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Abstract Proteome and transcriptome analyses aim at comprehending the molecular profiles of

the brain, its cell-types and subcellular compartments including myelin. Despite the relevance of the

peripheral nervous system for normal sensory and motor capabilities, analogous approaches to

peripheral nerves and peripheral myelin have fallen behind evolving technical standards. Here we

assess the peripheral myelin proteome by gel-free, label-free mass-spectrometry for deep

quantitative coverage. Integration with RNA-Sequencing-based developmental mRNA-abundance

profiles and neuropathy disease genes illustrates the utility of this resource. Notably, the periaxin-

deficient mouse model of the neuropathy Charcot-Marie-Tooth 4F displays a highly pathological

myelin proteome profile, exemplified by the discovery of reduced levels of the monocarboxylate

transporter MCT1/SLC16A1 as a novel facet of the neuropathology. This work provides the most

comprehensive proteome resource thus far to approach development, function and pathology of

peripheral myelin, and a straightforward, accurate and sensitive workflow to address myelin

diversity in health and disease.

Introduction
The ensheathment of axons with myelin enables rapid impulse propagation, a prerequisite for nor-

mal motor and sensory capabilities of vertebrates (Weil et al., 2018; Hartline and Colman, 2007).

This is illustrated by demyelinating neuropathies of the Charcot-Marie-Tooth (CMT) spectrum, in

which mutations affecting myelin genes as MPZ, PMP22, GJB1 and PRX impair myelin integrity and

reduce the velocity of nerve conduction in the peripheral nervous system (PNS) (Rossor et al.,

2013). Developmentally, myelination by Schwann cells in peripheral nerves is regulated by axonal

neuregulin-1 (Michailov et al., 2004; Taveggia et al., 2005) and the basal lamina

(Chernousov et al., 2008; Petersen et al., 2015; Ghidinelli et al., 2017) that is molecularly linked

to the abaxonal Schwann cell membrane via integrins and the dystroglycan complex

(Sherman et al., 2001; Masaki et al., 2002; Nodari et al., 2008; Raasakka et al., 2019). In adult-

hood, the basal lamina continues to enclose all axon/myelin-units (Hess and Lansing, 1953), proba-

bly to maintain myelin. Beyond regulation by extracellular cues, myelination involves multiple

proteins mediating radial sorting of axons out of Remak bundles, myelin membrane growth and

layer compaction (Sherman and Brophy, 2005; Pereira et al., 2012; Grove and Brophy, 2014;

Monk et al., 2015; Feltri et al., 2016). For example, the Ig-domain containing myelin protein zero
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(MPZ; also termed P0) mediates adhesion between adjacent extracellular membrane surfaces in

compact myelin (Giese et al., 1992). At their intracellular surfaces, myelin membranes are com-

pacted by the cytosolic domain of MPZ/P0 together with myelin basic protein (MBP; previously

termed P1) (Martini et al., 1995; Nawaz et al., 2013). Not surprisingly, MPZ/P0 and MBP were early

identified as the most abundant peripheral myelin proteins (Greenfield et al., 1973; Brostoff et al.,

1975).

A system of cytoplasmic channels through the otherwise compacted myelin sheath remains non-

compacted throughout life, that is the adaxonal myelin layer, paranodal loops, Schmidt-Lanterman

incisures (SLI), and abaxonal longitudinal and transverse bands of cytoplasm termed bands of Cajal

(Sherman and Brophy, 2005; Nave and Werner, 2014; Kleopa and Sargiannidou, 2015). Non-

compacted myelin comprises cytoplasm, cytoskeletal elements, vesicles and lipid-modifying

enzymes, and thus numerous proteins involved in maintaining the myelin sheath. The cytosolic chan-

nels probably also represent transport routes toward Schwann cell-dependent metabolic support of

myelinated axons (Court et al., 2004; Beirowski et al., 2014; Domènech-Estévez et al., 2015;

Kim et al., 2016; Gonçalves et al., 2017; Stassart et al., 2018).

