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Abstract Japanese encephalitis (JE) is a mosquito-borne disease, known for its high mortality

and disability rate among symptomatic cases. Many effective vaccines are available for JE, and the

use of a recently developed and inexpensive vaccine, SA 14-14-2, has been increasing over the

recent years particularly with Gavi support. Estimates of the local burden and the past impact of

vaccination are therefore increasingly needed, but difficult due to the limitations of JE surveillance.

In this study, we implemented a mathematical modelling method (catalytic model) combined with

age-stratifed case data from our systematic review which can overcome some of these limitations.

We estimate in 2015 JEV infections caused 100,308 JE cases (95% CI: 61,720–157,522) and 25,125

deaths (95% CI: 14,550–46,031) globally, and that between 2000 and 2015 307,774 JE cases (95%

CI: 167,442–509,583) were averted due to vaccination globally. Our results highlight areas that

could have the greatest benefit from starting vaccination or from scaling up existing programs and

will be of use to support local and international policymakers in making vaccine allocation decisions.

Introduction
Japanese encephalitis (JE) is caused by Japanese encephalitis virus (JEV) – an arbovirus that belongs

to the flavivirus genus, family flaviviridae. The main vectors are mosquitoes of the Culex genus, espe-

cially Culex tritaeniorhynchus. These mosquitoes thrive in rice-paddy fields (Buescher and Scherer,

1959; Self et al., 1973). JEV has a wide range of vertebrate hosts, noticeably the amplifying hosts

are thought to be pigs and wading birds (SAGE Working Group on Japanese encephalitis vac-

cines, 2014). Humans are dead-end hosts as viremia is not believed to reach levels that are infec-

tious to mosquitoes (SAGE Working Group on Japanese encephalitis vaccines, 2014). Only 1 in 25

to 1 in 1000 infections result in symptoms (Vaughn and Hoke, 1992; SAGE Working Group on Jap-

anese encephalitis vaccines, 2014). However, the mortality rate of symptomatic cases is high -

around 20–30% (Fischer et al., 2008), and around 30–50% of survivors experience significant neuro-

logical and psychiatric sequelae (Fischer et al., 2008).

The first JE case was documented in Japan in 1871 (WHO, 2015). In 1924, a first JE outbreak in

Japan caused more than 6, 000 cases and 3, 000 deaths in 6 weeks (Solomon, 2006). Several out-

breaks occurred subsequently in Asia (Hullinghorst, 1951; Erlanger et al., 2009; Barzaga, 1990).

More recently, in 2005 large outbreaks occurred in northern India and Nepal, with 5000 cases and
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1300 deaths (Solomon, 2006). Currently, 24 Asia-Pacific countries are thought to be endemic for JE,

with 3 billion individuals at risk of infection (WHO, 2015).

The first vaccine was an inactivated mouse brain vaccine produced in Japan, used worldwide for

50 years. Although vaccine production halted in 2006, similar inactivated mouse brain vaccines are

still produced locally in South Korea, Taiwan, Thailand and Vietnam (Yun and Lee, 2014). The use of

the next vaccine, an inactivated a Vero cell vaccine (SAGE Working Group on Japanese encephali-

tis vaccines, 2014), has been gradually replaced (since 1988) by a live attenuated vaccine (SA 14-14-

2) produced in China, with PATH support. SA 14-14-2 is now widely used in Asia and funded by Gavi

which has led to a great increase in vaccination. This vaccine requires only a single dose, is cheap to

produce, and is safer than the mouse brain vaccine (SAGE Working Group on Japanese encephali-

tis vaccines, 2014). In addition, a live attenuated chimeric vaccine was first licensed in Australia in

2012 (SAGE Working Group on Japanese encephalitis vaccines, 2014).

WHO recommends two JE surveillance systems that are important for monitoring burdens of JE

and changes over time (WHO, 2019), (i) a subnational system with sentinel hospitals, or (ii) case-

based nationwide surveillance. Each country implements one of these systems depending on avail-

able resources (Hills et al., 2009). WHO recommends diagnosis using JEV-specific IgM antibody-

capture enzyme-linked immunosorbent assay (MAC-ELISA) in CSF at two time points

(Donadeu et al., 2009; Burke and Leake, 1988). Serum samples can be used, but false positives

may result from cross-reactivity with other flaviviruses or vaccination (Solomon et al., 1998;

Hills et al., 2009). Other tests that can confirm JE are plaque reduction neutralizing (PRNT), hae-

magglutination inhibition (HI), immunohistochemistry or immunofluorescence assay, reverse tran-

scription polymerase chain reaction (RT-PCR) or virus isolation (Hills et al., 2009), though these are

not often used.

The previous estimate of annual global JE cases was 67,900 with 13,600–20,400 deaths

(Campbell et al., 2011). For this estimate a systematic review in 2011 collated case incidence data

from endemic JE countries. Countries were then stratified into 10 incidence groups (Group A, B, C1-

2 and D-I) based on geographic, ecological and vaccine program similarities. The systematic review

resulted in 12 key studies, which were then used to infer the incidence rate (IR) of the 10 incidence

groups. However the estimation had some limitations; the surveillance quality of the 12 key studies

varied, and as the case incidence rate combines both the infection rate and vaccination, (e.g. a low

risk of infection with no vaccination could have a similar incidence as a high risk of infection but with

high vaccination coverage), it is not possible to estimate the impact of vaccination.

