for three categories of maturation, as described previously (Borisov et al., 2008;

Raeker et al., 2014; Sanger et al., 2006), and two categories of degeneration. Category A cells

have pre-myofibrils with thick and thin filaments and poorly resolved Z-discs, but the M-lines and

I-bands are not yet apparent (Figure 4A). In Category B, Z-discs of nascent myofibrils are better

resolved, and M-lines and I-bands are apparent, but parallel sarcomeres are not in register

(Figure 4B). The mature myofibrils of Category C have Z-lines that are aligned with one another

(Figure 4C). In Category D, early degeneration, some sarcomeres appear similar to Category A, but

other areas of the cell contain disorganized filaments (Figure 4D). Category E includes those in the

worst condition where less than half of the cell has any recognizable sarcomeres, and much of the

cytoplasm is filled with pools of disorganized filaments and Z-protein aggregates (Figure 4E). Addi-

tionally, Category D and E cells have membrane-enclosed vacuoles and large lipid droplets (Fig-

ure 4—figure supplement 1). However, consistent with a lack of evidence for cell death, none of

these cells or their organelles appear swollen, nuclear morphology appears normal, plasma mem-

branes seem to be contiguous, and we do not observe an accumulation of autophagic vesicles that

typically characterize cell death associated with unregulated autophagy (Mizushima, 2007;

Kroemer and Levine, 2008; Denton and Kumar, 2019).

We then coded and pooled all images of hand and foot myofibers from P0, P2, and P4 jerboas

and blindly assigned each cell to one of the five categories. Quantification of the percent of myofib-

ers in each category after unblinding revealed the progressive maturation of jerboa hand myofibers

and the progressive degeneration of jerboa foot myofibers (Figure 4G). Compared to later stages,

there is little difference in the maturation state of hand and foot sarcomeres at birth. Loss of ultra-

structural integrity is therefore initiated perinatally, prior to complete myofibril maturation in the jer-

boa foot.

Our analysis of transmission electron micrographs also revealed the presence of filamentous

aggregates that we did not include in our quantifications because they are enucleate, lack all other

recognizable organelles, and are not bounded by a plasma membrane. Although these aggregates

do not appear to be cellular, they are always closely associated with cells of a fibroblast morphology,

and most lie between remaining myofibers in a space we presume was also once occupied by a myo-

fiber (Figure 4F,H). To determine if these unusual structures contain muscle protein, we performed

immunofluorescence on sections of P4 jerboa foot muscle and found similar aggregates of intensely

fluorescent immunoreactivity to skeletal muscle myosin heavy chain. We also found that the sur-

rounding cells, which correlate with the positions of fibroblasts in electron micrographs, express the

intracellular pro-peptide of Collagen I (Figure 4I), the major component of tendon and other fibrous

connective tissues and of fibrotic tissue after injury (Mann et al., 2011).

Given the apparent deterioration of nascent sarcomeres, we asked whether individual sarcomere

proteins are lost from myofibrils in a temporal order or if proteins disassemble simultaneously. We

assessed the organization of sarcomere proteins by multicolor immunofluorescence at P0, P2, and

P4. Alpha-Actinin, Desmin, Myomesin, Myosin, Titin, and Tropomyosin are each localized to an

ordered series of striations in a subset of myofibers suggesting all are initially incorporated into
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Figure 4. Jerboa foot myofibers degenerate from a nascent state soon after birth. (A to C) TEM of representative

jerboa hand myofibers illustrating categories (A) nascent, (B) immature, and (C) mature. (D and E) TEM of

Representative jerboa foot myofibers illustrating categories (D) early degeneration and (E) late degeneration.

Scale bar in E is also for A to D. (F) TEM of filamentous aggregates and surrounding fibroblast-like cells (asterisks)

Figure 4 continued on next page
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immature sarcomeres (Figure 5A and Figure 5—source data 1–5). By assessing all combinations of

immunologically compatible primary antibodies, we identified populations of cells where Desmin

was no longer present in an ordered array, but each of the other proteins appeared properly local-

ized to the sarcomere (Figure 5B and Figure 5—source data 2). Although we could not distinguish

such clear categories of mislocalization for each protein relative to all others, we inferred a relative

timeline whereby Desmin disorganization is followed together by Myosin and Tropomyosin, then

Titin, and lastly Myomesin and a-Actinin (Figure 5B–F and Figure 5—source data 1–5).