Considering that Schwann cells constitute a major proportion of the cells in the PNS, oligonucleo-

tide microarray analyses have been used for mRNA abundance profiling of total sciatic nerves

(Nagarajan et al., 2002; Le et al., 2005). Indeed, these systematic approaches allowed the identifi-

cation of novel myelin constituents including non-compact myelin-associated protein (NCMAP/

MP11) (Ryu et al., 2008). Notwithstanding that the number of known peripheral myelin proteins has

grown in recent years, a comprehensive molecular inventory has been difficult to achieve because

applications of systematic (‘omics’) approaches specifically to Schwann cells and peripheral myelin

remained comparatively scarce, different from studies addressing oligodendrocytes and CNS myelin

(Zhang et al., 2014; Patzig et al., 2016b; Sharma et al., 2015; Thakurela et al., 2016;

Marques et al., 2016; de Monasterio-Schrader et al., 2012). One main reason may be that the

available techniques were not sufficiently straightforward for general application. For example, the

protein composition of peripheral myelin was previously assessed by proteome analysis

(Patzig et al., 2011). However, at that time the workflow of sample preparation and data acquisition

(schematically depicted in Figure 1A) was very labor-intense and required a substantial amount of

input material; yet the depth of the resulting datasets remained limited. In particular, differential

myelin proteome analysis by 2-dimensional fluorescence intensity gel electrophoresis (2D-DIGE)

requires considerable hands-on-time and technical expertise (Patzig et al., 2011; Kangas et al.,

2016). While this method is powerful for the separation of proteoforms (Kusch et al., 2017), it typi-

cally suffers from under-representation of highly basic and transmembrane proteins. It thus allows

comparing the abundance of only few myelin proteins rather than quantitatively covering the entire

myelin proteome. Because of these limitations and an only modest sample-to-sample reproducibility,

2D-DIGE analysis of myelin, although unbiased, has not been commonly applied beyond specialized

laboratories.

The aim of the present study was to establish a straightforward and readily applicable workflow

to facilitate both comprehensive knowledge about the protein composition of peripheral myelin and

systematic assessment of differences between two states, for example, pathological alterations in a

neuropathy model. The major prerequisites were the biochemical purification of myelin, its solubiliza-

tion with the detergent ASB-14 and the subsequent automated digestion with trypsin during filter-

aided sample preparation (FASP). The tryptic peptides were fractionated by liquid chromatography

and analyzed by mass spectrometry for gel-free, label-free quantitative proteome analysis. More

specifically, we used nano-flow ultra-performance liquid chromatography (nanoUPLC) coupled to an

electrospray-ionization quadrupole time-of-flight (ESI-QTOF) mass spectrometer with ion mobility

option, providing an orthogonal dimension of peptide separation. The utilized data-independent

acquisition (DIA) strategy relies on collecting data in an alternating low and elevated energy mode

(MSE); it enables simultaneous sequencing and quantification of all peptides entering the mass spec-

trometer without prior precursor selection, as reviewed in Neilson et al. (2011) and Distler et al.

(2014a). With their high-duty cycle utilized for the acquisition of precursor ions, MSE-type methods

are ideally suited to reliably quantify proteins based on peptide intensities. Notably, these methods

do not involve the use of spectral libraries in the identification of proteins, different from other DIA

strategies. Instead, the achieved high-complexity fragmentation spectra are deconvoluted before

submission to dedicated search engines for peptide and protein identification (Geromanos et al.,
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Figure 1. Proteome analysis of peripheral myelin. (A) Schematic illustration of a previous approach to the peripheral myelin proteome (Patzig et al.,

2011) compared with the present workflow. Note that the current workflow allows largely automated sample processing and omits labor-intense 2-

dimensional differential gel-electrophoresis, thereby considerably reducing hands-on time. Nano LC-MS analysis by data-independent acquisition (DIA)

using three different data acquisition modes provides efficient identification and quantification of abundant myelin proteins (MSE; see Figure 2), a

comprehensive inventory (UDMSE; see Figures 3–4) and gel-free differential analysis of hundreds of distinct proteins (DRE-UDMSE; see Figure 5).

Samples were analyzed in three biological replicates. (B) Immunoblot of myelin biochemically enriched from sciatic nerves of wild-type mice at

postnatal day 21 (P21). Equal amounts of corresponding nerve lysate were loaded to compare the abundance of marker proteins for compact myelin

(MPZ/P0, MBP, PMP2), non-compact myelin (PRX), the Schwann cell nucleus (KROX20/EGR2), axons (NEFH, KCNA1) and mitochondria (VDAC). Blots

show n = 2 biological replicates representative of n = 3 biological replicates. Note that myelin markers are enriched in purified myelin; other cellular

markers are reduced. (C) Number and relative abundance of proteins identified in myelin purified from the sciatic nerves of wild-type mice using three

different data acquisition modes (MSE, UDMSE, DRE-UDMSE). Note that MSE (orange) provides the best information about the relative abundance of

high-abundant myelin proteins (dynamic range of more than four orders of magnitude) but identifies comparatively fewer proteins in purified myelin.