The use of age-stratified case data to infer the FOI has been of use recently for dengue

(Imai et al., 2016; Cattarino et al., 2020; Rodriguez-Barraquer et al., 2019). The advantage of this

method is that the age distribution will be insensitive to differential reporting or tests used in differ-

ent places, and the important information from the age distribution remains; the higher the rate of

infection, the earlier in life individuals will acquire infection. By fitting models of the infection process

(including acquisition of immunity) to this age-stratified data we can quantify this rate of acquiring

infection, known as the force of infection (FOI) (Hens et al., 2010).

Poor clinical outcomes and lack of specific treatment makes JE prevention a priority. Vaccination

is the most effective method of prevention, however it is difficult to decide where vaccination should

be implemented or to estimate the quantitative impact of vaccination (Fischer et al., 2008). In

Nepal, one study estimated 3,011 JE cases were prevented in vaccinated districts from 2006 to 2012

(Upreti et al., 2017). Another study in Sarawak Malaysia estimated a 61% reduction in JE cases after

the vaccination program, where climate effects were not taken into account, and 45% when the

effects of climate were included (Impoinvil et al., 2013). The methods used in both these papers

require good surveillance data before and after vaccination, which, though data are improving, are

currently not widely available. Hence, new approaches are needed to estimate burden and vaccine

impact.

In this study, we provide updated global JE burden and vaccination impact estimates using a

modelling method which helps overcome some of the limitations of sparse and variable surveillance

data. In addition, by simulating the model with and without the undertaken vaccination programs we

are able to estimate the impact of vaccination on the number of global JE cases to date and identify

areas that would benefit most from future vaccination.
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Results
There are two main stages to our analysis, summarized in flowcharts in Figure 1. In the fstage I, we

conducted a systematic review to collate age-stratified case data and a literature review to obtain

vaccination information. We then fit a model to this data to estimate the transmission intensity or

force of infection (FOI) for each study. In stage II, we extrapolated the FOI from our previous

estimates to all endemic areas. Using the processed population and vaccination data in all endemic

areas, we used the model to generate burden quantities (cases) in two scenarios, with or without the

JE vaccination programs that have been implemented.

Systematic review
A systematic review on October 11th 2017 yielded 2337 initial results (Figure 2). 407 relevant studies

were obtained after eliminating 1931 irrelevant titles and abstracts that were about molecular biol-

ogy, policy, entomology, hosts other than humans, or were review papers. The obtained studies

mainly comprised of reports of JE surveillance or epidemiological studies in one specific location.

We also included modelling, economic evaluation or vaccine program assessment studies for possi-

ble eligible data sources in the references. We retrieved and read 261 full-text papers. Most of the

papers that we could not access were either old or not in English. In the systematic review process,

a further four eligible studies were retrieved from references. 202 papers were then excluded as

they did not contain age-stratified case data, and another 14 papers were also excluded because

they had limited samples (less than 15 cases) or the study’s catchment area was not clear. Another

four datasets from JE national reports were collated from Taiwan, Japan, and Sri Lanka. Finally, we

had 53 studies that contained age-stratified case data (Figure 2). 42 of the 53 studies (79%) con-

tained data from after 2000 only, 7 from before 2000 only and three from both time periods (Fig-

ure 2—source data 1). 34 studies (64%) had data from 1 to 4 year time periods, six studies had data

Figure 1. Flowchart describes two main stages in our analysis: Estimating FOI (force of infection) and generating

burden. In Stage I we estimate FOI (force of infection) of all studies’ catchment area. In Stage II we then used the

FOI estimates to generate global burden. Abbreviation: WPP: World Population Prospects.
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for periods of between 5 and 9 years, and 11 studies had data for more than 10 years. The majority

of the studies used the WHO JE case definition: JE IgM antibody in CSF or serum as confirmed by

MAC-ELISA on patients with acute encephalitis syndrome. In the majority of studies patients were

recruited from a sentinel hospital surveillance system, though these ranged in size from one to sev-

eral hospitals. For studies with a consistent catchment area but for which data was collected in multi-

ple years, we aggregated the age-stratified case data across years. Further details of the selected

studies and data, including about catchment areas, sample collection methods, and vaccination pro-

grams are in Figure 2—source data 1.

We obtained the vaccination information from three main sources: literature review, WHO, and

Gavi (Figure 3—source data 1). Campaign vaccination information was mainly from Gavi and rou-

tine vaccination was from WHO, while the literature contains both. When there were disagreements

between the different vaccination information sources, we chose to use the information from the lit-

erature review. The total vaccinated population in each country from 2000 to 2015 using information

obtained from this data is shown in Figure 3 and Figure 3—source data 1. This information was

included as a prior in the model fitting (see Figure 4—source data 3).