Desmin forms a filamentous network that connects parallel sarcomeres to one another and coor-

dinates myofibril contraction within cells and between neighboring cells (Bär et al., 2004;

Capetanaki et al., 2015; Goldfarb et al., 2008). Mutations that cause desminopathies illustrate that

Desmin is essential to maintain sarcomere integrity (Clemen et al., 2013). In mouse models of mus-

cle atrophy triggered by fasting or denervation, phosphorylation of Desmin removes the protein

from the sarcomere and targets it for ubiquitination and proteolytic degradation prior to degrada-

tion of other sarcomere proteins (Volodin et al., 2017). The observation that Desmin is the first of

an ordered sarcomere disassembly in the jerboa foot may reflect targeted degradation of muscle

proteins that is similar to muscle atrophy.

The ubiquitin-proteasome system is the main pathway through which cellular proteins are

degraded during muscle atrophy, and MuRF1 and Atrogin-1 are E3 ubiquitin ligases among the

‘atrogenes’ that are highly upregulated (Bodine and Baehr, 2014; Schiaffino et al., 2013). To test

the hypothesis that muscle loss in the jerboa foot exhibits molecular hallmarks of atrophy, we per-

formed quantitative reverse transcriptase PCR (qRT-PCR) of MuRF1 and Atrogin-1 mRNA from intrin-

sic foot muscles and the flexor digitorum superficialis (FDS) of the mouse and jerboa. The FDS,

which originates in the autopod during embryogenesis and translocates to the forearm

(Huang et al., 2013), is the most easily dissected of the analogous forelimb muscles and serves as a

control for typical muscle maturation in both species. When normalized to expression in the FDS at

birth of each species, Atrogin-1 expression is 3.1-fold higher in the jerboa foot at P3 (Figure 5G).

MuRF1 mRNA expression is already significantly elevated at birth and remains elevated at P3

(Figure 5H).

The NF-kB pathway is an upstream mediator of skeletal muscle atrophy (Li et al., 2008) and is

both necessary and sufficient to induce MuRF1 expression (Cai et al., 2004; Wu et al., 2014). To

lend further support to the hypothesis that jerboa foot muscle loss involves an ‘atrophy-like’ mecha-

nism, we performed qRT-PCR of NF-kB2 and its binding partner, Relb. We observed that each gene

is expressed greater than three-fold higher in jerboa foot at birth and at P3 (Figure 5—source data

1). The progressively disordered ultrastructure of the sarcomere that begins with loss of Desmin

localization, the increased expression of multiple genes that are typically upregulated during atro-

phy, and the lack of evidence for cell death or macrophage infiltration are consistent with observa-

tions of atrophying muscle in mice and rats (Volodin et al., 2017; Bonaldo and Sandri, 2013;

Sakuma et al., 2015; von Haehling et al., 2010).

Despite the similarities to muscle atrophy, myofiber loss in the jerboa foot does not seem to be

simply explained by an atrophic response to denervation. First, and in contrast to the rapid rate of

jerboa foot myofiber loss, chronic denervation in mice (100 days after nerve transection at P14)

reduced the size but not the number of individual myofibers (Moschella and Ontell, 1987). Addi-

tionally, we found that the post-synaptic Acetylcholine Receptor (AchR) exclusively coincides with

the presynaptic neuronal protein, Synaptophysin, in neonatal jerboa foot muscles (Figure 5—figure

Figure 4 continued

observed in jerboa feet. (G) Mean percentage and standard deviation of myofibers in each category in jerboa P0,

P2, P4 hand and foot muscles. Number of myofibers pooled from three animals at each stage: hand – (P0),

n = 135; (P2), n = 195; (P4), n = 184 (P4); foot – (P0), n = 186; (P2), n = 193; (P4), n = 186. (H) Higher magnification

image of myofibril aggregates in F. (I) Pro-Collagen I positive cells surround skeletal muscle myosin+ aggregates

(arrowheads) in jerboa feet. See also Figure 4—figure supplement 1.

DOI: https://doi.org/10.7554/eLife.50645.012

The following figure supplement is available for figure 4:

Figure supplement 1. Jerboa foot muscle contains large lipid droplets.