UDMSE (blue) identifies the largest number of proteins but provides only a lower dynamic range of about three orders of magnitude. DRE-UDMSE

(green) identifies an intermediate number of proteins with an intermediate dynamic range of about four orders of magnitude. Note that MSE with very

high dynamic range is required for the quantification of the exceptionally abundant myelin protein zero (MPZ/P0), myelin basic protein (MBP) and

periaxin (PRX). ppm, parts per million. (D) Venn diagram comparing the number of proteins identified in PNS myelin by MSE, UDMSE and DRE-UDMSE.

Note the high overlap of identified proteins. (E) Venn diagram of the proteins identified in PNS myelin by UDMSE in this study compared with those

identified in two previous approaches (Patzig et al., 2011; Kangas et al., 2016).

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Figure 1 continued on next page
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2009; Li et al., 2009). In the MSE mode, this deconvolution involves precursor-fragment ion align-

ment solely on the basis of chromatographic elution profiles. On top, drift times of ion mobility-sep-

arated precursors are used in the high-definition (HD)MSE mode. An expansion of the latter,

referred to as the ultra-definition (UD)MSE mode, additionally implements drift time-dependent colli-

sion energy profiles for more effective precursor fragmentation (Distler et al., 2016; Distler et al.,

2014b).

Indeed, compared to the previously used manual handling and in-gel digestion, the current work-

flow (schematically depicted in Figure 1A) is considerably less labor-intense, and automated FASP

increases sample-to-sample reproducibility. Moreover, differential analysis by quantitative mass

spectrometry (MS) facilitates reproducible quantification of hundreds rather than a few distinct mye-

lin proteins. Together, the present workflow increases the efficacy of assessing the peripheral myelin

proteome while shifting the main workload from manual sample preparation and gel-separation to

automated acquisition and processing of data. We propose that comprehending the expression pro-

files of all myelin proteins in the healthy PNS and in myelin-related disorders can contribute to

advancing our understanding of the physiology and pathophysiology of peripheral nerves.

Results

Purification of peripheral myelin
We biochemically enriched myelin as a light-weight membrane fraction from pools of sciatic nerves

dissected from mice at postnatal day 21 (P21) using an established protocol of discontinuous sucrose

density gradient centrifugation (Patzig et al., 2011; Larocca and Norton, 2006), in which myelin

membranes accumulate at the interface between 0.29 and 0.85 M sucrose. By immunoblotting, pro-

teins specific for both compact (MPZ/P0, MBP, PMP2) and non-compact (PRX) myelin were substan-

tially enriched in the myelin fraction compared to nerve lysates (Figure 1B). Conversely, axonal

(NEFH, KCNA1) and mitochondrial (VDAC) proteins and a marker for the Schwann cell nucleus

(KROX20/EGR2) were strongly reduced in purified myelin. Together, these results imply that bio-

chemically purified peripheral myelin is suitable for systematic analysis of its protein composition.

Proteome analysis of peripheral myelin
It has long been difficult to accurately quantify the most abundant myelin proteins both in the CNS

(PLP, MBP, CNP; Jahn et al., 2009) and the PNS (MPZ/P0, MBP, PRX; this work), probably owing to

their exceptionally high relative abundance. For example, the major CNS myelin constituents PLP,

MBP and CNP comprise 17, 8 and 4% of the total myelin protein, respectively (Jahn et al., 2009).

We have recently provided proof of principle (Erwig et al., 2019a) that the mass spectrometric

quantification of these high-abundant myelin proteins is accurate and precise when data are

acquired in the MSE data acquisition mode and proteins are quantified according to the TOP3

method, that is if their abundance values are obtained based on the proven correlation between the

average intensity of the three peptides exhibiting the most intense mass spectrometry response and

the absolute amount of their source protein (Silva et al., 2006; Ahrné et al., 2013). Using data

acquisition by MSE we confirmed that CNP constitutes about 4% of the total CNS myelin proteome

and that the abundance of CNP in myelin from mice heterozygous for the Cnp gene (CnpWT/null)

compared to wild-type mice is 50.7% (±0.4%), in agreement with the halved gene dosage and gel-

based quantification by silver staining or immunoblotting (Erwig et al., 2019a).

