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Abstract Even though pancreatic ductal adenocarcinoma (PDAC) is associated with fibrotic

stroma, the molecular pathways regulating the formation of cancer associated fibroblasts (CAFs)

are not well elucidated. An epigenomic analysis of patient-derived and de-novo generated CAFs

demonstrated widespread loss of cytosine methylation that was associated with overexpression of

various inflammatory transcripts including CXCR4. Co-culture of neoplastic cells with CAFs led to

increased invasiveness that was abrogated by inhibition of CXCR4. Metabolite tracing revealed that

lactate produced by neoplastic cells leads to increased production of alpha-ketoglutarate (aKG)

within mesenchymal stem cells (MSCs). In turn, aKG mediated activation of the demethylase TET

enzyme led to decreased cytosine methylation and increased hydroxymethylation during de novo

differentiation of MSCs to CAF. Co-injection of neoplastic cells with TET-deficient MSCs inhibited

tumor growth in vivo. Thus, in PDAC, a tumor-mediated lactate flux is associated with widespread

epigenomic reprogramming that is seen during CAF formation.

DOI: https://doi.org/10.7554/eLife.50663.001

Introduction
Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease and is the third leading cause of

deaths from cancer in the United States. An exuberant host fibrotic response, termed stromal

Bhagat et al. eLife 2019;8:e50663. DOI: https://doi.org/10.7554/eLife.50663 1 of 23

RESEARCH ARTICLE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.50663.001
https://doi.org/10.7554/eLife.50663
https://creativecommons.org/
https://creativecommons.org/
http://elifesciences.org/
http://elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


desmoplasia, is a characteristic feature of PDAC (Feig et al., 2013; Biffi et al., 2019), (Feig et al.,

2012; Yu et al., 2012). The stromal fibrosis is suspected to contribute to chemoresistance in pancre-

atic cancer by impeding drug delivery (Provenzano et al., 2012; Öhlund et al., 2017; von Ahrens

et al., 2017), and differences in stromal behavior have been implicated with patient outcomes in

pancreatic and other cancers. The stromal microenvironment predominantly consists of cancer-asso-

ciated fibroblasts (CAFs) that are activated during tumorigenesis, undergoing morphological and

functional changes, when compared to normal fibroblasts (Kalluri, 2016). CAFs are derived via acti-

vation of resident pancreatic stellate cells, and also from differentiation and activation of bone mar-

row derived mesenchymal stem cells (BM-MSCs) that migrate to the peritumoral milieu due to

chemotactic signals released by cancer cells. The characteristic features of activated CAFs include

the expression of a-smooth-muscle actin (a-SMA (ACTA1)) (Öhlund et al., 2017), enhanced secre-

tory and contractile ability, increased synthesis of extracellular matrix proteins, such as collagens,

and of growth factors including basic fibroblast growth factor, transforming growth factor beta

(TGF-b), interleukin-8 and platelet-derived growth factors (PDGF). In preclinical models of PDAC

(Feig et al., 2012; Hwang et al., 2008; Xu et al., 2010), as well as in other cancer types

(Karnoub et al., 2007), CAFs have been shown to promote invasion and metastases through myriad

mechanisms. Multiple lines of evidence support the existence of robust paracrine signals from neo-

plastic epithelial cells to the stromal compartment (Behrens et al., 2010; Bailey et al., 2009;

Omary et al., 2007), which likely facilitates the reprogramming of MSCs to an activated CAF-like

state, that in turn, promotes PDAC progression. Careful studies using high density copy number

arrays and mutational profiling have excluded the presence of genomic alterations in pancreatic

CAFs, potentially suggesting that reprogramming is most likely epigenetic in nature (Walter et al.,

2008). While the epigenome of the PDAC neoplastic epithelium has been extensively studied

(Sato and Goggins, 2006; Goggins, 2005), the stromal epigenome is largely uncharacterized. Thus,

the underlying objective of this study was to study patterns of epigenetic reprogramming in the

PDAC stroma, specifically the most predominant a-SMA (ACTA1) expressing CAF cell type

(Öhlund et al., 2017).

In the present study, we studied genome wide cytosine methylation in CAFs by using both pri-

mary CAFs derived from resected PDAC, as well as de novo CAFs generated from MSCs in vitro.

Our analysis revealed widespread loss of DNA methylation in CAFs as the dominant ‘epi-genotype’.

This epigenetic reprogramming was associated with upregulation of numerous transcripts, including

those encoding the chemokine receptor CXCR4. Our data reveal that stromal CXCR4 overexpression

promotes PDAC invasion, and provides a facile druggable target within the tumor microenvironment

attenuating tumor progression. Importantly, from a mechanistic standpoint, we determine that para-

crine lactate secreted by PDAC cells can be incorporated in stromal cells and lead to increased

alpha-keto glutarate (aKG). This is associated with activation of the TET demethylase, thus poten-

tially leading to epigenetic reprogramming seen during CAF formation. Our studies underscore the

emerging thread between aberrant metabolism and epigenomic alterations in cancer progression,

albeit from the aspect of peritumoral stroma in PDAC.

Results

Widespread epigenetic reprogramming is observed in primary and de
novo transformed CAFs
Primary cultures of cancer-associated fibroblasts (CAFs) were established from seven surgically

resected PDAC tissue samples and used for epigenomic and transcriptomic analysis. Genome wide

cytosine methylation was performed by the HpaII tiny fragment Enrichment by Ligation-mediated

PCR (HELP) assay that relies on differential digestion by HpaII and MspI to identify methylated CpG

sites (Figueroa et al., 2010a). Unsupervised clustering based on cytosine methylation demonstrated

that pancreatic CAFs were epigenetically distinct from other non-cancer associated fibroblast con-

trols that also included hepatic stellate cells. (Figure 1A). To determine the qualitative epigenetic

differences between these groups we next performed a supervised analysis of the respective DNA

methylation profiles. A volcano plot comparing the differences between mean methylation of indi-

vidual loci between pancreatic CAFs and non-cancer associated fibroblasts demonstrated that pan-

creatic CAFs were characterized by widespread hypomethylation when compared to controls (5659
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Figure 1. Widespread epigenetic and transcriptomic alterations are seen in pancreatic cancer associated fibroblasts. (A) Unsupervised clustering of

cytosine methylation profiles from seven primary patient-derived pancreatic cancer associated fibroblasts (CAFs) and four healthy controls (Hst: Hepatic

stellate cells, Hdf: Human dermal fibroblasts, Hsf: Human skin fibroblasts) shows that CAFs are epigenetically distinct (B) Volcano plot shows that

majority of differentially methylated loci in primary patient-derived CAFs are hypomethylated when compared to controls (C) Unsupervised clustering of

gene expression profiles shows transcriptomic differences between CAFs and controls (D) Three independent MSCs were exposed to PANC-1

conditioned media (CM) for 21 days and analyzed for a-SMA (ACTA1) and Fibroblast activation protein (FAP) expression. (T-test, p<0.05).