Figure 2. Flowchart describing the systematic review procedure searching for Japanese encephalitis age- stratified case data.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Studies from the systematic review that contain age-stratified case data.

Source data 2. PRISMA Checklist.

Figure supplement 1. PRISMA 2009 flowchart.
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Force of infection (FOI) estimation from collated age-stratified data
From 53 studies, we made FOI estimates using the catalytic model from 53 unique catchment areas

in 15 countries (Figure 4). Force of infection (FOI) is the per capita rate at which susceptible individu-

als are infected by an infectious disease and a catalytic model estimates the FOI from age- stratified

case data (Hens et al., 2010). All the catalytic models converged well (see convergence plots in Fig-

ure 4—source data 4) and fit well to data in all but one study (Figure 4—source data 2 - 95% CIS

of model output and case data shown). Our FOI estimates varied from 0.001 (95% CI: 0.000 - 0.002)

in Japan to 0.507 (95% CI 0.419 - 0.582) in Guigang in China. Besides those extreme values, FOI

were generally between 0.05 and 0.2, with a median of 0.09 (Figure 4). In this model-fitting the

reporting rate is the proportion of all infections that are reported. The reporting rate includes both

the proportion that are symptomatic and the proportion of those cases that present at each hospital

or be counted in each surveillance system, so it is the proportion of infections reported. We

Figure 3. Reported number of individuals vaccinated in each region from multiple data sources by region from 2000 to 2015. If the country is not listed

there is no vaccination reported. Abbreviations: AUS: Australia, CHN: China, IND: India, JPN: Japan, KHM: Cambodia, KOR: South Korea, LAO: Laos,

LKA: Sri Lanka, MYS: Malaysia, NPL: Nepal, PRK: People’s Republic of Korea, THA: Thailand, TLS: Timor-Leste, TWN: Taiwan, VNM: Vietnam. The

supplementary file: Figure 3—source data 1 lists the vaccination data and the sources for each country.

The online version of this article includes the following source data for figure 3:

Source data 1. Vaccine information and how it was used in our model.
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Figure 4. FOI distribution estimated from all studies’ catchment areas (on the left), each distribution represents FOI from one study, which were used to

infer the FOI distribution in all endemic areas (on the right). The colors are coded after the endemic areas as in the legend. Abbreviation: AUS:

Australia, BGD: Bangladesh, CHN: China, IDN: Indonesia, IND: India, JPN: Japan, KHM: Cambodia, KOR: South Korea, LAO: Laos, LKA: Sri Lanka, MYS:

Malaysia, NPL: Nepal, PHL: Philippines, RUS: Russia, SGP: Singapore, THA: Thailand, TWN: Taiwan, VNM: Vietnam. Countries have low, medium or high

following the classification in Campbell et al., 2011.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Estimated FOI and studies used/assumptions of 30 endemic areas.

Source data 2. Model fit of all age-stratified case data.

Source data 3. Susceptible proportion after vaccination in study population.

Source data 4. Trace plots for all models fits.

Figure 4 continued on next page
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therefore observed a wide variation in estimated reporting rates � between studies (Figure 4—fig-

ure supplement 1). This number is not used in the estimates of cases in the next section. For China,

India, Japan, and Nepal, the posterior estimates of the proportion of the population in study k and

age group i that remained susceptible after vaccination sk;i, for some age groups was slightly differ-

ent to the prior population vaccination that was included in the model fitting (Figure 4—source

data 3). When the posterior and prior did not agree, for most datasets this suggested missing vacci-

nation data with the prior saying higher susceptibility than the posterior, however for some areas in

India the reverse was estimated.

Inference of force of infection for all endemic areas
Based on the rules in the methods, we are able to infer FOI from available data for 24 endemic areas

(Figure 4—source data 1, and Figure 4) from across the Campbell et al. groupings. In the Campbell

et al. grouping, FOI is assumed to be homogeneous across each country, except Indonesia, China

and Nepal with low and high groups, and India with a low, medium and high transmission groups.

We kept this grouping for our work except for Indonesia, as the collated data for Indonesia was

combined across various provinces across both the low and high incidence areas, we assumed the

FOI to be the same in both areas. There were no studies from countries in the Campbell et al.,

2011 group B (Australia, Pakistan, North Korea, Russia, Singapore and the low incidence region in

India). Since this group contains extremely low incidence areas, the FOI was assumed to have a log-

normal distribution ln Xð Þ ~N 0:01; 1ð Þ (see Figure 4).

Burden and vaccine impact estimation
We estimate the burden from 2000 as the majority of studies used to estimate FOI were from after

this time period. We estimate that from 2000 to 2015, there were 1,976,238 (95% CIs: 1,722,533–

2,725,647) JE cases globally. By including known annual vaccination information in the catalytic

model we estimate that in the same period had there been no vaccination there would have been

2,284,012 (95% CIs: 1,495,964–3,102,542) JE cases. Therefore we estimate that vaccination pro-

grams have prevented 307,774 JE cases globally (95% CI: 167,442–509,583) from 2000 to 2015 and

vaccination programs similarly prevented 74,769 deaths from JE (95% CIs: 37,837–129,028). We esti-

mate the greatest impact of vaccination from 2005 to 2010 due to large increase in vaccination in

China in this time, and the impact of vaccination became more obvious over time (Figure 5). In

2015, we estimate vaccination reduced the number of cases globally by around 45,000 (from

145,542 (95% CI: 96,667–195,639) to 100,308 (95% CI: 61,720–157,522) (Figure 5).