When applying the MSE mode to PNS myelin, we quantified 351 proteins with a false discovery

rate (FDR) of <1% at peptide and protein level and an average sequence coverage of 35.5% (Fig-

ure 1—source data 1). While MSE (labeled in orange in Figure 1C) indeed provided a dynamic

range of more than four orders of magnitude and thus quantitatively covered the exceptionally

abundant myelin proteins MPZ/P0, MBP and PRX, the number of quantified proteins appeared

Figure 1 continued

Source data 1. Label-free quantification of proteins in wild-type PNS myelin fractions by three different data acquisition modes Identification and quan-

tification data of detected myelin-associated proteins.

Figure supplement 1. Clustered heatmap of Pearson’s correlation coefficients for protein abundance comparing data acquisition modes.
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limited when spectral complexity was deconvoluted solely on the basis of chromatographic elution

profiles. Accordingly, by using the UDMSE mode, which comprises ion mobility for additional pep-

tide separation as well as drift time-specific collision energies for peptide fragmentation, proteome

coverage was increased about three-fold (1078 proteins quantified; average sequence coverage

34.3%; Figure 1—source data 1). However, the dynamic range of UDMSE (labeled in blue in

Figure 1C) was found to be somewhat compressed compared to that of MSE, which can be consid-

ered an expectable feature of traveling wave ion mobility devices (Dodds and Baker, 2019), where

the analysis of pulsed ion packages leads to a temporal and spatial binning of peptides during ion

mobility separation. Indeed, this manifests as a ceiling effect for the detection of exceptionally

intense peptide signals, which results in an underestimation of the relative abundance of MPZ/P0,

MBP and PRX by UDMSE.

The complementary nature of the MSE and UDMSE data acquisition modes led us to conclude

that a comprehensive analysis of the myelin proteome that facilitates both correct quantification of

the most abundant proteins and deep quantitative coverage of the proteome would require analyz-

ing the same set of samples with two different instrument settings for MSE and UDMSE, respectively.

Considering that instrument time is a bottleneck for the routine differential proteome analysis of

myelin from mutant mice, we aimed to combine the strengths of MSE and UDMSE into a single data

acquisition mode. Based on a gene ontology enrichment analysis for cellular components of the 200

proteins of highest and lowest abundance from the UDMSE dataset, we realized that the ‘bottom ‘of

the quantified proteome is probably largely unrelated to myelin but dominated by contaminants

from other subcellular sources including mitochondria. We thus reasoned that for a myelin-directed

data acquisition mode, proteome depth may be traded in for a gain in dynamic range and devised a

novel method referred to as dynamic range enhancement (DRE)-UDMSE, in which a deflection lens is

used to cycle between full and reduced ion transmission during mass spectrometric scanning.

Indeed, DRE-UDMSE quantified an intermediate number of proteins in PNS myelin (554 proteins;

average sequence coverage 30.6%; Figure 1—source data 1) while providing an intermediate

dynamic range (labeled in green in Figure 1C). We thus consider DRE-UDMSE as the data acquisition

mode of choice most suitable for routine differential myelin proteome profiling (see below).

Overall, we found a high reproducibility between replicates and even among the different data

acquisition modes as indicated by Pearson’s correlation coefficients for protein abundance in the

range of 0.765–0.997 (Figure 1—figure supplement 1). When comparing the proteins identified in

PNS myelin using the three data acquisition modes, we found a very high overlap (Figure 1D). We

also found a high overlap (Figure 1E) between the proteins identified in the present study by

UDMSE and those detected in previous proteomic approaches to PNS myelin (Patzig et al., 2011;

Kangas et al., 2016), thus allowing a high level of confidence. Together, the three data acquisition

modes exhibit distinct strengths in the efficient quantification of exceptionally abundant proteins

(MSE), establishing a comprehensive inventory (UDMSE) and gel-free, label-free differential analysis

of hundreds of distinct proteins (DRE-UDMSE) in peripheral myelin (see Figure 1A). Yet, analyzing

the same set of samples by different modes may not always be feasible in all routine applications

when considering required instrument time.