(E) Unsupervised clustering based on cytosine methylation shows epigenomic differences between MSCs and de novo generated CAFs. Two

independent experiments shown. (F) Volcano plot shows that the majority of differentially methylated loci in in vitro generated CAFs are

hypomethylated (G) The differentially methylated regions in de novo generated CAFs are distributed throughout the genome as shown in the circos

plot. H:Differentially methylated regions between MSC and de novo generated CAFs are present throughout the genome and mirror the distribution of

HpaII sites in the genome. Hypo refers to Hypomethylated DMRs in CAFs. Hyper refers to Hypermethylated DMRs in CAFs when compared to MSCs.

Genome refers to distribution of HpaII loci in the genome.

DOI: https://doi.org/10.7554/eLife.50663.002
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demethylated versus 674 hypermethylated loci in CAFs) (Figure 1B). Gene expression analyses per-

formed on a subset of CAFs also demonstrated transcriptomic differences when compared to con-

trols (Figure 1C). To elucidate the genes that were epigenetically regulated, we analyzed the genes

that were concurrently overexpressed and hypomethylated in pancreatic CAFs and observed that

critical cellular pathways involved in cell survival, cell cycle and cell signaling were the most signifi-

cantly deregulated by epigenetically altered genes (Supp File 1). Multiple genes that are known to

be important for cell signaling, including secreted interleukins and chemokines such as IL1a, CCL5,

CCL26, cellular receptors CXCR4, ICAM3 and signaling proteins MAPK3, MAPK7, JUN were among

the easily recognizable genes that exhibited differential hypomethylation and were overexpressed in

pancreatic CAFs. Since striking demethylation was observed in primary CAFs, we next wanted to val-

idate these epigenetic changes at a higher resolution in an in vitro model. We generated CAFs from

primary mesenchymal stem cells (MSCs) by exposing them to conditioned media from Panc-1 pan-

creatic cancer (PDAC-CM) cells for 21 days. This method has been shown to transform MSCs into

CAFs that are functionally able to support the growth and invasion of malignant cells (Mishra et al.,

2008) and resulted in cells with CAF like morphology and higher expression of bona fide CAF

markers, aSMA (ACTA1) and FAP (Figure 1D). The methylome of MSCs and de novo CAFs was then

studied using the HELP-tagging assay that uses massively parallel sequencing to generate genome

wide CpG methylation profiles of >1.8 million loci (Suzuki et al., 2010). We observed that wide-

spread cytosine demethylation was the dominant epigenetic change during transformation of MSCs

into de novo CAFs (Figure 1E,F). Loss of methylation upon exposure to PDAC-CM was found to

affect all parts of the genome (Figure 1G,H). Both hypo- and hypermethylated differentially methyl-

ated regions (DMRs) were distributed in various genomic locations in proportions that were compa-

rable to the distribution of HpaII sites (Figure 1H), thus demonstrating that epigenetic changes were

occurring genome-wide during CAF transformation. This is in contrast to absence of genetic altera-

tions in PDAC CAFs, as reported by Walter et al. (2008).

CXCR4 is hypomethylated and overexpressed in pancreatic cancer
associated fibroblasts and supports neoplastic cell invasion
Integrative analysis between primary CAFs and de novo CAFs showed a common set of 130 unique

promoters that were aberrantly methylated (120 hypomethylated and 10 hypermethylated)

(Figure 2A, Venn diagram). This conserved epigenetic signature of CAFs (Supplementary file 2)

was able to clearly separate these cells from normal controls and MSCs in supervised clustering

(Figure 2A, Bottom panel). The gene promoter encoding for the CXCR4 receptor was found to be

hypomethylated in both primary and de novo generated CAFs, and significantly demethylated CpGs

were present in CpG ‘shores’, that have been shown to be sites of differential methylation in cancer

(Irizarry et al., 2009) (Figure 2B,C). Although recent empirical studies have found upregulation of

CXCR4 protein in PDAC cells by immunohistochemical assessment (Bachet et al., 2012), the role of

this receptor on the stromal cells have not been studied.

To determine the functional role of CXCR4 expression on pancreatic CAFs, we used specific

siRNAs against CXCR4 that were able to significantly decrease CXCR4 expression in MSC-derived

de novo CAFs (Figure 2D, Figure 2—figure supplement 1). Matrigel transwell double chamber

invasion assays with PDAC (PANC-1) cells revealed increased invasion of the neoplastic cells in the

presence of de novo generated CAF cells (Figure 2E). The increased invasiveness of PDAC cells on

co-culture was abrogated with RNAi-mediated knockdown of CXCR4 in the CAFs (t-test, P

Value < 0.05) (Figure 2E,F, Figure 2—figure supplement 1). A specific inhibitor of CXCR4, AMD-

3100, also led to decreased invasion of PANC-1 cells when cultured with de novo CAFs.

(Figure 2G). These were validated in another highly metastatic Pa03C PDAC cell line (Figure 2—fig-

ure supplement 1), supporting a role for stromal CXCR4 blockade in attenuating tumor progression

within the neoplastic compartment. Finally, gene expression profiling in two sets of CAFs after

CXCR4 knockdown revealed significant alterations in the transcriptional profile (Supplementary file

3), including reduced expression of IL8 and other secreted ligands that are known to be tumor

microenvironmental regulators (Matsuo et al., 2009; Fang et al., 2016) (Figure 2H).
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Figure 2. CXCR4 is demethylated and overexpresed in CAFs and increases pancreatic cancer invasiveness. (A) A set of 120 transcripts are commonly

hypomethylated in primary patient-derived CAFs and de novo generated CAFs and includes CXCR4. (B,C) The CXCR4 promoter is demethylated in

primary patient-derived CAFs as seen by the HELP assay (B) and quantitative MassArray Epityper analysis (C). (D - F) CXCR4 knockdown in de novo

CAFs leads to abrogation of the increased invasion of Panc1 cells on co-culture. (N = 3, p value<0.05) (G) Co-culture with de novo CAFs leads to

increased transwell invasion by Panc-1 cells, that is abrogated after treatment of CAFs with CXCR4 inhibitor AMD-3100 (N = 3, p value<0.05) H: Gene

expression profiling of CAFs with CXCR4 knockdown reveals signficantly downregulated (left panel) and upregulated (right panel) transcripts. Salient

examples of downregulated transcripts include interleukins IL-8 and IL-33 and the chemokine CCL2.