DOI: https://doi.org/10.7554/eLife.50645.013
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Figure 5. Sarcomere disorganization and E3 ubiquitin ligase expression suggest an ‘atrophy-like’ mechanism of

jerboa foot muscle loss. (A to E) Multicolor immunofluorescence images of sarcomere protein organization in P4

jerboa foot muscles (representative of 704 myofibers from seven P4 animals). (F) Model of the interpreted order of

sarcomere protein disorganization derived from Figure 5—source data 1–5. (G and H) RT-qPCR measurements of

Figure 5 continued on next page
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supplement 1). In the mouse, AchR clusters are present in a broad domain of fetal muscle prior to

innervation and are refined to nerve terminals in response to chemical synapse activity before birth

(Yang et al., 2001). The refinement of AchR clusters in jerboa foot muscles suggests that the

muscles are not only innervated at birth but are also responsive to motor inputs.

Discussion
Beginning only with knowledge of adult jerboa foot anatomy, we reached evidence for a cellular

mechanism of intrinsic muscle loss during neonatal development that is surprising in the context of

what is known about muscle development and pathology in more traditional laboratory species.

Although we found multinucleated myofibers in the feet of neonatal jerboas, all muscle protein

expression rapidly disappears from the jerboa foot shortly after birth. We were perplexed to find no

evidence of apoptotic or necrotic cell death by a variety of assays and throughout the time when

muscle cells are lost, nor did we observe immune cells that are commonly recruited to clear the

remains of dying cells. Instead, we saw structural and molecular similarities to muscle atrophy,

although atrophy in young mice leads to reduced myofiber size rather than number as in the jerboa

(Bruusgaard and Gundersen, 2008; Moschella and Ontell, 1987).

In an effort to functionally connect the atrogenes, MuRF1 and Atrogin-1, to a mechanism of mus-

cle loss, we endeavored to determine whether knocking down both genes in jerboa foot muscle in

vivo could be sufficient to rescue myofibers or to delay their loss. Although we developed a system

to validate shRNAs targeting each jerboa gene after first inducing MuRF1 and Atrogin-1 expression

in cultured primary jerboa myofibers, shRNA delivery into rodent neonatal foot muscle was not feasi-

ble (not shown). Lentiviral injection bathes the ensheathing muscle connective tissue, and infection

rarely reaches myofibers of these small muscles in either mouse or jerboa. Plasmid injection and elec-

troporation, which is feasible in adult rodent feet (DiFranco et al., 2009), is not efficient in neonatal

feet of either species. This is likely because the neonatal foot lacks a cavity to contain injected DNA,

Figure 5 continued

(G) Atrogin-1/MAFbx and (H) MuRF1 mRNA normalized to SDHA. Fold-change and standard deviations are

expressed relative to the mean for P0 forearm muscle (FDS) of the same species. Mouse P0 FDS (n = 5), foot

(n = 4); mouse P3 FDS (n = 3), foot (n4); jerboa P0 FDS (n = 6), foot (n = 5); jerboa P3 FDS (n = 4), foot (n = 6). In G:

**p=0.0045, ****p<0.0001. In H: **p=0.0011, ***p=0.0002. (I and J) RT-qPCR measurements of (I) NF-kB2 and (J)

Relb mRNA normalized to SDHA. Fold-change and standard deviations are expressed relative to the mean for P0

forearm muscle (FDS) of the same species. Mouse P0 FDS (n = 4), foot (n = 3); mouse P3 FDS and foot (n = 3);

jerboa P0 FDS and foot (n = 3); jerboa P3 FDS and foot (n = 4). In I: *p=0.0112, ****p<0.0001. In J from left to

right: *p=0.0473, **p=0.0012, **p=0.0017, and **p=0.0012.

DOI: https://doi.org/10.7554/eLife.50645.014

The following source data and figure supplement are available for figure 5:

Source data 1. Information extracted from multicolor immunofluorescence of individual myofibers to infer the

order of sarcomere protein disorganization in jerboa foot muscles.

DOI: https://doi.org/10.7554/eLife.50645.016

Source data 2. Percentage of myofibers in each category for Desmin, Tropomyosin, Myosin, and Titin multicolor

immunofluorescence of jerboa hand and foot muscles at three postnatal stages.

DOI: https://doi.org/10.7554/eLife.50645.017

Source data 3. Percentage of myofibers in each category for Tropomyosin, Myosin, and Titin multicolor immuno-

fluorescence of jerboa hand and foot muscles at three postnatal stages.

DOI: https://doi.org/10.7554/eLife.50645.018

Source data 4. Percentage of myofibers in each category for Myosin, Titin, and Alpha-actinin multicolor immuno-

fluorescence of jerboa hand and foot muscles at three postnatal stages.

DOI: https://doi.org/10.7554/eLife.50645.019

Source data 5. Percentage of myofibers in each category for Myosin, Titin, Myomesin multicolor immunofluores-

cence of jerboa hand and foot muscles at three postnatal stages.