Relative abundance of peripheral myelin proteins
Considering that MSE provides the high dynamic range required for the quantification of the most

abundant myelin proteins, we calculated the relative abundance of the 351 proteins identified in

myelin by MSE (Figure 1—source data 1). According to quantitative assessment of this dataset, the

most abundant PNS myelin protein, myelin protein zero (MPZ/P0), constitutes 44% (+/- 4% relative

standard deviation (RSD)) of the total myelin protein (Figure 2). Myelin basic protein (MBP), periaxin

(PRX) and tetraspanin-29 (CD9) constitute 18% (+/- 1% RSD), 15% (+/- 1%) and 1% (+/- 0.2%) of the

total myelin protein, respectively (Figure 2). For MPZ/P0 and MBP, our quantification by MSE is in

agreement with but specifies prior estimations upon gel-separation and protein labeling by Sudan-

Black, Fast-Green or Coomassie-Blue, in which they were judged to constitute 45–70% and 2–26%

of the total myelin protein, respectively (Greenfield et al., 1973; Micko and Schlaepfer, 1978;

Smith and Curtis, 1979; Whitaker, 1981). However, gel-based estimates of the relative abundance

of myelin proteins were not very precise with respect to many other proteins, including those of high

molecular weight. Indeed, periaxin was identified as a constituent of peripheral myelin after the

advent of gradient SDS-PAGE gels (Gillespie et al., 1994), which allowed improved migration of
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large proteins into gels. The present MSE-based quantification of myelin proteins also extends

beyond and partially adjusts an earlier mass spectrometric approach (Patzig et al., 2011). Indeed,

the current approach identified and quantified more myelin proteins, probably owing to improved

protein solubilization during sample preparation and higher dynamic range of the used mass spec-

trometer. By MSE, known myelin proteins (Table 1) collectively constitute over 85% of the total mye-

lin protein (Figure 2) while proteins not yet associated with myelin account for the remaining 15% of

the total myelin protein.

Comprehensive compendium and comparison to the transcriptome
To systematically elucidate the developmental abundance profiles of the transcripts that encode

peripheral myelin proteins (Figure 3), we used our combined proteome inventory of peripheral mye-

lin (Figure 1—source data 1) to filter mRNA abundance data of all genes expressed in sciatic

nerves. By this strategy, Figure 3 displays only those transcripts of which the protein product was

identified in peripheral myelin rather than all transcripts in the nerve, thereby discriminating myelin-

related mRNAs from other mRNAs such as those present in peripheral axons, fibroblasts, immune

cells etc. In this assessment we additionally included PMP22 although it was not detected by MS as

well as 45 proteins exclusively identified by LC-MS of myelin separated by SDS-PAGE (Figure 1—

source data 1). For mRNA abundance profiles, we exploited a recently established RNA sequencing

analysis (RNA-Seq; platform Illumina HiSeq 2000) of sciatic nerves dissected form wild type Sprague

Dawley rats at embryonic day 21 (E21), P6, P18 and 6 months (Fledrich et al., 2018). RNA-Seq pro-

vides reliable information about the relative abundance of all significantly expressed genes and is

thus not limited to those represented on the previously used oligonucleotide microarrays

(Patzig et al., 2011). The raw data (accessible under GEO accession number GSE115930) were nor-

malized (Figure 3—source data 1) and standardized. When comparing the proteome and transcrip-

tome datasets, significant mRNA abundance was detected for all 1046 transcripts for which an

unambiguous unique gene identifier was found (Figure 3). 126 transcripts displayed developmen-

tally unchanged abundance levels, that is, abundance changes below a threshold of 10% coefficient

of variation (Figure 3B; Figure 3—source data 1).

Protein % (+/- RSD) Protein % (+/- RSD)

4.15

1.15

1.46

0.15

0.06

0.07

0.05

0.07

0.06

0.03

0.03

0.06

0.04

0.03

0.02

0.02

0.01

0.02

0.01

0.00

0.03

0.01

0.01

0.01

0.01

0.06

0.05

0.04

0.04

0.04

0.04

0.03

0.03

0.03

0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.01

0.01

0.01

0.01

0.01

0.01

15.39

0.01

0.01

0.00

0.01

0.00

0.01

0.00

0.00

0.00

0.00

0.00

0.00

0.01

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.03

0.00

0.00

PRX

P0

MBP

Others

P0/ MPZ

MBP

PRX

CD9

SPTBN1

SPTAN1

EPB41L2

VIM

CNP

TF

PMP2

MAP1B

FASN

ANXA2

MAG

PLP1

CD81

GSN

PLLP

BCAS1

NDRG1

MSN

EPB41L3

NID1

CADM4

LAMC1

RAC1

VCL

CA2

SEPT2

CFL1

CRYAB

MPP6

CAV1

SEPT7

GJC3

RDX

CDC42

PFN1

SEPT11

CRMP1

RHOA

MAPK3

MAPK1

CMTM5

JAM3

DYNLL1

EZR

CD59A

Others

44.48

18.35

15.48

0.77

0.52

0.42

0.38

0.34

0.33

0.33

0.32

0.31

0.29

0.22

0.20

0.17

0.12

0.11

0.11

0.09

0.09

0.09

0.07

0.07

0.07

Figure 2. Relative abundance of peripheral myelin proteins. MSE was used to identify and quantify proteins in myelin purified from the sciatic nerves of