DOI: https://doi.org/10.7554/eLife.50663.003

The following figure supplement is available for figure 2:

Figure supplement 1. Inhibition of CXCR4 reduces PDAC cell invasion in de novo generated CAFs.

DOI: https://doi.org/10.7554/eLife.50663.004
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Tumor mediated lactate flux leads to production of alpha
ketoglutarate, TET activation and increased cytosine
hydroxymethylation in stromal cells
Next, we wanted to determine whether a diffusible factor secreted by PDAC cells could facilitate the

epigenomic reprogramming and demethylation of MSCs to CAFs. Lactate is produced by PDAC

cells via lactate dehydrogenase (LDH) enzyme during glycolysis (Le et al., 2010) and has been shown

to be an important mediator of metabolic pathways that can regulate the demethylase TET enzymes

(Intlekofer et al., 2015; Figueroa et al., 2010b). Thus, we wanted to evaluate whether paracrine

lactate, secreted by PDAC cells, could be incorporated by MSCs and result in observed epigenetic

changes through modulation of TET activity. Metabolomics analysis using uniformly 13C-labeled lac-

tate in the media as a tracer revealed that primary human MSCs can uptake lactate and convert it to

pyruvate and various Krebs cycle intermediates including citrate, alpha-keto glutarate (aKG), fuma-

rate, malate, and aspartate (Figure 3A, Figure 3—figure supplement 1 showing metabolities in

parallel experiments using low glucose conditions). We had previously observed a similar metabolic

crosstalk between ovarian cancer cells and CAFs, which utilized cancer-secreted lactate as a carbon

source (Yang et al., 2016).

Since aKG is an important cofactor for TET enzymes, we next determined whether lactate

secreted by PDAC-conditioned media could lead to TET activation and increased hydroxymethylcy-

tosine (5hmC) levels in stromal cells. MSCs were exposed to conditioned media from PANC-1 cells

treated with an LDH inhibitor or control media for 14 days to induce generation of de novo CAFs.

Control PANC-1 conditioned media per se led to significant TET activation (Figure 3B) and increase

in 5hmC levels in resulting de novo CAFs (Figure 3C). These effects were, however, not observed

when MSCs were exposed to conditioned media from LDH inhibitor-treated PDAC cells. Condi-

tioned media from PDAC cells with LDH knockdown with siRNAs was also able to abrogate the

increase in expression of CAF markers (aSMA (ACTA1), FSP and Vimentin) during CAF conversion

(Figure 3—figure supplement 2A). Furthermore, exposure of MSCs to exogenous lactate in media

was also able to increase aKG levels, TET activity and 5hmC levels after 2 weeks of exposure

(Figure 3D,E, Figure 3—figure supplement 2), demonstrating the role of this exogenous metabo-

lite in epigenetic reprogramming of MSCs to de novo CAFs (Proposed Model in Figure 3E). TET

activity increased in a dose dependant manner with exogenous lactate and was abrogated by inhibi-

tion of mitochondrial pyruvate carrier inhibitor UK5099 (Figure 3—figure supplement 2). Since

2hydroxyglutarate (2HG) and fumarate are inhibitors of TET enzymes, we also observed that exoge-

nous lactate was able to reduce 2HG/aKG and fumarate/aKG ratios in metabolic flux experiments

(Figure 3—figure supplement 1). Additionally, exogenous cell permeable aKG was also able to

increase TET activity in CAFs (Figure 3—figure supplement 2).

5hmc gains are seen during MSC to CAF conversion
To determine the genes that acquire 5hmC during CAF conversion at a high resolution, we gener-

ated CAFs from MSCs exposed to Panc1 conditioned media and used the cells for genome wide

5hmC analysis using Oxidative bisulfite sequencing (OXBS). The 5hmC gains were found to occur

throughout the genome (Figure 4A). Genes affected by 5hmC gains were found to group into

important regulatory pathways (Figure 4B). Gene associated with 5hmC gains included CAF markers

aSMA (ACTA1), FSP1 (S100A4), and Collagen (COL3A1, associated with fibrotic reaction seen in

pancreatic cancer) (Figure 4C–E). We also observed 5hmC gain at the CXCR4 promoter as well as

downstream enhancer (Figure 4F). The important TGF-b mediator, SMAD2 also acquired 5hmC

(Figure 4G) and a transcription factor motif analysis of all sites of 5hmC gain revealed enrichment

for smad2 and smad3 binding motifs (Table 1). TGF-beta mediated smad activation is an important

regulator of fibrosis and has been shown to be activated in CAFs (Biffi et al., 2019).

Increased stromal 5hmc and CXCR4 expression is seen in in primary
human PDAC and murine KPC PDAC tumors
We next wanted to determine the magnitude of increased 5hmC and CXCR4 in stromal cells in large

cohort of human primary PDAC samples. 5hmC (Figure 5A) and CXCR4 (Figure 5B) immunohisto-

chemical staining was done on human PDAC TMAs and grading of intensity of stain in the tumor

stromal CAFs was estimated. We observed that most CAF like cells in PDAC samples were positive
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Figure 3 continued on next page
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for 5hmC and CXCR4 (1+ to 3+ staining intensity), (Figure 5C). Total PDAC samples examined for

5hmC were 254 and for CXCR4 were 261.

Next, we wanted to evaluate whether increased stromal 5hmC and CXCR4 was observed in

mouse model of PDAC also. PDAC samples from KPC (Kras mutant, tp53 mutant) (Olive et al.,

2009) mouse model of were obtained and immunostained for 5hmC and CXCR4. CAF like stromal

cells in PDAC tumors from KPC mice were found to be positive for both 5hmC and CXCR4 staining

in all tumors examined (Figure 5D,E).