DOI: https://doi.org/10.7554/eLife.50645.020

Figure supplement 1. Jerboa foot muscles are innervated.

DOI: https://doi.org/10.7554/eLife.50645.015
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provided by separation of the overlying skin in mature animals, which is required for efficient plasmid

uptake by electroporation (Krull, 2004).

Even if genetic manipulations were technically feasible, intrinsic foot muscle loss first appeared in

the jerboa lineage more than 20 million years ago. For phenotypes that diverged over such long

evolutionary distances, a large set of genes and mechanical acommodation of integrated tissues are

likely at play, which were collectively honed by millions of years of evolution; thus, manipulation of

one or two genes may not be sufficient to rescue or delay muscle loss. It is therefore important to

consider that a standard of ‘molecular mechanism’ applied to the experimental manipulations of tra-

ditional laboratory species may not be appropriate in the context of understanding complex macro-

evolutionary processes.

As for why the phenotype is limited to the distal limb, it is possible that disuse contributes to jer-

boa foot muscle loss, since jerboas and ungulates each fuse metatarsals into a single cannon bone,

which would be expected to physically impair lateral motion of the digit elements (Cunning-

ham, 1883; Moore et al., 2015). However, the rapid and complete loss of myofibers in the neonatal

jerboa foot does not appear to simply reflect a species-level difference in the animal’s generalized

response to disuse atrophy, since hindlimb denervation or immobilization in adult jerboas causes

gradual loss of muscle mass, primarily through a significant reduction in the diameter of individual

myofibers (AlWohaib and Alnaqeeb, 1997; Aryan and Alnaqeeb, 2002). These observations are

very similar to what has been shown in disuse atrophy models in mice and in rats (Bonaldo and San-

dri, 2013; Moschella and Ontell, 1987) and differ from what we see in the neonatal foot.

Why would an embryo expend energy to form muscles that are almost immediately lost? The for-

mation and subsequent loss of intrinsic foot muscles in jerboas and hooved animals may simply

reflect a series of chance events in each lineage with no fitness cost, or these similarities in multiple

species may reveal true developmental constraints. Muscle is not required for autopod tendon for-

mation or maintenance in mice, but the tendons that develop in a muscle-less or a paralyzed mouse

are thinner and less well organized (Huang et al., 2015). It is therefore possible that muscle is ini-

tially required in the fetus and neonate for tendons to establish sufficient architecture from origin to

insertion so that the tendon, after further growth, can withstand high locomotor forces in the adult

(Lochner et al., 1980; Moore et al., 2017).

Regardless of whether these nascent muscles serve an essential purpose, we are left wondering

what is the ultimate fate of jerboa foot myofibers. If these cells do indeed die, perhaps death is too

rapid for detection. However, programmed cell death is thought to occur over hours or even days

from the initial trigger to the final corpse (Green, 2005). Alternatively, death may result from a

mechanism that does not proceed through DNA fragmentation, plasma membrane permeability,

macrophage recruitment, or stereotyped ultrastructural changes, and yet this would seem to elimi-

nate most known forms of regulated cell death (Galluzzi et al., 2007).

Alternatively, multinucleated myofibers may transform to another cellular identity after degrading

all sarcomere proteins. Although a fate transformation would be surprising, it would not be without

precedent. The electric organ of fish that can produce an electric field (e.g. knifefish and elephant-

fish) is thought to be derived from skeletal muscle. Electrocytes of Sternopygus macrurus express

skeletal muscle Actin, Desmin, and a-Actinin, and electrocytes of Paramormyrops kingsleyae retain

sarcomeres that are disarrayed and non-contractile (Gallant et al., 2014; Unguez and Zakon,

1998). If myofibers in the jerboa foot indeed transdifferentiate, it is possible that they transform into

the pro-Collagen I positive fibroblasts that are entangled with the filamentous aggregates, although

these could also be phagocytic fibroblasts recruited to consume the enucleate detritus without stim-

ulating inflammation (Heredia et al., 2013; Joe et al., 2010; Monks et al., 2005; Schwegler et al.,

2015). Unfortunately, the lineage labeling approaches required to track the ultimate fate of jerboa

myofibers are exceptionally challenging in this non-traditional animal model.