wild-type mice at P21; their relative abundance is given as percent with relative standard deviation (% +/- RSD). Note that known myelin proteins

constitute >80% of the total myelin protein; proteins not previously associated with myelin constitute <20%. Mass spectrometric quantification based on

3 biological replicates per genotype with 4 technical replicates each (see Figure 1—source data 1).

Siems et al. eLife 2020;9:e51406. DOI: https://doi.org/10.7554/eLife.51406 6 of 31

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.51406


Table 1. Known myelin proteins in the myelin proteome.

Proteins mass-spectrometrically identified in peripheral myelin are compiled according to availability of prior references as myelin pro-

teins. Given are the official gene name, one selected reference, the number of transmembrane domains (TMD) and the mRNA abun-

dance profile cluster (see Figure 3).

Protein name Gene Reference TMD Cluster

2-hydroxyacylsphingosine 1-beta-galactosyltransferase Ugt8 Bosio et al., 1996 2 P6-up

Syntrophin a1 Snta1 Fuhrmann-Stroissnigg et al., 2012 - P18-up

Annexin A2 Anxa2 Hayashi et al., 2007 - Descending

Band 4.1 protein B/4.1B Epb41l3 Ivanovic et al., 2012 - Descending

Band 4.1 protein G/4.1G Epb41l2 Ohno et al., 2006 - P6-up

Breast carcinoma-amplified sequence 1 Bcas1 Ishimoto et al., 2017 - P6-up

Cadherin 1/E-Cadherin Cdh1 Fannon et al., 1995 1 P18-up

Carbonic anhydrase 2 Ca2 Cammer and Tansey, 1987 - Descending

Catenin a1 Ctnna1 Murata et al., 2006 - U-shaped

Catenin ß1 Ctnnb1 Fannon et al., 1995 - Descending

Caveolin 1 Cav1 Mikol et al., 2002 1 P18-up

CD9, tetraspanin 29 Cd9 Ishibashi et al., 2004 4 P18-p

CD59A Cd59a Funabashi et al., 1994 1 P18-up

CD47, integrin-associated signal transducer Cd47 Gitik et al., 2011 5 P6-up

CD81, tetraspanin 28 Cd81 Ishibashi et al., 2004 4 P18-up

CD82, tetraspanin 27 Cd82 Chernousov et al., 2013 4 P18-up

CD151, tetraspanin 24 Cd151 Patzig et al., 2011 4 P18-up

Cell adhesion molecule 4/NECL4 Cadm4 Spiegel et al., 2007 1 P6-up

Cell division control protein 42 Cdc42 Benninger et al., 2007 - P6-up

Cell surface glycoprotein MUC18 Mcam Shih et al., 1998 1 Descending

Ciliary neurotrophic factor Cntf Rende et al., 1992 - Late-up

CKLF-like MARVEL TMD-containing 5 Cmtm5 Patzig et al., 2011 4 P6-up

Claudin-19 Cldn19 Miyamoto et al., 2005 4 P6-up

Cofilin 1 Cfl1 Sparrow et al., 2012 - Descending

Crystallin a2 Cryab D’Antonio et al., 2006 - P18-up

Cyclic nucleotide phosphodiesterase Cnp Matthieu et al., 1980 - P6-up

Sarcoglycan d Sgcd Cai et al., 2007 1 Late-up

Dihydropyrimidinase related protein 1 Crmp1 D’Antonio et al., 2006 - Descending

Disks large homolog 1 Dlg1 Cotter et al., 2010 - Descending

Dynein light chain 1 Dynll1 Myllykoski et al., 2018 - P6-up

Dystroglycan Dag1 Yamada et al., 1994 1 P6-up

Dystrophin/DP116 Dmd Cai et al., 2007 - P6-up

Dystrophin-related protein 2 Drp2 Sherman et al., 2001 - P18-up

E3 ubiquitin-protein ligase NEDD4 Nedd4 Liu et al., 2009 - Descending

Ezrin Ezr Scherer et al., 2001 - P6-up

Fatty acid synthase Fasn Salles et al., 2002 - P6-up

Flotillin 1 Flot1 Lee et al., 2014 - P18-up

Gap junction ß1 protein/Cx32 Gjb1 Li et al., 2002 4 P18-up

Gap junction g3 protein/Cx29 Gjc3 Li et al., 2002 1 P6-up

Gelsolin Gsn Gonçalves et al., 2010 - Late-up