To validate at single cell levels, we next analyzed single cell RNA-seq (scRNAseq) data from sam-

ples obtained from precancerous low grade intraductal papillary mucinous neoplasm (LG IPMN),

high grade intraductal papillary mucinous neoplasm (HG IPMN) and frank pancreatic ductal adeno-

carcinoma (PDAC) (Bernard et al., 2019). Stromal cell populations positive for alphaSMA (ACTA1)

(Figure 5G) and fibroblast activated protein (Figure 5H) were found to cluster distinctly from malig-

nant cells in tSNE plots. Most of stromal cells were seen in high grade IPMN and PDAC samples

(Figure 5I). CXCR4 expression was seen in 14/181 (8%) stromal cells and correlated with cells with

higher collagen expression, that is seen in activated CAF phenotypes (Öhlund et al., 2017) (TTEst, P

Val = 0.02)(Figure 5K).

TET-deficient MSCs lead to inefficient CAF conversion and reduced
tumor growth in vivo
Having demonstrated that exposure to PDAC-conditioned media lead to TET activation with a con-

comitant increase in 5hmC levels within CAFs, we next wanted to determine the functional role of

TET enzymes during MSC to de novo CAF differentiation. MSCs were obtained from TET2 KO mice

(Dawlaty et al., 2014) and controls and were co-cultured with conditioned media from murine

PDAC cells derived from Kras, p53 mutant tumors (‘KPC’ cells) (Torres et al., 2013). WT MSCs

acquired fibroblastic ‘CAF-like’ appearance after exposure to PDAC conditioned media, while TET2

KO MSCs generally retained their original morphology (Figure 6A). Additionally, TET2 KO MSCs

that were exposed to CM led to significantly less KPC PDAC cell invasion in matrigel when com-

pared to WT controls (Figure 6B,C). Next, to determine the functional role of TET demethylase in

CAF generation in vivo, we co-injected murine KPC cells with MSCs from TET2 KO mice and controls

into immune-deficient mice. Co-injected murine PDAC cells with TET2KO MSCs had significantly

slower growth rates in vivo when compared to controls (Figure 6D). Explanted allografts with TET2

KO MSCs were significantly smaller (Figure 6E,F) and histologically revealed significantly less cells

with a CAF phenotype, on staining with aSMA (ACTA1) (Figure 6G,H), thus demonstrating less effi-

cient CAF conversion and tumor supporting capabilities in vivo.

Discussion
The tumor microenvironment plays a critical role in promoting the growth and invasion of cancer

cells (Karnoub et al., 2007; Orimo and Weinberg, 2006). Cancer cells can recruit MSCs from the

marrow and facilitate their transformation into activated CAFs, through a plethora of paracrine sig-

nals, such as chemokines (Mishra et al., 2011; Quante et al., 2011). One aspect of the cancer cell

‘secretome’ within the immediate juxtatumoral milieu that has not been fully examined pertains to

the role of secreted metabolites, or metabolic intermediates. We demonstrate that conversion of

MSCs into CAFs is associated with widespread epigenomic reprogramming. Specifically, we estab-

lish that tumor generated lactate can be incorporated by stromal cells and can potentially induce

epigenomic changes via increased production of aKG. Notably, aKG is an essential cofactor for the

Figure 3 continued

DOI: https://doi.org/10.7554/eLife.50663.005

The following figure supplements are available for figure 3:

Figure supplement 1. Metabolite tracking in CAF cells.

DOI: https://doi.org/10.7554/eLife.50663.006

Figure supplement 2. Lactate increases TET activity in CAFs.

DOI: https://doi.org/10.7554/eLife.50663.007
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Figure 4. 5hmC gains are seen during MSC to CAF conversion and occur at gene associated with cancer associated fibroblasts. (A) Genome wide
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Table 1. Transcription factor sites that are enriched around 5hmC gains during CAF conversion.

Rank Name
P-

value
q-value

(Benjamini)

# Target
Sequences
with Motif

% of Targets
Sequences
with Motif

#
Background
Sequences
with Motif

% of
Background
Sequences
with Motif

Motif

1
Atf3(bZIP)/GBM-ATF3-
ChIP-Seq(GSE33912)/
Homer

1.00E-
07

0 344 7.86% 2593.1 5.81%

2
AP-1(bZIP)/ThioMac-PU.1-
ChIP-Seq(GSE21512)/
Homer

1.00E-
06

0 383 8.75% 2995.7 6.71%

3
Jun-AP1(bZIP)/K562-cJun-
ChIP-Seq(GSE31477)/
Homer

1.00E-
05

0.0003 112 2.56% 722.1 1.62%

4
BMAL1(bHLH)/Liver-
Bmal1-ChIP-Seq
(GSE39860)/Homer

1.00E-
05

0.0003 857 19.57% 7567 16.95%

5
Fosl2(bZIP)/3T3L1-Fosl2-
ChIP-Seq(GSE56872)/
Homer

1.00E-
05

0.0003 149 3.40% 1040.8 2.33%

6
BATF(bZIP)/Th17-BATF-
ChIP-Seq(GSE39756)/
Homer

1.00E-
05

0.0003 322 7.35% 2570.8 5.76%

7
Fra1(bZIP)/BT549-Fra1-
ChIP-Seq(GSE46166)/
Homer

1.00E-
04

0.0006 266 6.07% 2089.9 4.68%

8
Smad2(MAD)/ES-SMAD2-
ChIP-Seq(GSE29422)/
Homer

1.00E-
04

0.0011 652 14.89% 5725.2 12.83%

9
NPAS2(bHLH)/Liver-
NPAS2-ChIP-Seq
(GSE39860)/Homer

1.00E-
04

0.0026 543 12.40% 4734.1 10.61%

10
Smad4(MAD)/ESC-
SMAD4-ChIP-Seq
(GSE29422)/Homer

1.00E-
03

0.003 655 14.96% 5819.3 13.04%

11
Smad3(MAD)/NPC-
Smad3-ChIP-Seq
(GSE36673)/Homer

1.00E-
03

0.0035 1238 28.27% 11533 25.84%

12
Usf2(bHLH)/C2C12-Usf2-
ChIP-Seq(GSE36030)/
Homer

1.00E-
03

0.0042 200 4.57% 1574.5 3.53%

13
HIF2a(bHLH)/785_O-
HIF2a-ChIP-Seq
(GSE34871)/Homer

1.00E-
03

0.0066 178 4.06% 1393.5 3.12%

14
CEBP:CEBP(bZIP)/MEF-
Chop-ChIP-Seq
(GSE35681)/Homer

1.00E-
03

0.0141 107 2.44% 789.3 1.77%

15
MafA(bZIP)/Islet-MafA-
ChIP-Seq(GSE30298)/
Homer

1.00E-
02

0.023 315 7.19% 2709.1 6.07%

16
Bach2(bZIP)/OCILy7-
Bach2-ChIP-Seq
(GSE44420)/Homer

1.00E-
02

0.023 86 1.96% 622.7 1.40%

17

Brachyury(T-box)/
Mesoendoderm-
Brachyury-ChIP-exo
(GSE54963)/Homer

1.00E-
02

0.0326 134 3.06% 1056.7 2.37%

18
USF1(bHLH)/GM12878-
Usf1-ChIP-Seq
(GSE32465)/Homer

1.00E-
02

0.0387 190 4.34% 1574.4 3.53%

Table 1 continued on next page
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functionality of TET demethylates (Carey et al., 2015). Studies in embryonic stem cells demon-

strated the ability of lactate in reprogramming stem cells via epigenetic alterations (Carey et al.,

