Single-cell transcriptome reveals the novel role of T-bet in suppressing the immature NK gene signature

Abstract

The transcriptional activation and repression during NK cell ontology are poorly understood. Here, using single-cell RNA-sequencing, we reveal a novel role for T-bet in suppressing the immature gene signature during murine NK cell development. Based on transcriptome, we identified five distinct NK cell clusters and define their relative developmental maturity in the bone marrow. Transcriptome-based machine-learning classifiers revealed that half of the mTORC2-deficient NK cells belongs to the least mature NK cluster. Mechanistically, loss of mTORC2 results in an increased expression of signature genes representing immature NK cells. Since mTORC2 regulates the expression of T-bet through AktS473-FoxO1 axis, we further characterized the T-bet-deficient NK cells and found an augmented immature transcriptomic signature. Moreover, deletion of Foxo1 restores the expression of T-bet and corrects the abnormal expression of immature NK genes. Collectively, our study reveals a novel role for mTORC2-AktS473-FoxO1-T-bet axis in suppressing the transcriptional signature of immature NK cells.

Data availability

Sequencing data have been deposited in GEO under accession code GSE150166

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Chao Yang

    Laboratory of Molecular Immunology and Immunotherapy, Versiti Blood Research Institute, Milwaukee, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jason R Siebert

    Laboratory of Molecular Immunology and Immunotherapy, Versiti Blood Research Institute, Milwaukee, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Robert Burns

    Blood Research Institute, Versiti Blood Research Institute, Milwaukee, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Yongwei Zheng

    Laboratory of B-Cell Lymphopoiesis, Versiti Blood Research Institute, Milwaukee, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Ao Mei

    Laboratory of Molecular Immunology and Immunotherapy, Versiti Blood Research Institute, Milwaukee, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Benedetta Bonacci

    Flow Cytometry Core, Versiti Blood Research Institute, Milwaukee, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Demin Wang

    Laboratory of B-Cell Lymphopoiesis, Versiti Blood Research Institute, Milwaukee, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Raul A Urrutia

    Surgery, Medical College of Wisconsin, Milwaukee, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Matthew J Riese

    Laboratory of Lymphocyte Biology, Versiti Blood Research Institute, Milwaukee, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Sridhar Rao

    Laboratory of Stem Cell Transcriptional Regulation, Versiti Blood Research Institute, Milwaukee, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Karen-Sue Carlson

    Laboratory of Coagulation Biology, Versiti Blood Research Institute, Milwaukee, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Monica S Thakar

    Laboratory of Molecular Immunology and Immunotherapy, Versiti Blood Research Institute, Milwaukee, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Subramaniam Malarkannan

    Laboratory of Molecular Immunology and Immunotherapy, Versiti Blood Research Institute, Milwaukee, United States
    For correspondence
    subra.malar@bcw.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7511-2731

Funding

National Institutes of Health (AI102893)

  • Subramaniam Malarkannan

National Cancer Institute (CA179363)

  • Subramaniam Malarkannan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All mice were maintained in pathogen-free conditions in the Biological Resource Center at the Medical College of Wisconsin. All animal protocols were approved by Institutional Animal Care and Use Committees. The unique animal protocols that are approved by the IACUC and used in this study is: AUA1512.

Copyright

© 2020, Yang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,843
    views
  • 483
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chao Yang
  2. Jason R Siebert
  3. Robert Burns
  4. Yongwei Zheng
  5. Ao Mei
  6. Benedetta Bonacci
  7. Demin Wang
  8. Raul A Urrutia
  9. Matthew J Riese
  10. Sridhar Rao
  11. Karen-Sue Carlson
  12. Monica S Thakar
  13. Subramaniam Malarkannan
(2020)
Single-cell transcriptome reveals the novel role of T-bet in suppressing the immature NK gene signature
eLife 9:e51339.
https://doi.org/10.7554/eLife.51339

Share this article

https://doi.org/10.7554/eLife.51339

Further reading

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Stephanie Guillet, Tomi Lazarov ... Frédéric Geissmann
    Research Article

    Systemic lupus erythematosus (SLE) is an autoimmune disease, the pathophysiology and genetic basis of which are incompletely understood. Using a forward genetic screen in multiplex families with SLE, we identified an association between SLE and compound heterozygous deleterious variants in the non-receptor tyrosine kinases (NRTKs) ACK1 and BRK. Experimental blockade of ACK1 or BRK increased circulating autoantibodies in vivo in mice and exacerbated glomerular IgG deposits in an SLE mouse model. Mechanistically, NRTKs regulate activation, migration, and proliferation of immune cells. We found that the patients’ ACK1 and BRK variants impair efferocytosis, the MERTK-mediated anti-inflammatory response to apoptotic cells, in human induced pluripotent stem cell (hiPSC)-derived macrophages, which may contribute to SLE pathogenesis. Overall, our data suggest that ACK1 and BRK deficiencies are associated with human SLE and impair efferocytosis in macrophages.

    1. Immunology and Inflammation
    Hong Yu, Hiroshi Nishio ... Drew Pardoll
    Research Article

    The adaptive T cell response is accompanied by continuous rewiring of the T cell’s electric and metabolic state. Ion channels and nutrient transporters integrate bioelectric and biochemical signals from the environment, setting cellular electric and metabolic states. Divergent electric and metabolic states contribute to T cell immunity or tolerance. Here, we report in mice that neuritin (Nrn1) contributes to tolerance development by modulating regulatory and effector T cell function. Nrn1 expression in regulatory T cells promotes its expansion and suppression function, while expression in the T effector cell dampens its inflammatory response. Nrn1 deficiency in mice causes dysregulation of ion channel and nutrient transporter expression in Treg and effector T cells, resulting in divergent metabolic outcomes and impacting autoimmune disease progression and recovery. These findings identify a novel immune function of the neurotrophic factor Nrn1 in regulating the T cell metabolic state in a cell context-dependent manner and modulating the outcome of an immune response.