Glycogen synthase kinase 3ß Gsk3b Ogata et al., 2004 - P6-up
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Table 1 continued

Protein name Gene Reference TMD Cluster

Integrin a6 Itga6 Nodari et al., 2008 1 P6-up

Integrin aV Itgav Chernousov and Carey, 2003 1 Descending

Integrin ß1 Itgb1 Feltri et al., 2002 1 Descending

Integrin ß4 Itgb4 Quattrini et al., 1996 2 P18-up

Junctional adhesion molecule C Jam3 Scheiermann et al., 2007 1 P18-up

Laminin a2 Lama2 Yang et al., 2005 - P6-up

Laminin a4 Lama4 Yang et al., 2005 - Descending

Laminin ß1 Lamb1 LeBeau et al., 1994 - Descending

Laminin ß2 Lamb2 LeBeau et al., 1994 - P18-up

Laminin g1 Lamc1 Chen and Strickland, 2003 - Descending

Membrane Palmitoylated Protein 6 Mpp6 Saitoh et al., 2019 - P6-up

Microtubule-associated protein 1A Map1a Fuhrmann-Stroissnigg et al., 2012 - P18-up

Microtubule-associated protein 1B Map1b Fuhrmann-Stroissnigg et al., 2012 - P6-up

Mitogen-activated protein kinase 1/ERK2 Mapk1 Mantuano et al., 2015 - Descending

Mitogen-activated protein kinase 3/ERK1 Mapk3 Mantuano et al., 2015 - P18-up

Moesin Msn Scherer et al., 2001 - Unchanged

Monocarboxylate transporter 1 Slc16a1 Domènech-Estévez et al., 2015 11 P18-up

Myelin associated glycoprotein Mag Figlewicz et al., 1981 1 P6-up

Myelin basic protein Mbp Boggs, 2006 - P6-up

Myelin protein 2 Pmp2 Trapp et al., 1984 - P18-up

Myelin protein zero/P0 Mpz Giese et al., 1992 1 P6-up

Myelin proteolipid protein Plp1 Garbern et al., 1997 4 P6-up

Myotubularin-related protein 2 Mtmr2 Bolino et al., 2004 - P6-up

Noncompact myelin-associated protein Ncmap Ryu et al., 2008 1 P18-up

NDRG1, N-myc downstream regulated Ndrg1 Berger et al., 2004 - P18-uP

Neurofascin Nfasc Tait et al., 2000 2 P18-up

Nidogen 1 Nid1 Lee et al., 2007 - Descending

P2X purinoceptor 7 P2r�7 Faroni et al., 2014 - P6-up

Paxillin Pxn Fernandez-Valle et al., 2002 - P6-up

Periaxin Prx Gillespie et al., 1994 - P6-up

Plasmolipin Pllp Bosse et al., 2003 4 P18-up

Profilin 1 Pfn1 Montani et al., 2014 - Descending

Lin-7 homolog C Lin7c Saitoh et al., 2017 - P6-up

Rac1 Rac1 Benninger et al., 2007 - U-Shaped

Radixin Rdx Scherer et al., 2001 - Descending

RhoA Rhoa Brancolini et al., 1999 - U-Shaped

Septin 2 Sept2 Buser et al., 2009 - Descending

Septin 7 Sept7 Buser et al., 2009 - U-Shaped

Septin 8 Sept8 Patzig et al., 2011 - P18-up

Septin 9 Sept9 Patzig et al., 2011 - P6-up

Septin 11 Sept11 Buser et al., 2009 - Descending

Sirtuin 2, NAD-dependent deacetylase Sirt2 Werner et al., 2007 - P18-up

Spectrin alpha chain, non-erythrocytic 1 Sptan1 Susuki et al., 2018 - P18-up

Spectrin beta chain, non-erythrocytic 1 Sptbn1 Susuki et al., 2018 - P18-up
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By fuzzy c-means clustering, those 920 transcripts that showed developmental abundance

changes were grouped into 5 clusters (Figure 3A; Figure 3—source data 1). Among those, one

cluster corresponds to an mRNA-abundance peak coinciding with an early phase of myelin biogene-

sis (cluster ‘P6-UP‘), which includes the highest proportion of known myelin proteins (Table 1) such

as MPZ/P0, MBP, PRX, cyclic nucleotide phosphodiesterase (CNP), fatty acid synthase (FASN), mye-

lin-associated glycoprotein (MAG), proteolipid protein (PLP/DM20), cell adhesion molecule-4