2015). It has also been shown that tumor lactate can cause pleiotropic effects in surrounding

immune cells, as well as in the tumor cells themselves (Matilainen et al., 2017). Our data demon-

strate that this diffusible factor can be a potential critical mediator that facilitates CAF differentiation

in the vicinity of glycolytic proliferative tumors such as PDAC. Lactate inhibitors are being developed

for anti-tumor activity (Le et al., 2010; Rajeshkumar et al., 2015) and our data suggests that these

inhibitors may act via effects on tumor microenvironment also.

Epigenetic reprogramming, which manifests as widespread loss of DNA methylation and gain of

cytosine hydroxymethylation at selective promoters, is seen in both MSC-derived and primary

(patient-derived) pancreatic CAFs. Increased lactic acid can result in acidic environment and it is pos-

sible that the change in pH can also influence epigenetic states. Previous studies have shown that a

low acidic ph leads to increases in 2HG more than aKG (Nadtochiy et al., 2016). 2HG increase gen-

erally leads to decreased Tet activity. Thus in our model, a low ph (due to increase lactic acid) should

not account for the high Tet activity and consequent decreased 5mC that we see; suggesting that

lactic acid mediated increases in aKG and Tet activity were not influenced by changes in local pH.

Loss of DNA methylation has been described mainly during developmental processes of early

embryo development, and also during differentiation of hematopoietic stem cells to committed red

cell progenitors (Shearstone et al., 2011; Yu et al., 2013). In fact, involvement of a large proportion

of the genome by demethylation is rarely outside of developmental processes. Also, though hypo-

methylation has been shown in some solid tumors (Timp and Feinberg, 2013; Alvarez et al., 2011),

it has not been studied at single base pair resolution in the tumor microenvironment. Epigenetic

studies in the tumor microenvironment have mainly been single locus studies that have focused on

hypermethylation of specific gene promoters during CAF transformation. Our findings show that

widespread demethylation occurs during in vitro transformation of MSCs to CAFs, and is recapitu-

lated in primary patient-derived CAF samples. In fact, genome wide analysis of 5hmC showed that

5hmC acquisition was seen in genes that have been associated with pancreatic cancer associated

CAFS. 5hmC is an epigenetic modification that is obtained from oxidation of 5mC marks and is an

intermediary step towards demethylation (Ko et al., 2010). It is postulated that 5hmC can act as an

independent regulatory activating mark and is associated with sites of active transcription

(Bhattacharyya et al., 2017; Madzo et al., 2014). Furthermore, our findings are consistent with a

study in gastric cancer that also observed loss of methylation and was consistent with our findings.

(Jiang et al., 2008) A recent immunohistochemical study in a murine model of PDAC also observed

loss of methylation in the microenvironment (Shakya et al., 2013) though it did not study locus spe-

cific changes.

Our data shows that the chemokine receptor, CXCR4, is upregulated in CAFs and is associated

with loss of promoter methylation. Interestingly the promoter CpGs that are demethylated were not

located in CpG islands, but in the neighboring CpG shore. CpG shores flank CpG islands and have

been shown to areas where differential methylation can occur in cancer (Irizarry et al., 2009).

CXCR4 is a well-studied receptor in stem cells and cancer models (Rettig et al., 2012; Wong and

Korz, 2008) and most studies have evaluated its expression on the tumor cells. We show that in

addition to its roles on tumor cells, its expression on stromal cells is also functionally important in

Table 1 continued

Rank Name
P-

value
q-value

(Benjamini)

# Target
Sequences
with Motif

% of Targets
Sequences
with Motif

#
Background
Sequences
with Motif

% of
Background
Sequences
with Motif

Motif

19
n-Myc(bHLH)/mES-nMyc-
ChIP-Seq(GSE11431)/
Homer

1.00E-
02

0.0511 272 6.21% 2354.1 5.27%

20
Fli1(ETS)/CD8-FLI-ChIP-
Seq(GSE20898)
/Homer

1.00E-
02

0.0528 439 10.03% 3953.7 8.86%

DOI: https://doi.org/10.7554/eLife.50663.009

Bhagat et al. eLife 2019;8:e50663. DOI: https://doi.org/10.7554/eLife.50663 11 of 23

Research article Cancer Biology

https://doi.org/10.7554/eLife.50663.009
https://doi.org/10.7554/eLife.50663


5
h

m
c

 P
D

A
C

 4
0
x

TMAs

20

132

83

94

120

8

58

0

50

100

150

200

250

300

5hmC CXCR4

0 1+ 2+ 3+

KPC PDAC Mouse1

N
u

m
b

e
r
 P

D
A

C
 C

a
s
e

s

C
X

C
R

4
 P

D
A

C
 4

0
x

N=254 N=261

A

B

C
D

E

KPC PDAC Mouse2 KPC PDAC Mouse3

KPC PDAC Mouse1 KPC PDAC Mouse2 KPC PDAC Mouse3

F G H

I
J K

5
h

m
c

 4
0

x
C

X
C

R
4

 4
0
x
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Figure 5 continued on next page

Bhagat et al. eLife 2019;8:e50663. DOI: https://doi.org/10.7554/eLife.50663 12 of 23

Research article Cancer Biology

https://doi.org/10.7554/eLife.50663


regulating tumor cell invasion. Since host stromal cells and the cancer cells cross-talk via a large vari-

ety of soluble factors, chemokines are important mediators of these processes. It has been shown

that CAFs (Mishra et al., 2008) as well as tumor cells (Quante et al., 2011) secrete SDF-1/CXCL12,

Figure 5 continued

stromal cells were positive for 5hmC and CXCR4. (F) Single cell RNA-seq from low grade intraductal papillary mucinous neoplasm (LG IPMN), high

grade intraductal papillary mucinous neoplasm (HG IPMN) and frank pancreatic ductal adenocarcinoma (PDAC) was conducted and shown in tSne plot.