It is clear, however, that regardless of the ultimate fate of jerboa foot myofibers, their path passes

through a phase marked by cell biology that is typical of atrophy, including the ordered disassembly

of sarcomeres and expression of the E3 ubiquitin ligases, MuRF1 and Atrogin-1. However, skeletal

muscle atrophy is typically associated with pathology in the context of disuse, nerve injury, starva-

tion, or disease. In this context, we were struck by a statement in the 1883 anatomical description of

the fetal and adult suspensory ligament of four species of hooved mammals: ‘It is an instance of

pathological change assisting a morphological process’ (emphasis his) (Cunningham, 1883). Indeed,

there are remarkable similarities in the histology of jerboa and horse foot muscle compared to
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human clinical observations of tissue remodeling that follows rotator cuff tear characterized by mus-

cle atrophy, myofiber loss, and fibrosis (Souza et al., 2010; Gibbons et al., 2017).

Foot muscle atrophy in the jerboa may be one of many cellular responses associated with injury

or disease in humans that is utilized in the normal development and physiology of other species.

These data suggest that there is less of a clear divide between natural and pathological states than

typically thought. Studies of non-traditional species may not only reveal the mechanisms of evolu-

tionary malleability, but may also advance our understanding of fundamental biological processes

that are typically associated with pathological conditions.

Materials and methods

Key resources table

Reagent
type or
resource Designation

Source or
reference Identifiers

Additional
information

Antibody Anti- Col1A1
(mouse
monoclonal)

DSHB SP1.D8 1:20

Antibody Anti-
Dystroglycan
(mouse
monoclonal)

DSHB 11H6C4 1:10

Antibody Anti- MyHC
(mouse
monoclonal)

DSHB MF20 1:20

Antibody Anti- Myomesin
(mouse
monoclonal)

DSHB mMaC
myomesin B4

1:20

Antibody Anti- Myogenin
(mouse
monoclonal)

DSHB F5D 1:5

Antibody Anti- Titin
(mouse
monoclonal)

DSHB 9D10 1:10

Antibody Anti-
Tropomyosin
(mouse
monoclonal)

DSHB CH1 1:10

Antibody Anti- Desmin
(mouse
monoclonal)

Sigma Aldrich D33 1:300

Antibody Anti- a-actinin
(mouse
monoclonal)

Sigma Aldrich EA53 1:1000

Antibody Anti- Annexin-V
(rabbit
polyclonal)

Abcam ab14196 1:100

Antibody Anti- Desmin
(rabbit
monoclonal)

Abcam ab32362 1:500

Antibody Anti- CD45
(rabbit
polyclonal)

Abcam ab10558 1:200

Antibody Anti- F4/80
(rat monoclonal)

Abcam ab6640 1:200

Continued on next page
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Continued

Reagent
type or
resource Designation

Source or
reference Identifiers

Additional
information

Antibody Anti- Cleaved
Caspase-3
(Asp175)
(rabbit
polyclonal)

CST Cat#9661 1:100

Antibody Alexa 488
conjugated
Wheat
Germ
Agglutinin

Invitrogen W11261 1:200

Antibody Anti- BrdU Biorad MCA2060 1:100

Other In Situ
Cell Death
Detection Kit,
TM-Red

Roche Cat# 12156792910

Animals
Jerboas were housed and reared as previously described (Jordan et al., 2011). CD1 mice were

obtained from Charles River Laboratories (MA, USA), housed in standard conditions, and fed a

breeder’s diet. All animal care and use protocols for mice and jerboas were approved by the Institu-

tional Animal Care and Use Committee (IACUC) of the University of California, San Diego.

Antibodies
The following primary antibodies and dilutions were used for immunofluorescence of tissue sections:

Col1A1 (SP1.D8, 1:20), Dystroglycan (11H6C4, 1:10), Myosin heavy chain (MF20, 1:20), Myomesin

(B4, 1:20), Myogenin (F5D, 1:5), Titin (9D10, 1:10), Tropomyosin (CH1, 1:10), Developmental Studies

Hybridoma Bank; Desmin (D33, 1:300), a-actinin (EA-53, 1:1000), Sigma Aldrich; Annexin-V

(ab14196, 1:100), Desmin (ab32362, 1:500), CD45 (ab10558, 1:200), F4/80 (ab6640, 1:200), Abcam;

Cleaved Caspase-3 (Asp175) (#9661, 1:100), Cell Signaling Technologies; Alexa 488 conjugated

Wheat Germ Agglutinin (W11261, 1:200), Invitrogen; BrdU (MCA2060, 1:100), Biorad.

