Analysis of zebrafish periderm enhancers facilitates identification of a regulatory variant near human KRT8/18

  1. Huan Liu  Is a corresponding author
  2. Kaylia Duncan
  3. Annika Helverson
  4. Priyanka Kumari
  5. Camille Mumm
  6. Yao Xiao
  7. Jenna Colavincenzo Carlson
  8. Fabrice Darbellay
  9. Axel Visel
  10. Elizabeth Leslie
  11. Patrick Breheny
  12. Albert J Erives
  13. Robert A Cornell  Is a corresponding author
  1. Wuhan University, China
  2. University of Iowa, United States
  3. University of Pittsburgh, United States
  4. Lawrence Berkeley Laboratories, United States
  5. DOE Joint Genome Institute, United States
  6. Emory University School of Medicine, United States

Abstract

Genome wide association studies for non-syndromic orofacial cleft (OFC) have identified single nucleotide polymorphisms (SNPs) at loci where the presumed risk-relevant gene is expressed in oral periderm. The functional subsets of such SNPs are difficult to predict because the sequence underpinnings of periderm enhancers are unknown. We applied ATAC-seq to models of human palate periderm, including zebrafish periderm, mouse embryonic palate epithelia, and a human oral epithelium cell line, and to complementary mesenchymal cell types. We identified sets of enhancers specific to the epithelial cells and trained gapped-kmer support-vector-machine classifiers on these sets. We used the classifiers to predict the effect of 14 OFC-associated SNPs at 12q13 near KRT18. All the classifiers picked the same SNP as having the strongest effect, but the significance was highest with the classifier trained on zebrafish periderm. Reporter and deletion analyses support this SNP as lying within a periderm enhancer regulating KRT18/KRT8 expression.

Data availability

1 Raw and processed sequencing data were deposited in GEO repository (GSE140241, GSE139945 and GSE139809).2 Custom scripts and piplines we deployed for sequencing data analysis and visualization are available at https://github.com/Badgerliu/periderm_ATACSeq.3 All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Huan Liu

    State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
    For correspondence
    liu.huan@whu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9947-6687
  2. Kaylia Duncan

    College of Medicine, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Annika Helverson

    College of Medicine, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Priyanka Kumari

    College of Medicine, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Camille Mumm

    College of Medicine, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Yao Xiao

    State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Jenna Colavincenzo Carlson

    Department of Biostatistics, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5483-0833
  8. Fabrice Darbellay

    Environmental Genomics and Systems Biology Division, Lawrence Berkeley Laboratories, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Axel Visel

    DOE Joint Genome Institute, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4130-7784
  10. Elizabeth Leslie

    Department of Human Genetics, Emory University School of Medicine, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Patrick Breheny

    Department of Biostatistics, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0650-1119
  12. Albert J Erives

    Department of Biology, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7107-5518
  13. Robert A Cornell

    College of Medicine, University of Iowa, Iowa City, United States
    For correspondence
    robert-cornell@uiowa.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4207-9100

Funding

National Institutes of Health (DE023575)

  • Robert A Cornell

National Institute for Health Research (DE027362)

  • Robert A Cornell

National Institute of Dental and Craniofacial Research (DE025060)

  • Elizabeth Leslie

National Institute of Dental and Craniofacial Research (DE024427)

  • Axel Visel

National Institute of Dental and Craniofacial Research (DE028599)

  • Axel Visel

National Natural Science Foundation of China (81771057)

  • Huan Liu

National Natural Science Foundation of China (81400477)

  • Huan Liu

Natural Science Foundation of Hubei Province (2017CFB515)

  • Huan Liu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: D. rerio were maintained in the University of Iowa Animal Care Facility according to a standard protocol (protocol no. 6011616). All mouse experiments were performed in accordance with approval of the Institutional Animal Care and Use Committees at the School and Hospital of Stomatology of Wuhan University (protocol no. 00271454).Mouse experiments for LacZ reporter transgenic animal work performed at the Lawrence Berkeley National Laboratory (LBNL) were reviewed and approved by the LBNL Animal Welfare and Research Committee.

Copyright

© 2020, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,209
    views
  • 400
    downloads
  • 26
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Huan Liu
  2. Kaylia Duncan
  3. Annika Helverson
  4. Priyanka Kumari
  5. Camille Mumm
  6. Yao Xiao
  7. Jenna Colavincenzo Carlson
  8. Fabrice Darbellay
  9. Axel Visel
  10. Elizabeth Leslie
  11. Patrick Breheny
  12. Albert J Erives
  13. Robert A Cornell
(2020)
Analysis of zebrafish periderm enhancers facilitates identification of a regulatory variant near human KRT8/18
eLife 9:e51325.
https://doi.org/10.7554/eLife.51325

Share this article

https://doi.org/10.7554/eLife.51325

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Anna Cattani, Don B Arnold ... Nancy Kopell
    Research Article

    The basolateral amygdala (BLA) is a key site where fear learning takes place through synaptic plasticity. Rodent research shows prominent low theta (~3–6 Hz), high theta (~6–12 Hz), and gamma (>30 Hz) rhythms in the BLA local field potential recordings. However, it is not understood what role these rhythms play in supporting the plasticity. Here, we create a biophysically detailed model of the BLA circuit to show that several classes of interneurons (PV, SOM, and VIP) in the BLA can be critically involved in producing the rhythms; these rhythms promote the formation of a dedicated fear circuit shaped through spike-timing-dependent plasticity. Each class of interneurons is necessary for the plasticity. We find that the low theta rhythm is a biomarker of successful fear conditioning. The model makes use of interneurons commonly found in the cortex and, hence, may apply to a wide variety of associative learning situations.

    1. Cancer Biology
    2. Computational and Systems Biology
    Rosalyn W Sayaman, Masaru Miyano ... Mark LaBarge
    Research Article

    Effects from aging in single cells are heterogenous, whereas at the organ- and tissue-levels aging phenotypes tend to appear as stereotypical changes. The mammary epithelium is a bilayer of two major phenotypically and functionally distinct cell lineages: luminal epithelial and myoepithelial cells. Mammary luminal epithelia exhibit substantial stereotypical changes with age that merit attention because these cells are the putative cells-of-origin for breast cancers. We hypothesize that effects from aging that impinge upon maintenance of lineage fidelity increase susceptibility to cancer initiation. We generated and analyzed transcriptomes from primary luminal epithelial and myoepithelial cells from younger <30 (y)ears old and older >55y women. In addition to age-dependent directional changes in gene expression, we observed increased transcriptional variance with age that contributed to genome-wide loss of lineage fidelity. Age-dependent variant responses were common to both lineages, whereas directional changes were almost exclusively detected in luminal epithelia and involved altered regulation of chromatin and genome organizers such as SATB1. Epithelial expression of gap junction protein GJB6 increased with age, and modulation of GJB6 expression in heterochronous co-cultures revealed that it provided a communication conduit from myoepithelial cells that drove directional change in luminal cells. Age-dependent luminal transcriptomes comprised a prominent signal that could be detected in bulk tissue during aging and transition into cancers. A machine learning classifier based on luminal-specific aging distinguished normal from cancer tissue and was highly predictive of breast cancer subtype. We speculate that luminal epithelia are the ultimate site of integration of the variant responses to aging in their surrounding tissue, and that their emergent phenotype both endows cells with the ability to become cancer-cells-of-origin and represents a biosensor that presages cancer susceptibility.