(G,H) Stromal cell populations cluster distinctly and are positive for a-SMA (ACTA1) and fibroblast activated protein. (I) Most of the stromal cells are

seen in High grade IPMN and PDAC samples J,K: CXCR4 expression is seen in 14/181 (8%) stromal cells and correlates with cells with higher collagen

expression, seen in activated CAF phenotypes (T-Test, P Vccal = 0.02).

DOI: https://doi.org/10.7554/eLife.50663.010
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which is the ligand for CXCR4. A recent study demonstrated that overexpression of the CXCR4

ligand, SDF-1 in gastric cells can induce myofibroblast expansion and is consistent with the role of

CXCR4 in pancreatic cancer (Quante et al., 2011; Shibata et al., 2013). The specific inhibitor of

CXCR4, AMD-3100, is a FDA approved drug for hematopoietic stem cell mobilization. Our results

demonstrate a role of this drug in inhibition of tumor stromal crosstalk. We also observed that pro-

duction of secretory factors, such as interleukin-8 (IL8) by CAFs, is reduced upon CXCR4 knockdown.

IL8 is a well-known regulator of cell motility and has been shown to be a regulator of pancreatic can-

cer cell invasion and growth (Matsuo et al., 2009; Delitto et al., 2017; Sparmann and Bar-Sagi,

2004).

Numerous studies have shown that depletion of stroma in PDAC can lead to enhanced efficacy of

chemotherapy (Feig et al., 2012; Öhlund et al., 2017; von Ahrens et al., 2017; Ireland et al.,

2016). Conversely, a murine study demonstrated that depletion of CAFs can accelerate PDAC

metastases (Özdemir et al., 2014). As the prognosis of PDCA remains dismal, various clinical

approaches are being attempted to target CAFs, and will further clarify the role of these cells in car-

cinogenesis. Our studies support the use of agents that disrupt the cross talk between malignant

cells and the stroma and suggest that CXCR4 inhibitors may have a potential therapeutic role in pan-

creatic cancer that should be tested in future studies.

Materials and methods

DNA methylation analysis by HELP assay
Genomic DNA was isolated from primary CAF samples and controls with the use of a standard high-

salt procedure, and the HELP assay was carried out as previously described (Alvarez et al., 2011;

Khulan et al., 2006). The assay uses comparative isoschizomer profiling, interrogating cytosine

methylation status on a genomic scale. Briefly, genomic DNA from the samples was digested by a

methylcytosine-sensitive enzyme HpaII in parallel with MspI, which is resistant to DNA methylation,

and then the HpaII and MspI products were amplified by ligation-mediated PCR. Both amplified frac-

tions were submitted to Roche-NimbleGen, Inc (Madison, WI) for labeling and hybridization onto a

human hg17 custom-designed oligonucleotide array (50-mers) covering 25,626 HpaII amplifiable

fragments (HAF) located at gene promoters. HpaII amplifiable fragments are defined as genomic

sequences contained between two flanking HpaII sites found within 200–2,000 bp from each other.

Each fragment on the array is represented by 15 individual probes distributed randomly spatially

across the microarray slide. Thus the microarray covers 50,000 CpGs corresponding to 14,000 gene

promoters. Signal intensities at each HpaII amplifiable fragment were calculated as a robust (25%

trimmed) mean of their component probe-level signal intensities after intensive quality control using

analytical pipelines. The log2(HpaII/MspI) was used as a representative for methylation and analyzed

as a continuous variable. For most loci, each fragment was categorized as either methylated, if the

centered log HpaII/MspI ratio was less than zero, or hypomethylated if on the other hand the log

ratio was greater than zero.

HELP-tagging for genome-wide methylation analysis of in vitro
generated CAFs
The HELP-tagging assay applies massively parallel sequencing to analyze the status of 1.8 million

CpGs distributed across the entire genome (Suzuki et al., 2010; Bhattacharyya et al., 2013). To

perform HELP-tagging assays, DNA samples were digested with HpaII and ligated to customized

Illumina adapters with a complementary cohesive end. These adapters also contain an EcoP15I site

that cuts into the adjacent sequence 27 bp away, allowing us to polish that end and ligate the other

Illumina adapter for library generation by PCR. The presence of the CCGG and EcoP15I sequences

at the ends of the reads allowed us to remove spurious sequences. Prior to sequencing, we per-

formed qRT-PCR with primers that measure the proportion of adapter dimer complexes in the

library, usually a very small proportion (<5%) of the total library. Following sequencing, we removed

low quality or unmapped reads, piled up reads on each locus and created an output for each locus

in terms of read frequency. We normalized the HpaII signal with that of the deeply-sequenced MspI

profiles, as performed previously (Suzuki et al., 2010; Wu et al., 2013). Results were generated

using the WASP system and linked to a local mirror of the UCSC Genome Browser for visualization.
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HELP-tagging data were analyzed using an automated pipeline, as described previously

(Suzuki et al., 2010; Wu et al., 2013). Loci were defined in a continuous variable model, given the

quantitative nature of this and comparable published assays (Ball et al., 2009). Methylation values

were depicted from a range of 0 to 100, with 0 representing fully methylated to 100 representing

fully hypomethylated loci.

Whole-genome hydroxymethylation analysis by oxidative bisulfite
sequencing
One microgram genomic DNA from MSC and CAF cells were sonicated to 100–400 bp by Bioruptor,

and 0.5% (w/w) sequencing spike-in control DNA was added thereafter and purified by Ampure XP

beads. Spike-in controls were added to the adapted library. Half of the library was subjected to oxi-

dation reaction following the manufacturer’s protocol (Cambridge Epigenetix). Both oxidized and

nonoxidized samples were then treated with bisulphite conversion reagent. The final PCR was per-

formed according to the manufacturer’s guide using 10 cycles of amplification, purified, and

sequenced at the Einstein Epigenomics Facility. Bismark was used to map the sample reads and

make methylation calls. At every base location, the 5-mC percentage was estimated by the ratio of

nonconverted CpG bases to the total number of bases using the pileup of reads from the OxBS sam-

ple. For the estimation of 5-hmC, both BS and OxBS samples were analyzed, and an estimate for the

percentage of 5-hmC methylation was calculated by the difference between BS and OXBS

conversions.