We estimated the highest number of cases in the high endemic area of China (around 40,000

annual cases in the no vaccination scenario and around 20,000 annual cases in vaccination scenario),

and medium or high endemic areas in India (around 20,000 annual cases in no vaccination scenario

and 15,000 annual cases in vaccination scenario for each area in recent years). On the contrary, areas

like Australia, Brunei, Bhutan and Russia were estimated to have less than 100 annual cases with or

without vaccination (Figure 5, Figure 6). All visualized burden estimates for every years and areas

can be found in our interactive map (Duy, 2018).

Vaccination impact can be observed in 19 areas where vaccination has been used (Figure 5). In

areas like the low and high endemic area in China, medium and high endemic area in India, Cambo-

dia, Laos, Nepal, North Korea, and Timor-Leste though vaccination started recently, we estimate

that the programs have achieved significant cases averted. Indeed, in the high endemic area in

China, the routine vaccination programs only started in 2008 but contributed the most to the global

cases reduction, with around 20,000 cases averted in China in 2015. We also observed a clear differ-

ence in cases between vaccination and no vaccination scenario in areas with intensive vaccination

programs such as South Korea, Sri Lanka, Thailand, Taiwan, and Vietnam. For Japan, Australia, and

Malaysia, though vaccination began a long time ago, we estimated there has been minimal vaccine

Figure 4 continued

Source data 5. Acf plots for all model fits.

Figure supplement 1. Estimated reporting rate from all studies.

Figure supplement 2. prior distributions for lambda and rho.
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Figure 5. Number of estimated cases with and without vaccination of the 30 endemic areas and of the world from 2000 to 2015. The two scenarios,

with or without vaccination, are also shown in blue and red respectively. In all areas, the boxplots represent the estimated cases with 95% credible

intervals (also shown 1 st quartile, 3rd quartile) with the solid lines showing the mean value of each interval. Abbreviation: AUS: Australia, BGD:

Bangladesh, BRN: Brunei, BTN: Bhutan, CHN: China, IDN: Indonesia, IND: India, JPN: Japan, KHM: Cambodia, KOR: South Korea, LAO: Laos, LKA: Sri

Lanka, MMR: Myanmar, MYS: Malaysia, NPL: Nepal, PAK: Pakistan, PHL: Philippines, PNG: Papua New Guinea, PRK: North Korea, RUS: Russia, SGP:

Singapore, THA: Thailand, TLS: Timor-Leste, TWN: Taiwan, VNM: Vietnam.

The online version of this article includes the following source data for figure 5:

Source data 1. Results of sensitivity analyses.
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impact. From the data we collated, no vaccine programs had occurred in in Bangladesh, Brunei, Bhu-

tan, the low and high endemic areas in Indonesia, Myanmar, Pakistan, Philippines, Papua New

Guinea, Russia, or Singapore so we estimated of course vaccination has had no impact.

Sensitivity analysis
To assess the impact of uncertainties in our data and assumptions we performed extensive sensitivity

analyses. Sensitivity analyses were conducted for endemic areas with uncertain vaccination coverage

data, where both national and subnational data were available (China, India and Nepal), or where we

did not have any studies. The majority of the results showed minimal changes compared to our origi-

nal estimates (Figure 5—source data 1). Cases estimated from Taiwan subnational data were higher

by about 200 to 400 cases before 2004 (Figure 5—source data 1). In some areas, we observed sig-

nificant differences in the estimated cases when the vaccination coverage was changed: when the

vaccination coverage reduced by 10% and 30% in Sri Lanka or by 30% in Thailand and Taiwan, the

mean values of estimated cases increase by around 40, 100, 300, and 220 respectively (Figure 5—

source data 1). However these changes account for a small fraction of our original global estimates.

Sensitivity analysis varying the assumed 100% vaccine effectiveness to 90% and 70% showed global

case estimates changed minimally with this assumption (Figure 5—source data 1). In addition due

to concerns about possible changes in FOI over times, we also tested our assumption of constant

FOI by fitting multiple-year data to a time-dependent catalytic model. Overall, the annual FOI esti-

mates are comparable with the constant FOI (Figure 5—source data 1).

Discussion
In this paper, we updated the JE burden estimates with a mathematical modelling method using

data we collated from a systematic review. We estimated that in 2015 there were around 100,000 JE

cases globally. In addition, we estimate that vaccination programs averted around 45,000 JE cases in

2015.