Secondary antibodies were obtained from Invitrogen and used at 1:250 dilution: Alexa Fluor 594

conjugated goat anti-mouse IgG2b, Alexa Fluor 488 or 647 conjugated goat anti-mouse IgG1, Alexa

Fluor 488 conjugated goat anti-mouse IgM, Alexa Fluor donkey anti-mouse IgG, Alexa Fluor 488

conjugated goat anti-rat IgG, Alexa Fluor 488 or 647 conjugated goat anti-rabbit.

Immunofluorescence and TUNEL
Mouse and jerboa limbs were dissected and fixed in 4% PFA in 1x PBS overnight. Tissues were

washed in 1X PBS twice for 20 min and placed in 30% sucrose in 1x PBS overnight at 4˚C. Tissues

were then mounted in a cryomold in OCT freezing media, and blocks were frozen and stored at

�80˚C until cryosectioned.

Blocks were sectioned at 12 mm thickness, and sections were transferred to Super-Frost Plus

slides (Thermo Fisher). For immunofluorescence, slides were washed for 5 min in 1x PBS and subject

to antigen retrieval by incubation in Proteinase K (5 mg/mL) for 10 min followed by 5 min postfix in

4% PFA in PBS and three washes in 1x PBS. Slides were then blocked in a solution of 5% heat inacti-

vated goat serum, 3% BSA, 0.1% TritonX-100, 0.02% SDS in PBS. Slides were incubated in the

appropriate primary antibody dilution in block overnight at 4˚C. On the second day, slides were

washed three times for 10 min in PBST (1x PBS + 0.1% TritonX-100) and incubated at room tempera-

ture in secondary antibodies and 1 mg/ml DAPI for 1 hr. Slides were then washed three times for 10

min in PBST and mounted in Fluoro Gel with DABCO (EMS).

For TUNEL, slides that had been previously processed for MF20 immunofluorescence were

placed immediately into the TUNEL reaction mixture following manufacturer’s instructions (Roche In

Situ Cell Death Detection Kit, TM-Red) for 60 min at 37˚C, rinsed three times in 1x PBS, and

mounted in Fluoro Gel with DABCO.

Tran et al. eLife 2019;8:e50645. DOI: https://doi.org/10.7554/eLife.50645 14 of 22

Research article Developmental Biology Evolutionary Biology

https://doi.org/10.7554/eLife.50645


Sections were imaged with Olympus compound microscope model BX61, Leica SP5 confocal, or

Olympus FV1000 confocal.

Myofiber count
Blocks containing embedded mouse or jerboa feet were cryosectioned at 12 mm thickness in trans-

verse orientation onto two serial sets of slides. Slides of the second series were used as back up in

case certain sections of the first series contain folded tissue and thus cannot be used. Slides of the

first series were stained with MF20 and WGA and analyzed to locate the proximal and distal ends of

the third interosseous muscle. Using this information we estimated the middle area of each muscle

and selected 10 sections for subsequent analysis. We analyzed the third interosseous muscle of the

hindlimb, spanning approximately 240 mm in muscle length. For each selected section, all cross-sec-

tionally oriented myofibers were manually counted and recorded using the plugin cell counter in

ImageJ. The average number of myofibers from 10 sections represents an estimate of the myofiber

number for the middle transverse section of the third interosseous muscle. For each developmental

stage, data from three animals were collected, and one-way ANOVA with Tukey’s multiple compari-

sons test was performed to determine the statistical significance of mean myofiber number differen-

ces between developmental stages in each species.

Myocyte fusion assay
BrdU solution was intraperitoneally injected to achieve 100 mg/g (BrdU/animal body weight) in P0,

P2, and P4 jerboas. Injected animals were sacrificed 2 days later. The feet and hands of each animal

were fixed in 4% PFA/PBS overnight, processed through a sucrose series, and embedded in OCT

freezing media. Blocks of embedded tissue were cryosectioned in transverse orientation at 12 mm

thickness and placed in serial sets on Superfrost Plus slides. Slides were stained with BrdU and Dys-

troglycan antibodies as indicated above. As in the methods to count myofibers, we chose ten sec-

tions near the midpoint of the interosseous muscle associated with the third metatarsal and counted

all BrdU+ nuclei within a Dystroglycan+ myofiber as well as all myofiber nuclei in each section. Data

is represented as the total number of BrdU+ myofiber nuclei divided by the total number of myo-

fiber nuclei, and this ratio was averaged for all 10 sections in each animal. The data was plotted

using Prism8 (GraphPad), and the statistical significance between datapoints at each time interval

was calculated with one-way ANOVA with Tukey’s multiple comparisons test in each of forelimb and

hindlimb.

