Notochord vacuoles absorb compressive bone growth during zebrafish spine formation

  1. Jennifer Bagwell
  2. James Norman
  3. Kathryn L Ellis
  4. Brianna Peskin
  5. James Hwang
  6. Xiaoyan Ge
  7. Stacy Nguyen
  8. Sarah K McMenamin
  9. Didier YR Stainier
  10. Michel Bagnat  Is a corresponding author
  1. Duke University, United States
  2. University of California, San Francisco, United States
  3. Boston College, United States
  4. Max Planck Institute for Heart and Lung Research, Germany

Peer review process

This article was accepted for publication via eLife's original publishing model. eLife publishes the authors' accepted manuscript as a PDF only version before the full Version of Record is ready for publication. Peer reviews are published along with the Version of Record.

History

  1. Version of Record published
  2. Accepted Manuscript published
  3. Accepted
  4. Received

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jennifer Bagwell
  2. James Norman
  3. Kathryn L Ellis
  4. Brianna Peskin
  5. James Hwang
  6. Xiaoyan Ge
  7. Stacy Nguyen
  8. Sarah K McMenamin
  9. Didier YR Stainier
  10. Michel Bagnat
(2020)
Notochord vacuoles absorb compressive bone growth during zebrafish spine formation
eLife 9:e51221.
https://doi.org/10.7554/eLife.51221

Share this article

https://doi.org/10.7554/eLife.51221