For JE, since humans are dead-end hosts and therefore vaccination does not lead to herd immu-

nity, the FOI we estimate represents the constant spread of the disease from the animal reservoirs

to humans. This spread depends on epidemiological factors related to JE transmission such as cli-

mate, rural-urban, mosquito distribution (especially Culex tritaeniorhynchus), and pig and rice field

Figure 6. Maps of estimated cases (in thousand) in 30 endemic areas for two scenarios in 2015. Each endemic area is shaded in proportion to the area’s

estimated cases in thousand as seen in the legend, with yellow shade is the lowest value and red shade is the highest value. The map on the left is the

estimates from no vaccination scenario, and the right is from the vaccination scenario. The maps were made by leaflet package in R (Joe et al., 2017).
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distributions (Le Flohic et al., 2013). This explains why our estimated FOI varies widely. Looking

crudely at the pig density (Nicolas and Gilbert, 2010) and a Culex tritaeniorhynchus probability

maps of Miller et al., 2012 and Longbottom et al., 2017 there appears to be a broad correlation

of these factors with our estimates. The high FOI estimated in the south of China, Vietnam, and Phil-

ippines is consistent with the high pig density and high probability of Culex in these areas (for Viet-

nam and Philippines with Miller et al., 2012 only). We also estimated high FOI in India and

Indonesia; however these countries only have high probability of Culex (in Miller et al., 2012 but

not Longbottom et al.) but low pig density in Longbottom et al., 2017. This suggests that other

potential animal reservoirs may contribute to the transmission in these countries, likely the wading

bird or even poultry, although current evidence is limited (Lord et al., 2015). In Taiwan and South

Korea the current estimated FOI is lower compared to other areas, respectively 0.061 (95% CI

0.013–0.093), and 0.041 (95% CI 0.026–0.057) despite these areas having high probability of Culex

mosquito and high pig density. These countries have had high JE burdens in the last 40 years, but

we do not estimate so for 2000–2015. This could be due to lack of recent data, or perhaps suggests

urbanization, which reduces the proximity of humans to pig farms and rice fields (where the mosqui-

toes thrive), may play an important role in lowering transmission. This could also be due to uncertain-

ties in the long term vaccination information in these areas. Further work will use environmental

covariates to gain estimates of FOI on a smaller spatial scale and over time. In addition, changes in

these covariates into the future should be considered in estimates of the future vaccine impact.

A strength of our Bayesian approach was the possibility to include prior information on vaccina-

tion, but also assess whether this was consistent with the ages distribution of observed cases. For

China and Japan we estimated lower susceptible proportions after vaccination in certain age groups

compared to calculated proportions from the available data. This suggests that there are a large

number of immunized people in certain age groups due to past vaccination, for which we did not

have information. In Nepal and India, we also observed differences between the data and estimated

susceptible proportion after vaccination, though the vaccination information for these countries was

more readily available. There was still an impact of vaccination- but expected impact on the age dis-

tribution in the model fitting was not as extreme as the data we collated would have suggested. For

India, this artefact as picked up by the model is consistent with data on vaccine efficacy and vaccina-

tion coverage data from India. From 2006 to 2011, SA 14-14-2 vaccine was used in India for cam-

paigns. Though the vaccine reported nearly 100% efficacy in vaccine trials and case-control studies

(Kumar et al., 2009; Bista et al., 2001), the efficacy in India was reported to be as low as 30% to

40% (Vashishtha and Ramachandran, 2015; Tandale et al., 2018) and lower seroconversion has

also been reported in India (Singh et al., 2015). A previous evaluation of vaccination coverage also

showed that the vaccination coverage data in India was lower than reported (Murhekar et al.,

2017). Further studies are needed to explore whether there are different vaccine efficacies in differ-

ent places, particularly India, and to explore possible explanations for this. One possible explanation

could be cross-reactive immunity to other flaviviruses, or differences in circulating JE genotypes.

Using the FOI from 30 endemic areas, we projected the regional and global JE burdens as well as

the vaccine impact. By region, our burdens estimates are highest in China and India, which aligns

with previous literature (Heffelfinger et al., 2017). Our global estimate of around 100,000 cases

annually is about 1.5 times higher than the previous estimate of around 70,000 cases

(Campbell et al., 2011). Similar patterns are seen for the comparison area by area, in which our case

number estimates are either higher than or comparable to the previous estimates (Table 1). It is not

surprising that our estimates are higher, since our method more robustly takes into account under-

reporting and different surveillance quality. In addition, the numbers we reported here are time-

dependent and not static because our estimates include population changes and the progression of

vaccination programs over time.

Though our methods are more robust, collating 53 studies (an additional 41 from the studies

used in the previous burden estimate) (Campbell et al., 2011), and using age-stratified data to cir-

cumvent issues with reporting variation, there are still some limitations. As in the previous estimates

of JE burden (Campbell et al., 2011), we made inferences for the whole country based on data

from a few studies. However in our method we sampled from the FOI estimates from all studies to

account for some of this uncertainty and variation. In addition, as in previous studies, a limitation is

that we inferred the incidence metric (in our case, FOI) for areas without data, from FOI from other

areas, based on previous classification of transmission in these countries. However, our sensitivity
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analysis shows that this does not alter the global burden estimates greatly, though it may affect the

country-specific burden estimates. (Campbell et al., 2011). Our future work incorporating the epide-

miological factors into machine learning algorithms to extrapolate the FOI on smaller spatial scales

will help in refining these estimates in the future. Similarly, we assume transmission is constant over

time. Further work fitting models with time varying forces of infection as well as looking at covariates

of infection that are changing over time, will be necessary for future refinements of these estimates.