Since 5-hmC is a less frequent modification, for further stringency in measuring the difference in

ratios, we used Fisher’s exact test of proportions, using the number of converted and nonconverted

reads in the BS and OxBS samples, and selected sites that have a p-value<0.05. 5-mC sites were cal-

culated by the ratio of nonconverted bases to total bases in the OxBS sample with a biologically

influenced threshold of 50%.

x.hmc.caf=counts.msccaf[caf.hmc>msc.hmc and caf.hmc >= 0.75 and caf.mc <msc.mc,]

x.hmc.msc=counts.msccaf[caf.hmc<msc.hmc and msc.hmc >= 0.75 and caf.mc >msc.mc,]

CAF hits are the loci where CAF has a higher HMC score than MSC, has an HMC score of at least.

75, and has a lower MC score than MSC.

MSC hits are the loci that have a higher hmc score of at least. 75, and a lower MC score.

To compare hydroxymethylation between cancer and control samples, we used Fisher’s test and

adjusted for multiple comparisons through the Benjamini-Hochberg procedure.

Quantitative DNA methylation analysis by MassArray epityping
Validation of HELP microarray findings was carried out by MALDI-TOF mass spectrometry using Epi-

Typer by MassArray (Sequenom, CA) on bisulfite-converted DNA, as previously described

(Alvarez et al., 2011; Figueroa et al., 2008; Figueroa et al., 2009). MassArray primers were

designed to cover the flanking HpaII sites for a given locus, as well as any other HpaII sites found up

to 2,000 bp upstream of the downstream site and up to 2,000 bp downstream of the upstream site,

in order to cover all possible alternative sites of digestion.

Gene expression microarrays
Gene expression data were obtained using Affymetrix Human Genome U133A 2.0 or Plus2 Gene-

Chips; mRNA isolation, labeling, hybridization, and quality control were carried out as described

before (Alvarez et al., 2011). Raw data were processed using the Robust Multi-Averaging (RMA)

algorithm and Affymetrix Expression Console software. Data are available in the NCBI Gene Expres-

sion Omnibus database (GSE101082).

Microarray data analysis
Unsupervised clustering of HELP and gene expression data by principal component analysis was per-

formed with the use of R 2.8.2 statistical software. Supervised analysis of the methylation data were

carried out with a moderated t-test with Benjamini-Hochberg correction with a significance level of P

less than. 05 and an absolute difference in methylation greater than 1.5 between the means of the

two populations (eg, MSCs vs. CAFs) to increase the likelihood of detecting biologically significant

changes in methylation levels.
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Gene network and gene ontology analysis
Ingenuity Pathway Analysis software and the Database for Annotation, Visualization and Integrated

Discovery were used to carry out network composition analyses.

In vitro generation of CAFs
PANC-1 cells were obtained from ATCC (verified by STR authentication) and were grown in DMEM

(Life technologies) + 10% heat-inactivated FBS culture medium and were mycoplasma free. Condi-

tioned medium from pancreatic cancer cell conditioned media (CM) was harvested after 16 hr and

centrifuged at 3,000 rpm for 5 min and supernatant was passed through Millipore sterile 50 mL filtra-

tion system with 0.45 mm polyvinylidene difluoride membrane. Human mesenchymal stem cells

(hMSCs) were exposed to fresh pancreatic cancer cell CM continuously, with the medium changed

every third day for the entire 21 day time period.

Cell lines and reagents
Primary cultures of cancer associated fibroblasts (CAFs) were established from excess tissues of sur-

gically resected pancreatic cancers at the Johns Hopkins Hospital. The excess tissues were obtained

delinked from direct patient identifiers, and primary (i.e., non-immortalized) CAFs established by

passaging in vitro, as previously described (Walter et al., 2010). All CAFs were used at early pas-

sage numbers (passages 3–6), and absence of neoplastic epithelium was confirmed by absence of

cytokeratin 19 transcripts by qRT-PCR (data not shown). For controls, dermal fibroblasts (Hdf),

human skin fibroblasts (Hsf) and hepatic stellate (Hst) cells were obtained from ATCC. The human

telomerase reverse transcriptase (hTERT) immortalized CAF line, CAF19, was a kind gift from Dr.

Michael Goggins at Johns Hopkins University (Yu et al., 2012). The human pancreatic ductal adeno-

carcinoma cell line Pa03C (Jones et al., 2009), generated from a liver metastasis, was maintained in

DMEM complete media supplemented with 10% FBS and 1% penicillin-streptomycin under myco-

plasma free conditions. Mouse pancreatic cancer KPC cells were obtained from Dr Batra

(Torres et al., 2013). LDH inhibitor FX11 was obtained from Calbiochem and used as previously

(Le et al., 2010).

RNA extraction and quantitative real-time reverse transcription PCR
Total RNA was extracted using RNAeasy Mini Kit (Qiagen, Valencia, CA). RNA was reverse tran-

scribed using the TaqMan One-Step RT-PCR Master Mix Reagents Kit (Applied Biosystems, Foster

City, CA). Quantitative RT-PCR was carried out using a pre-designed gene expression assay for

CXCR4 (Applied Biosystems) on a StepOnePlus Real-Time PCR System. Relative fold expression was

determined and normalized to GAPDH (Applied Biosytems) levels using the 2(-DDCT) method

(Schmittgen and Livak, 2008).

Transfection of small interfering RNA (siRNA)
De novo (i.e., MSC-derived) CAFs and the immortalized CAF19 cells were seeded and allowed to

adhere overnight in 6-well culture plates at a density of 2 � 105 cells/well. Following overnight incu-

bation, cells were transfected with 50 nmol/L siRNA targeting CXCR4 (Dharmacon Technologies,

Thermo Fisher Scientific, Lafayette, CO) or non-targeting control siRNA (Dharmacon Technologies)

using DharmaFECT four transfection reagent. At 24 hr post-transfection, cells were plated for co-cul-

ture invasion assays.

Transwell coculture invasion assay
8 mm pore size inserts were coated with 100 mL Matrigel (1:40 Matrigel: PBS solution) (BD Bioscien-

ces, San Jose, CA) and allowed to solidify in a notched 24-well culture plate overnight. De novo

CAFs or CAF19 cells were then plated in the bottom chamber at a density of 5 � 104 cells/well and

allowed to adhere overnight. The media was then replaced with DMEM containing 1% FBS and

Pa03C or PANC-1 cells were suspended in DMEM containing 0.5% FBS and seeded at 5 � 104/well

in the top (notched insert) chamber. Following 48 hr incubation, the assay was terminated and cells

migrating to the underside of the insert were fixed in ethanol and stained with 0.25% crystal violet

solution. Each condition was performed in triplicate. Invasion assays were also performed in the
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presence of the CXCR4 antagonist, AMD3100 (Sigma Aldrich, St. Louis, MO), which was added to

the lower chamber.