Short-term BrdU labeling
BrdU solution was intraperitoneally injected to achieve 100 mg/g (BrdU/animal body weight) in P0,

P2, and P4 jerboas. Injected animals were sacrificed two hours after injection. The feet and hands of

each animal were fixed in 4% PFA/PBS overnight, processed through a sucrose series, and embed-

ded in OCT freezing media. Blocks of embedded tissue were cryosectioned in transverse orientation

at 12 mm thickness and placed in serial sets on Superfrost Plus slides. Slides were stained with BrdU

and Myosin or BrdU, Laminin, and Dystroglycan antibodies as indicated above for assessment of pro-

liferation in myonuclei. As in the methods of fusion assay, we chose 10 sections near the midpoint of

the interosseous muscle associated with the third metatarsal and counted all BrdU+ nuclei within a

Laminin+ basal lamina and outside Dystroglycan+ myofiber membrane as well as number of Dystro-

glycan+ myofiber in each section. Data is represented as the total number of BrdU+ myofiber nuclei

divided by the total number of myofiber, and this ratio was averaged for all 10 sections in each ani-

mal. The data was plotted using Prism8 (GraphPad), and the statistical significance between data-

points at each time interval was calculated with one-way ANOVA with Tukey’s multiple comparisons

test in each of forelimb and hindlimb.

Muscle stem/progenitor cell culture
Intrinsic foot muscles (m. flexor digitorum brevis and m. interossei) and lower leg muscles (tibialis

anterior and gastrocnemius) were manually dissected from three animals of P1 jerboas and mice and

pooled. After connective tissues were manually removed with forceps, muscle stem/progenitor cells

were isolated and cultured as described in Danoviz and Yablonka-Reuveni, 2012. Briefly, the tis-

sues were enzymatically with 10 mg/ml Pronase (EMD Millipore) and mechanically dissociated. The
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cells were plated onto matrigel-coated 8-well chamber slides (Nunc Lab-Tek, Thermo fisher) coated

with Matrigel (Corning) at 1 � 104 cells/well. The cells were cultured for 9 days with DMEM (Thermo

Fisher), 20% fetal bovine serum (Thermo fisher), 10% horse serum (Thermo Fisher) and 1% chicken

embryonic extract (Accurate Chemical). During the culture period, the medium was changed at days

3, 6, and 8. After 6 and 9 days, cells in replicate cultured wells were fixed with 4% PFA/PBS at 4˚C

for 15 min and washed with PBS. After permeabilization with 1% Triton-X 100 in PBS at room tem-

perature for 10 min, the cells were blocked with 5% BSA/PBS for 30 min and stained with BrdU, anti-

Myogenin and Myosin antibodies and secondary antibodies. At each time point of each experimen-

tal group, the total number of nuclei and nuclei within Myosin+ myofibers were counted in 10

images taken from eight wells using the Olympus compound microscope at 4x magnification. The

numbers in 10 images were averaged and the difference between day 6 and day 9 were statistically

analyzed with paired sample t-test in each experimental group.

Evans Blue Dye
We injected Evans Blue Dye as 1% solution by animal body weight (1 mg EBD/100 ml PBS/10 g) 24

hr prior to sample collection (Hamer et al., 2002). As a positive control for EBD uptake, we create

an injured muscle area by inserting a 21-gauge needle 2–3 times into the jerboa gastrocnemius mus-

cle. Samples were fresh frozen in OCT and cryosection at 12 mm thickness. Slides were processed for

MF20 fluorescence with primary antibody incubation for 1 hr at RT before secondary antibody incu-

bation. Slides were mounted for analysis: EBD signal is detected using the Cy5 filter and imaged

using the Olympus compound microscope or imaged using the Leica SP5 confocal laser 633 nm.

Oil red O (ORO) staining
ORO stock solution: 2.5 g of Oil red O to 400 ml of 99% (vol/vol) isopropyl alcohol and mix the solu-

tion by magnetic stirring for 2 hr at room temperature (RT; 20–25˚C). ORO working solution: 1.5

parts of ORO stock solution to one part of deionized (DI). Cryosections were fixed with 4%PFA in 1x

PBS for 5 min. Slides were washed with 2x with PBS for 10 min each and stained with ORO working

solution for 10 min followed three 30 s washes with DI water. Slides were then washed in running

tap water for 15 min followed by three 30 s washes with DI water and mounting in aqueous medium.