An additional limitation of our analysis is the uncertainty in the proportion of infections that lead to

disease, we sample from this range, and this uncertainty is included in our uncertainty analysis. Fur-

ther studies, for example in cohorts may enable better estimates of this proportion. In addition, we

assumed the FOI is constant across age, only susceptibility changes due to acquistion of immunity,

further assessment of seroprevalence studies may be able to assess this further. In addition, though

our method accounts for reporting rates within these studies, future work should assess the impact

of cross-reactivity and further issues with diagnosis on the estimates, such as including AES data in

the fitting. In addition, we did not include papers not in English in our literature review. The papers

we could not include were all from China and so further work including these papers should enable

better estimation of the FOI in China.

We estimated only the impact of vaccination on cases from 2000 to 2015. Because the impact of

vaccination will continue into the future as vaccinated individuals remain protected, our estimate will

be an underestimate of the total impact of vaccination. In addition, our estimates will be an under-

estimate of total vaccine impact as in some places vaccination programs have been running before

2000, and so vaccination had a large impact before 2000. However there is limited information in

order to estimate transmission intensity before this time, so we focused our work on 2000–2015. In

this paper, we focused on cases (and to some extent deaths) from JE. However because a large

number of cases have long-term sequelae after JE infection, focus just on case numbers does not

describe fully the total burden of JE. Future work will refine the estimates of the proportion of indi-

viduals that die and that experience different long-term sequelae, to generate update our model to

estimate JE Disability-Adjusted Life Year (DALY), particularly relevant for use in cost-effectiveness

analyses for introduction of vaccination into new locations.

Table 1. Comparing annual case estimates from Campbell et al. to our estimates for the year 2015 (as this was the year of estimation

of the previous estimates).

Group A: Taiwan, Japan, South Korea; Group B: Australia, low endemic area in India, Pakistan, Russia, Singapore; Group C1: high

endemic area in China; Group C2: low endemic area in China; Group D: Cambodia, high endemic area in Indonesia, Laos, Sabah and

Labuan in Malaysia, Myanmar, Philippines, Timor-Leste; Group E: low endemic area in Indonesia, Peninsular Malaysia, Papua New

Guinea; Group F: high endemic area in India, high endemic area in Nepal; Group G: Bangladesh, Bhutan, Brunei, low endemic area in

Nepal; Group H: Medium endemic area in India, Sarawak in Malaysia, Sri Lanka, Thailand, Vietnam; Group I: North Korea.

Incidence Group
Case numbers:
Previous estimates

Case numbers:
Our no vaccination scenario
Mean estimates (and 95% Cis)

Case numbers:
Our vaccination scenario
Mean estimates (and 95% Cis)

A 6 2,307 (1,175–3,497) 863 (453–1,469)

B 2 2595 (388-6,243) 2540 (381-6,071)

C1 33,849 38,789 (26,128–51,482)* 22,013 (3,778–42,375)*

C2 28 10,752 (7,297–14,152) 7,094 (4,230–10,579)

D 7917 13,710 (9,333–18,135) 13,700 (9,325–18,125)

E 3645 12,932 (8,804–17,059) 12,932 (8,804–17,059)

F 12,350 22,514 (1,503–36,423)* 17,304 (846-27,930)*

G 1358 9,538 (6,322–12,881) 9,277 (6,133–12,548)

H 8072 29,942 (17,431–40,933) 23,201 (13,647–31,542)

I 670 465 (77–1,022)* 433 (74–912)*

Total 67,897 143,545 (94,469 – 194,940) 109,358 (65,968–156,669)

*Our estimates are comparable to the previous estimates.
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Since JE vaccination does not produce herd immunity, the transmission intensity can only be

reduced by influencing the animal transmission cycle. Previous attempts to break the transmission

cycle have been vector control and vaccination in pigs and wading birds, and this has been consid-

ered in modelling work (Khan et al., 2014). However they were either ineffective or up to now have

been deemed economically and logistically intensive (Fischer et al., 2008). Further work considering

pig vaccination in the context of these updated estimates of the burden of JE should be considered.

We estimate that despite not interrupting transmission, human vaccination can be an effective strat-

egy to reduce JE case numbers. This can be seen from the estimate that the majority of the reduc-

tion in global burden is due to the routine vaccination program in China from 2008. We estimate

that India, Timor-Leste, and Vietnam also have high transmission intensity, and residual cases despite

vaccination, and therefore could further benefit from scaling-up the existing vaccination program

(Figure 3—source data 1). We estimated high transmission intensity in Indonesia, Papua New

Guinea, and Philippines where there are no current vaccination programs, suggesting that vaccina-

tion in these areas should be a future priority. Future smaller scale estimates will support decisions

on where within these countries could be best targeted for vaccination. For areas with a long history

of JE vaccination (see Figure 3—source data 1). such as South Korea, Sri Lanka, Thailand and Tai-

wan, (Figure 4), we estimate a substantial vaccine impact (Figure 5), though with cases still occur-

ring. In other countries with a long vaccination history however, we estimate a minimal impact of

vaccination (Figures 4 and 5), due to low estimated transmission intensity in Japan, low vaccination

coverage in Malaysia, or both in Australia (though age-stratified data were not available in Australia).