Analysis of global DNA methylation and hydroxymethylation by mass
spectrophotometer
Genomic DNA was hydrolyzed by DNA Degradase Plus (Zymo Research, CA, USA) according to the

manufacturer’s instructions. Digested DNA was injected onto a UPLC Zorbax Eclipse Plus C18 RRHD

column (Agilent Technologies, CA). The analytes were separated by gradient elution using 5% meth-

anol/0.1% formic acid (mobile phase A) and 100% methanol (mobile phase B) at a flow rate of 0.25

ml/min. Mobile phase B was increased from 0% to 3% in 5 min, to 80% in 0.5 min, kept at 80% for 2

min then switched to initial conditions in 2.5 min. The effluent from the column was directed to the

Agilent 6490 Triple Quadrupole mass spectrometer (Agilent Technologies, CA). The following transi-

tions were monitored: m/z 228.1 - > 112.1 (C); m/z 242.1- > 126.1 (5mC) and m/z 258.1- > 142.1

(5hmC).

Calibration solutions with varying amounts of 5hmC (0–3%), 5mC (0–10%) and fixed amount of C,

were also analyzed together with the samples. The solutions were prepared from a 200 bp DNA

standards containing 57 cytosines which are homogeneous for C, 5hmC or 5mC. Calibration plots of

% 5hmC or %5mC vs MRM Response ratio were constructed based on the data obtained. %5hmC is

obtained from the ratio of [5hmC]/5hmC]+[C]. Response ratio is the response peak area for 5hmC or

5mC divided by the combined peak areas of 5hmC, 5mC and C. The % 5hmC or 5mC in the samples

were determined from the calibration plots.

TET enzymatic activity
Tet activity in nuclear cell lysates was assessed by Epigenase 5mC-Hydroxylase TET Activity/Inhibi-

tion Assay Kit (Colorimetric, Epigentek). The kit contains cofactors needed for Tet activity in vitro

(Ascorbic Acid, aKG and FeNH4SO4) and assesses the amount of active TET enzyme in cell lysates

based on efficiency of conversion of 5mC to 5hmC.

Immunohistochemistry
Tissues/cells were fixed in 10% buffered formalin, embedded in paraffin and sectioned using a

microtome and mounted onto glass slides. The slides were incubated at 60 C for an hour to melt the

paraffin, followed by dehydrating them through gradients of ethanol (70, 80, 90% and 100%) and

100% xylene. The samples were then treated with antigen unmasking solution (Dako pharma) fol-

lowed by permeabilization with 0.3% H2O2 and blocked using blocking buffer (5% donkey serum

and 2% BSA). Samples were then incubated overnight in the primary antibody prepared in the block-

ing buffer followed an incubation with appropriate HRP conjugated secondary antibody. Color

development was achieved by treating the samples with diaminobenzidine (DAB) and counterstain-

ing performed using harris hematoxylene (Dako pharma). The samples were then passaged through

alcohol grades and xylene to dehydrate them, mounted using permount solution (fisher scientific)

and allowed to dry overnight before the image analysis.

In vivo experiments with TET KO mouse stroma coinjection
TET2 Knockout (KO) and wild type (WT) C57B6 mice were euthanized according to protocol and

their femur bones were harvested. The bone marrow was flushed and the resulting cells were grown

to 30–40% cell density. Once the cells were adhered to the culture flask surface, the WT and KO

storm cells were divided into two groups. One group was treated with media conditioned with the

KPC cells and the control group was treated with plain culture medium every other day for two

weeks. The resulting cells were used for downstream experiments. KPC cells (5 million/mouse) were

injected along with TET2 KO stromal or WT stromal cells (1 million/mouse) into NOD-scid IL2R-

gamma null (NSG) immuno-deficient mice and then followed for tumor measurements. Mice were

sacrificed at end of experiment and tumors used for immunohistochemistry.

Stable metabolite isotope analysis using GC-MS
Metabolic extraction MSCs were cultured with 10 mM 13C3 lactate (Cambridge Isotope Labs) for 48

hr. Spent medium was removed, and cells were washed with ice-cold PBS. Cells were then quenched
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with 400 ml methanol and 400 ml water containing 1 mg norvaline. Cells were scraped, washed with

800 ml ice-cold choloform, vortexed at 4˚C for 30 min and centrifuged at 7,300 rpm for 10 min at 4˚

C. The aqueous portion was then collected and stored at �80˚C until further analysis.

Derivatization Samples were first dried and dissolved in 30 ml of 2% methoxyamine hydrochloride

in pyridine (Pierce) prior to sonication for 15 min. Samples were then kept at 37˚C for 2 hr, and trans-

ferred to 55˚C for 1 hr following the addition of 45 ml MBTSTFA+1% TBDMCS (Pierce).

GC-MS measurements Analysis was done using an Agilent 6890 GC equipped with a 30 m Rtc-5

capillary column connected to an Agilent 5975B MS operating under electron impact ionization at

70 eV. Samples were injected at 1 ml and 270˚C in splitless mode, and helium was used as the carrier

gas at 1 ml/min. The heating cycle for the GC oven was as follows: 100˚C for 3 min, followed by 300˚

C at 5˚C/min temperature increase, for a total run time of 48 min per sample. Data was acquired in

scan mode and the integrated signal of all potentially labeled ions was normalized by the norvaline

signal and used to calculate the abundance of relative metabolites. The mass isotopomer distribu-

tion was obtained by dividing the signal of each isotopomer by the sum of all isotopomer signals

and corrected for natural abundance. These stable isotope tracer analysis protocols are established

and described in detail in our previous studies (Achreja et al., 2017; Zhao et al., 2018).

Nuclear protein extraction and In vitro TET enzymatic activity analysis
Cells were treated with various conditions and nuclear protein was then isolated from cells using the

EpiQuik nuclear extraction kit (Epigentek Group Inc), according to the manufacturer’s instructions.

TET enzymatic activity was measured by using the ELISA-based Epigenase 5mC Hydroxylase TET

Activity/Inhibition Assay Kit (Fluorometric) according to manufacturer’s instructions. This technique

relies on the conversion of methylated products at the bottom of the wells to hydroxymethylated

products by the TET enzyme present in the nuclear extract. Thus the amount of hydroxymethylated

products formed is a measure of the TET activity of the nuclear extract harvested from the cells

being tested.
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