Transmission Electron Microscopy (TEM)
Animals were perfused with 2% glutaraldehyde and 2% PFA plus 2 mM CaCl2 in 0.15M sodium caco-

dylate buffer, pH 7.4 @ 35˚C for 2–3 min. The hands and feet were removed, skinned, and fixed on

ice for 2 hr. Samples were then rinsed six times for 5 min in cold 0.15M cacodylate buffer and then

post-fixed in 1% OsO4 in 0.15M cacodylate buffer on ice for 1 hr. Samples were then rinsed in cold

double distilled water (DDW) six times for 5 min and placed into 1% uranyl acetate in DDW on ice

overnight. Fixed tissue was then rinsed in ice cold double distilled water three times for 3 min and

dehydrated in an ethanol series (50%, 70%, 90% in DDW) on ice for 5 min each. Samples were fur-

ther dehydrated into 100% ethanol twice for 5 min at room temperature and then transitioned to

1:1 ethanol:acetone for 5 min followed by two times 5 min in 100% acetone. Dehydrated samples

were infiltrated with 1:1 acetone:Durcupan ACM resin for 1 hr at room temperature followed by

100% resin twice for 1 hr and then placed in fresh resin overnight. On the next day, samples were

transferred to fresh resin, which was polymerized in a 60˚C vacuum oven for 48–72 hr. Resin embed-

ded samples were stored at room temperature until ready for sectioning. Seventy nanometer thick

sections were stained in lead solution and image using Tecnai Spirit TEM scope (120 kV).

RNA isolation and quantitative reverse transcriptase polymerase chain
reaction (qRT-PCR)
Foot muscles were dissected and stored in RNAlater solution (Thermo Fisher) at �80˚C until ready

for use. RNA extraction was performed using the PicoPure RNA Isolation Kit (Thermo Fisher) accord-

ing to the manufacture instructions. RNA was reverse transcribed to generate cDNA using Quanti-

Tect Reverse Transcription Kit. cDNA was used as template for quantitative PCR with PCR

amplification detected with Sybr green (SYBR Green Real-time PCR master mixes, Invitrogen). See

the table below for the sequences of primers used to quantify real time amplification.
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Each quantitative reverse transcriptase PCR experiment was conducted twice with technical tripli-

cates in each experiment. Cq values that are significant outliers were determined using Grubb’s test

in GraphPad software and eliminated. Expression of MuRF-1, Atrogin-1, NF-kB2, and Relb was nor-

malized to SDHA, quantitation of gene expression was determined by the equation 2�DDCT, and the

fold-change of mRNA expression was calculated relative to the mRNA level of P0 FDS samples in

each species, which was set to 1. One-way ANOVA with Tukey’s multiple comparisons test was per-

formed to determine the statistical significance of fold change differences between samples in each

species.

mouseMuRF1_F TGCCTGGAGATGTTTACCAAGC (Dogra et al., 2007)

mouseMuRF1_R AAACGACCTCCAGACATGGACA (Dogra et al., 2007)

mouseAtrogin_F TGGGTGTATCGGATGGAGAC (Files et al., 2012)

mouseAtrogin_R TCAGCCTCTGCATGATGTTC (Files et al., 2012)

jerboaMuRF1_F CCGCGTGCAGACTATCATCA

jerboaMuRF1_R GCAGCTCGCTCTTTTTCTCG

jerboaAtrogin_F GCATCGCCCAAAAGAACTTCA

jerboaAtrogin_R ACTTGCCGACTCTTTGGACC

mouseSDHA_F GGAACACTCCAAAAACAGACCT (Xu et al., 2016)

mouseSDHA_R CCACCACTGGGTATTGAGTAGAA (Xu et al., 2016)

jerboaSDHA_F ACTGGAGGTGGCATTTCTAC

jerboaSDHA_R TTTTCTAGCTCGACCACAGATG

mouseNF-kB2_F GCCCAGCACAGAGGTGAAAG

mouseNF-kB2_R CATTCAGTGCACCTGAGGCT

mouseRelb_F TGTCACTAACGGTCTCCAGGAC

mouseRelb_R CAGGCGCGGCATCTCACT

jerboaNF-kB2_F CTAGCCCACAGACATGGACA

jerboaNF-kB2_R TAGGGGCCATCAGCTGTCTC

jerboaRelb_F CCTACAATGCTGGCTCTCTGA

jerboaRelb_R GTCATAGACAGGCTCGGACA
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