Our estimate of transmission intensity for Japan also has great uncertainty, as half the studies

included data pre-2000 and we were able to find limited information on the long-running vaccination

program there. In addition, there are limitations to how well our method will work, given the high

rate of vaccination there. This may mean we are under-estimating the impact of vaccination in Japan.

Further work with serological data both from humans and animals and further exploration of the

drivers of JE transmission will help refine this estimate.

Assessing JE disease burden and vaccination program performance is important though difficult

due of the lack solid surveillance programs worldwide. In our paper, we are able to estimate the dis-

ease burden and vaccine impact using a modelling method that is able to overcome some of the lim-

itations of current surveillance. We estimate annually there are still 100,000 cases of JE in Asia,

making a 2/3 of all cases of this severe but vaccine preventable still not being averted. The majority

of remaining cases are focussed in countries with still developing healthcare systems. Given there is

a cheap vaccination now available, our results will help with the rational assessment of JE vaccination

cost and benefit for each country and will help guide Gavi and other international and national pub-

lic health agencies in making decision on their future investment into JE vaccination.

Materials and methods

Systematic review
We performed a systematic review to find all available age-stratified case data for Japanese enceph-

alitis in PubMed. We used the search terms ‘epidemiology’ or ‘incidence’ or ‘prevalence’ or ‘public

health’ or ‘surveillance’ or ‘distribution’ in all fields with ‘Japanese encephalitis’ in the title or

abstract. All titles and abstracts were screened and we selected those in which the study contained

age-stratified case data. We retrieved the full-texts for these selected abstracts and the abstracts

were read by two independent reviewers to extract the age-stratified case data. From each study we

also collected other information about the catchment areas, sample collection methods, diagnosis

tests, and regional vaccination programs from the papers. A final consensus was reached for the final

list of eligible full-texts. If abstracts were not available, the two independent individuals also tried to

access and examine the full-texts. We also searched online for age-stratified case data from national

JE surveillance reports.

We obtained vaccination information either from the study itself or from the literature review.

Based on the review of JE vaccination programs reported from the World Health Organization

(WHO) (Heffelfinger et al., 2017), we found that previous vaccination programs had occurred in 13

countries. We then undertook a literature search to find all vaccination information (target age

group, vaccination coverage, types of vaccine used, years of vaccination) for these countries. We
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also collated historical routine vaccination program from country reported administrative doses data

time series (from 2000 to 2015) compiled from WHO-UNICEF Joint Reporting (World Heath Organi-

zation, 2018) and additional data from Gavi.

Force of infection estimation
Force of infection (FOI) is the per capita rate at which susceptible individuals are infected by an

infectious disease. In this study, we used a basic Muench’s catalytic model (Muench, 1958) to esti-

mate the constant age and time independent FOI using the case data we extracted during the sys-

tematic review process. A similar approach has been used to estimate the global dengue

transmission intensity (Imai et al., 2016; Rodriguez-Barraquer et al., 2019). As humans are dead-

end hosts for JE, the FOI represents the FOI from the animal reservoir, and therefore is not

impacted by human vaccination. This means vaccination can be included in the model simply as a

removal of susceptible individuals by vaccination (or a reduction in risk of infection in this vaccinated

group depending on vaccine efficacy) and will not alter the FOI. Therefore in this model, individuals

can become immune to infection either by natural infection (depending on the force of infection) or

vaccination.

To estimate the FOI (notated as lk), for each study k, taking into account vaccination and report-

ing rate for each study k, the modelled number of cases in a specific age group i is:

Ek;i ¼ Pk;ipopk;isk;i�k, where

Pk;i ¼ ej j�lka
l
k;i� e

�lk au
k;i
þ1ð Þ

� �

(1)

Where Pk;i estimates the incident rate of infection in each age group i (with lower and upper alk;i
and auk;i respectively), accounting for force of infection and susceptibility in that age group due to

natural infection before this age. popk;i is the population size in each age group i of each study k, cal-

culated from World Population Prospects 2017 data (United Nations-Department of Economic and

