Single-cell transcriptome reveals the novel role of T-bet in suppressing the immature NK gene signature

Abstract

The transcriptional activation and repression during NK cell ontology are poorly understood. Here, using single-cell RNA-sequencing, we reveal a novel role for T-bet in suppressing the immature gene signature during murine NK cell development. Based on transcriptome, we identified five distinct NK cell clusters and define their relative developmental maturity in the bone marrow. Transcriptome-based machine-learning classifiers revealed that half of the mTORC2-deficient NK cells belongs to the least mature NK cluster. Mechanistically, loss of mTORC2 results in an increased expression of signature genes representing immature NK cells. Since mTORC2 regulates the expression of T-bet through AktS473-FoxO1 axis, we further characterized the T-bet-deficient NK cells and found an augmented immature transcriptomic signature. Moreover, deletion of Foxo1 restores the expression of T-bet and corrects the abnormal expression of immature NK genes. Collectively, our study reveals a novel role for mTORC2-AktS473-FoxO1-T-bet axis in suppressing the transcriptional signature of immature NK cells.

Data availability

Sequencing data have been deposited in GEO under accession code GSE150166

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Chao Yang

    Laboratory of Molecular Immunology and Immunotherapy, Versiti Blood Research Institute, Milwaukee, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jason R Siebert

    Laboratory of Molecular Immunology and Immunotherapy, Versiti Blood Research Institute, Milwaukee, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Robert Burns

    Blood Research Institute, Versiti Blood Research Institute, Milwaukee, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Yongwei Zheng

    Laboratory of B-Cell Lymphopoiesis, Versiti Blood Research Institute, Milwaukee, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Ao Mei

    Laboratory of Molecular Immunology and Immunotherapy, Versiti Blood Research Institute, Milwaukee, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Benedetta Bonacci

    Flow Cytometry Core, Versiti Blood Research Institute, Milwaukee, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Demin Wang

    Laboratory of B-Cell Lymphopoiesis, Versiti Blood Research Institute, Milwaukee, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Raul A Urrutia

    Surgery, Medical College of Wisconsin, Milwaukee, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Matthew J Riese

    Laboratory of Lymphocyte Biology, Versiti Blood Research Institute, Milwaukee, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Sridhar Rao

    Laboratory of Stem Cell Transcriptional Regulation, Versiti Blood Research Institute, Milwaukee, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Karen-Sue Carlson

    Laboratory of Coagulation Biology, Versiti Blood Research Institute, Milwaukee, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Monica S Thakar

    Laboratory of Molecular Immunology and Immunotherapy, Versiti Blood Research Institute, Milwaukee, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Subramaniam Malarkannan

    Laboratory of Molecular Immunology and Immunotherapy, Versiti Blood Research Institute, Milwaukee, United States
    For correspondence
    subra.malar@bcw.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7511-2731

Funding

National Institutes of Health (AI102893)

  • Subramaniam Malarkannan

National Cancer Institute (CA179363)

  • Subramaniam Malarkannan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Florent Ginhoux, Agency for Science Technology and Research, Singapore

Ethics

Animal experimentation: All mice were maintained in pathogen-free conditions in the Biological Resource Center at the Medical College of Wisconsin. All animal protocols were approved by Institutional Animal Care and Use Committees. The unique animal protocols that are approved by the IACUC and used in this study is: AUA1512.

Version history

  1. Received: August 25, 2019
  2. Accepted: May 8, 2020
  3. Accepted Manuscript published: May 14, 2020 (version 1)
  4. Version of Record published: May 28, 2020 (version 2)

Copyright

© 2020, Yang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,756
    views
  • 452
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chao Yang
  2. Jason R Siebert
  3. Robert Burns
  4. Yongwei Zheng
  5. Ao Mei
  6. Benedetta Bonacci
  7. Demin Wang
  8. Raul A Urrutia
  9. Matthew J Riese
  10. Sridhar Rao
  11. Karen-Sue Carlson
  12. Monica S Thakar
  13. Subramaniam Malarkannan
(2020)
Single-cell transcriptome reveals the novel role of T-bet in suppressing the immature NK gene signature
eLife 9:e51339.
https://doi.org/10.7554/eLife.51339

Share this article

https://doi.org/10.7554/eLife.51339

Further reading

    1. Cancer Biology
    2. Immunology and Inflammation
    Nicholas J Mullen, Surendra K Shukla ... Pankaj K Singh
    Research Article

    Pyrimidine nucleotide biosynthesis is a druggable metabolic dependency of cancer cells, and chemotherapy agents targeting pyrimidine metabolism are the backbone of treatment for many cancers. Dihydroorotate dehydrogenase (DHODH) is an essential enzyme in the de novo pyrimidine biosynthesis pathway that can be targeted by clinically approved inhibitors. However, despite robust preclinical anticancer efficacy, DHODH inhibitors have shown limited single-agent activity in phase 1 and 2 clinical trials. Therefore, novel combination therapy strategies are necessary to realize the potential of these drugs. To search for therapeutic vulnerabilities induced by DHODH inhibition, we examined gene expression changes in cancer cells treated with the potent and selective DHODH inhibitor brequinar (BQ). This revealed that BQ treatment causes upregulation of antigen presentation pathway genes and cell surface MHC class I expression. Mechanistic studies showed that this effect is (1) strictly dependent on pyrimidine nucleotide depletion, (2) independent of canonical antigen presentation pathway transcriptional regulators, and (3) mediated by RNA polymerase II elongation control by positive transcription elongation factor B (P-TEFb). Furthermore, BQ showed impressive single-agent efficacy in the immunocompetent B16F10 melanoma model, and combination treatment with BQ and dual immune checkpoint blockade (anti-CTLA-4 plus anti-PD-1) significantly prolonged mouse survival compared to either therapy alone. Our results have important implications for the clinical development of DHODH inhibitors and provide a rationale for combination therapy with BQ and immune checkpoint blockade.

    1. Immunology and Inflammation
    Hyereen Kang, Seong Woo Choi ... Myung-Shik Lee
    Research Article

    We studied lysosomal Ca2+ in inflammasome. Lipopolysaccharide (LPS) + palmitic acid (PA) decreased lysosomal Ca2+ ([Ca2+]Lys) and increased [Ca2+]i through mitochondrial ROS, which was suppressed in Trpm2-KO macrophages. Inflammasome activation and metabolic inflammation in adipose tissue of high-fat diet (HFD)-fed mice were ameliorated by Trpm2 KO. ER→lysosome Ca2+ refilling occurred after lysosomal Ca2+ release whose blockade attenuated LPS + PA-induced inflammasome. Subsequently, store-operated Ca2+entry (SOCE) was activated whose inhibition suppressed inflammasome. SOCE was coupled with K+ efflux whose inhibition reduced ER Ca2+ content ([Ca2+]ER) and impaired [Ca2+]Lys recovery. LPS + PA activated KCa3.1 channel, a Ca2+-activated K+ channel. Inhibitors of KCa3.1 channel or Kcnn4 KO reduced [Ca2+]ER, attenuated increase of [Ca2+]i or inflammasome activation by LPS + PA, and ameliorated HFD-induced inflammasome or metabolic inflammation. Lysosomal Ca2+ release induced delayed JNK and ASC phosphorylation through CAMKII-ASK1. These results suggest a novel role of lysosomal Ca2+ release sustained by ERlysosome Ca2+ refilling and K+ efflux through KCa3.1 channel in inflammasome activation and metabolic inflammation.