Analysis of zebrafish periderm enhancers facilitates identification of a regulatory variant near human KRT8/18

  1. Huan Liu  Is a corresponding author
  2. Kaylia Duncan
  3. Annika Helverson
  4. Priyanka Kumari
  5. Camille Mumm
  6. Yao Xiao
  7. Jenna Colavincenzo Carlson
  8. Fabrice Darbellay
  9. Axel Visel
  10. Elizabeth Leslie
  11. Patrick Breheny
  12. Albert J Erives
  13. Robert A Cornell  Is a corresponding author
  1. Wuhan University, China
  2. University of Iowa, United States
  3. University of Pittsburgh, United States
  4. Lawrence Berkeley Laboratories, United States
  5. DOE Joint Genome Institute, United States
  6. Emory University School of Medicine, United States

Abstract

Genome wide association studies for non-syndromic orofacial cleft (OFC) have identified single nucleotide polymorphisms (SNPs) at loci where the presumed risk-relevant gene is expressed in oral periderm. The functional subsets of such SNPs are difficult to predict because the sequence underpinnings of periderm enhancers are unknown. We applied ATAC-seq to models of human palate periderm, including zebrafish periderm, mouse embryonic palate epithelia, and a human oral epithelium cell line, and to complementary mesenchymal cell types. We identified sets of enhancers specific to the epithelial cells and trained gapped-kmer support-vector-machine classifiers on these sets. We used the classifiers to predict the effect of 14 OFC-associated SNPs at 12q13 near KRT18. All the classifiers picked the same SNP as having the strongest effect, but the significance was highest with the classifier trained on zebrafish periderm. Reporter and deletion analyses support this SNP as lying within a periderm enhancer regulating KRT18/KRT8 expression.

Data availability

1 Raw and processed sequencing data were deposited in GEO repository (GSE140241, GSE139945 and GSE139809).2 Custom scripts and piplines we deployed for sequencing data analysis and visualization are available at https://github.com/Badgerliu/periderm_ATACSeq.3 All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Huan Liu

    State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
    For correspondence
    liu.huan@whu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9947-6687
  2. Kaylia Duncan

    College of Medicine, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Annika Helverson

    College of Medicine, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Priyanka Kumari

    College of Medicine, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Camille Mumm

    College of Medicine, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Yao Xiao

    State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Jenna Colavincenzo Carlson

    Department of Biostatistics, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5483-0833
  8. Fabrice Darbellay

    Environmental Genomics and Systems Biology Division, Lawrence Berkeley Laboratories, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Axel Visel

    DOE Joint Genome Institute, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4130-7784
  10. Elizabeth Leslie

    Department of Human Genetics, Emory University School of Medicine, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Patrick Breheny

    Department of Biostatistics, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0650-1119
  12. Albert J Erives

    Department of Biology, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7107-5518
  13. Robert A Cornell

    College of Medicine, University of Iowa, Iowa City, United States
    For correspondence
    robert-cornell@uiowa.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4207-9100

Funding

National Institutes of Health (DE023575)

  • Robert A Cornell

National Institute for Health Research (DE027362)

  • Robert A Cornell

National Institute of Dental and Craniofacial Research (DE025060)

  • Elizabeth Leslie

National Institute of Dental and Craniofacial Research (DE024427)

  • Axel Visel

National Institute of Dental and Craniofacial Research (DE028599)

  • Axel Visel

National Natural Science Foundation of China (81771057)

  • Huan Liu

National Natural Science Foundation of China (81400477)

  • Huan Liu

Natural Science Foundation of Hubei Province (2017CFB515)

  • Huan Liu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Marianne E Bronner, California Institute of Technology, United States

Ethics

Animal experimentation: D. rerio were maintained in the University of Iowa Animal Care Facility according to a standard protocol (protocol no. 6011616). All mouse experiments were performed in accordance with approval of the Institutional Animal Care and Use Committees at the School and Hospital of Stomatology of Wuhan University (protocol no. 00271454).Mouse experiments for LacZ reporter transgenic animal work performed at the Lawrence Berkeley National Laboratory (LBNL) were reviewed and approved by the LBNL Animal Welfare and Research Committee.

Version history

  1. Received: August 25, 2019
  2. Accepted: February 6, 2020
  3. Accepted Manuscript published: February 7, 2020 (version 1)
  4. Version of Record published: February 24, 2020 (version 2)

Copyright

© 2020, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,964
    views
  • 380
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Huan Liu
  2. Kaylia Duncan
  3. Annika Helverson
  4. Priyanka Kumari
  5. Camille Mumm
  6. Yao Xiao
  7. Jenna Colavincenzo Carlson
  8. Fabrice Darbellay
  9. Axel Visel
  10. Elizabeth Leslie
  11. Patrick Breheny
  12. Albert J Erives
  13. Robert A Cornell
(2020)
Analysis of zebrafish periderm enhancers facilitates identification of a regulatory variant near human KRT8/18
eLife 9:e51325.
https://doi.org/10.7554/eLife.51325

Share this article

https://doi.org/10.7554/eLife.51325

Further reading

    1. Computational and Systems Biology
    Skander Kazdaghli, Iordanis Kerenidis ... Philip Teare
    Research Article

    Imputing data is a critical issue for machine learning practitioners, including in the life sciences domain, where missing clinical data is a typical situation and the reliability of the imputation is of great importance. Currently, there is no canonical approach for imputation of clinical data and widely used algorithms introduce variance in the downstream classification. Here we propose novel imputation methods based on determinantal point processes (DPP) that enhance popular techniques such as the multivariate imputation by chained equations and MissForest. Their advantages are twofold: improving the quality of the imputed data demonstrated by increased accuracy of the downstream classification and providing deterministic and reliable imputations that remove the variance from the classification results. We experimentally demonstrate the advantages of our methods by performing extensive imputations on synthetic and real clinical data. We also perform quantum hardware experiments by applying the quantum circuits for DPP sampling since such quantum algorithms provide a computational advantage with respect to classical ones. We demonstrate competitive results with up to 10 qubits for small-scale imputation tasks on a state-of-the-art IBM quantum processor. Our classical and quantum methods improve the effectiveness and robustness of clinical data prediction modeling by providing better and more reliable data imputations. These improvements can add significant value in settings demanding high precision, such as in pharmaceutical drug trials where our approach can provide higher confidence in the predictions made.

    1. Computational and Systems Biology
    Antony M Jose
    Research Article

    Interacting molecules create regulatory architectures that can persist despite turnover of molecules. Although epigenetic changes occur within the context of such architectures, there is limited understanding of how they can influence the heritability of changes. Here, I develop criteria for the heritability of regulatory architectures and use quantitative simulations of interacting regulators parsed as entities, their sensors, and the sensed properties to analyze how architectures influence heritable epigenetic changes. Information contained in regulatory architectures grows rapidly with the number of interacting molecules and its transmission requires positive feedback loops. While these architectures can recover after many epigenetic perturbations, some resulting changes can become permanently heritable. Architectures that are otherwise unstable can become heritable through periodic interactions with external regulators, which suggests that mortal somatic lineages with cells that reproducibly interact with the immortal germ lineage could make a wider variety of architectures heritable. Differential inhibition of the positive feedback loops that transmit regulatory architectures across generations can explain the gene-specific differences in heritable RNA silencing observed in the nematode Caenorhabditis elegans. More broadly, these results provide a foundation for analyzing the inheritance of epigenetic changes within the context of the regulatory architectures implemented using diverse molecules in different living systems.