Social Affairs-Population Division, 2017). sk;i is the estimated susceptible proportion in each age

group i after vaccination for population in study k. The prior distribution of lk was an uninformative

non-negative, normal distribution, lk ~Normal 0;1000ð Þ. To include the uncertainty in the vaccination

information, we used an informative prior: sk;iBeta F 1� s
0

k;i

� �

;Fs
0

k;i

� �

, with s
0

k;i is the proportion of the

population that remain susceptible after vaccination in age group i of study k, calculated from the

vaccination information and the population demographics in the study’s catchment area. F repre-

sents the uncertainty of the vaccination information (we set F¼ 5 to account for the possibility that

this information was incomplete or did not reflect the actual vaccinations delivered. The chosen

uncertainty value represents moderate trust in the vaccination information. The value of 7 or 10 gave

a very strong belief, hence not chosen here (these analyses are not shown)) (see Figure 4—source

data 2 for priors). �k is the reporting rate for each study, which is comprised of symptomatic rate

and the reporting rate of the surveillance system and accounts for the different surveillance qualities

of the different studies. Since �k contains the symptomatic rate which reported to be less than 1%

(SAGE Working Group on Japanese encephalitis vaccines, 2014; Vaughn and Hoke, 1992), we

used an informative prior: �k ~Beta 0:1;9:9ð Þ.

The log-likelihood function for each study k is the sum of the multinomial log-likelihood and Pois-

son log-likelihood of total cases across all age groups.

LMNþP
k ¼ log tk!ð Þ�

X

i

log Cj jk; i!ð Þþ
X

i

Ck;ilog
Ek;i
P

iEk;i

� �

þ tklog
X

i

Ek;i

 !

�
X

i

Ek;i� log tk!ð Þ (2)

Where tk is the total number of cases and Ck;i is the number of age-stratified cases in age group i

in each study k. Ek;i is the modelled number of cases in a specific age group i.

For each dataset, we fit the model in a Bayesian framework in RStan (Stan Development Team,

2016), estimating parameters lk; �k; sk;i. RStan uses a No-U-Turn sampler (NUTS) (Hoffman and Gel-

man, 2014), a variant of Hamiltonian Monte Carlo to obtain posterior simulation

(Stan Development Team, 2016). The parameters sk;i; �k were all estimated on a logit scale. We

started 4 random chains, each with 16000 iterations and 50% burn-in period. Smaller step size of the
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Hamiltonian transition was manually set by increasing the adapt delta parameter in RStan to be 0.99.

Model convergence was assessed visually.

We assumed that the JE vaccine has 100% effectiveness, which is reasonable given the reported

high effectiveness of the vaccine (World Health Organization, 2012a; WHO, 2014; World Health

Organization, 2012b) and that the protection acquired from natural infection or vaccination was

life-long.

For our estimate, the endemic areas were defined to be the same as in the previous JE burden

estimate (Campbell et al., 2011). For China, India, Nepal and Indonesia, where transmission inten-

sity is diverse these countries were broken down to low, medium, or high endemic areas. In total,

there are 30 endemic areas, spanning 24 countries. We inferred the FOI for each endemic area

based on the FOI estimated from collated studies. The inference was based on two rules: (1) For

each area, the FOI was obtained by sampling from the estimated FOI of all the studies that had

catchment areas within that endemic area (if any). (2) For endemic areas in which no studies were

conducted, the FOI was inferred to be equal to the FOI of the area in the same incidence group

defined by Campbell et al., 2011.

Burden and vaccine impact estimation
Once the distributions of inferred FOIs for each endemic area were obtained, we generated the dis-

tributions of the estimates of the number of cases in each year t (from 2000 to 2015) in endemic area

d for each age group a from 0 to 99 years old and scenario m (described below) using the function

(similar to the model used to estimate FOI (Equation 1)):

casesm;d a; tð Þ ¼ 1� e�ld
� �

e�lda�sympopm;d a; tð Þ (3)

ld is the FOI of that area (assumed constant over time and age independent) which is sampled

from the posterior estimates from the previous model fitting. The term e�lda is the decrease in pro-

portion of susceptible population due to natural infection. �sym is symptomatic rate, sampled from

Uniform 1

500
;

1

250

� �

(SAGE Working Group on Japanese encephalitis vaccines, 2014). The symptom-

atic rate is the proportion of infections that are estimated to show symptoms, this is different to the

reporting rate in the FOI estimation section, which includes differential reporting and testing by

study. popm;d a; tð Þ is the susceptible population of age a in endemic area d in year t under scenarios m

and was interpolated from World Population Prospects 2017 data (United Nations-Department of

Economic and Social Affairs-Population Division, 2017). To assess the impact of previous vaccina-

tion programs, the population popm;d a; tð Þ was different for each vaccination scenario m: with or with-

out vaccination. The vaccination scenario used the collated information about past vaccination

programs and assumed that the number of vaccinations given each year to each age meant that this

number of the relevant age groups in the population were not susceptible to infection from this year

onwards. This takes into account aging of the vaccinated population and any changes in the vaccina-

tion programs over time.

Although the mortality rate of JE varies, the reported ranges are from 20-30% (Fischer et al.,

2008). We sampled the mortality rate from Uniform 0:2; 0:3ð Þ and multiplied it by the estimated num-

ber of casesm;d a; tð Þ to generate age-specific JE-induced deaths.

All code and data are available at: https://github.com/tranquanc123/JE_burden_

estimates (Quan, 2020; copy archived at https://github.com/elifesciences-publications/JE_burden_

estimates).
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