(CADM4/NECL4), connexin-29 (GJC3), claudin-19 (CLDN19) and CKLF-like MARVEL-transmembrane

domain containing protein-5 (CMTM5). However, many known myelin proteins clustered together

according to their mRNA-abundance peak coinciding with a later phase of myelination (cluster ‘P18-

UP‘), including peripheral myelin protein 2 (PMP2), tetraspanin-29 (CD9), tetraspanin-28 (CD81), con-

nexin-32 (GJB1), plasmolipin (PLLP), junctional adhesion molecule-3 (JAM3), CD59 and dystrophin-

related protein-2 (DRP2). The proportion of known myelin proteins was lower in the clusters corre-

sponding to mRNA-abundance peaks in adulthood (clusters ‘late-UP‘, ‘U-shaped‘). Yet, a consider-

able number of transcripts displayed abundance peaks at the embryonic time-point (cluster

‘Descending‘), including carbonic anhydrase 2 (CA2), cofilin-1 CFL1), tubulin beta-4 (TUBB4b) and

band 4.1-protein B (EPB41L3). Generalized, the clusters were roughly similar when comparing previ-

ous oligonucleotide microarray analysis of mouse sciatic nerves (Patzig et al., 2011) and the RNA-

Seq analysis of rat sciatic nerves (this study); yet, the latter provides information on a larger number

of genes and with a higher level of confidence. Together, clustering of mRNA abundance profiles

allows categorizing peripheral myelin proteins into developmentally co-regulated groups.

When systematically assessing the proteins identified in myelin by gene ontology (GO)-term anal-

ysis, the functional categories over-represented in the entire myelin proteome included cell adhe-

sion, cytoskeleton and extracellular matrix (labeled in turquoise in Figure 4). When analyzing the

clusters of developmentally co-expressed transcripts (from Figure 3), proteins associated with the

lipid metabolism were particularly enriched in the P6-UP and P18-UP clusters, while those associated

with the extracellular matrix (ECM) were over-represented in the U-shaped and Descending clusters

(Figure 4). For comparison, known myelin proteins (Table 1) were over-represented in the P6-UP

and P18-UP clusters (Figure 4). Together, our proteome dataset provides comprehensive in-depth

coverage of the protein constituents of peripheral myelin purified from the sciatic nerves of wild

type mice, and comparison to the transcriptome allows identifying developmentally co-regulated

and functional groups of myelin proteins. Our data thus supply a solid resource for the molecular

characterization of myelin and for discovering functionally relevant myelin proteins.

Neuropathy genes encoding myelin proteins
Heritable neuropathies can be caused by mutations affecting genes preferentially expressed in neu-

rons, Schwann cells or both (Rossor et al., 2013; Pareyson and Marchesi, 2009; Baets et al., 2014;

Brennan et al., 2015). To systematically assess which neuropathy-causing genes encode peripheral

myelin proteins, we compared our myelin proteome dataset with a current overview about disease

genes at the NIH National Library of Medicine at https://ghr.nlm.nih.gov/condition/charcot-marie-

tooth-disease#genes. Indeed, 31 myelin proteins were identified to be encoded by a proven neurop-

athy gene (Table 2), a considerable increase compared to eight disease genes found in a similar pre-

vious approach (Patzig et al., 2011). Notably, this increase is owing to both the larger size of the

current myelin proteome dataset (Figure 1E) and the recent discovery of numerous neuropathy

genes by the widespread application of next generation sequencing.

Table 1 continued

Protein name Gene Reference TMD Cluster

Tight junction protein ZO-1 Tjp1 Poliak et al., 2002 - P6-up

Tight junction protein ZO-2 Tjp2 Poliak et al., 2002 - P6-up

Transferrin Tf Lin et al., 1990 2 Late-up

Vimentin Vim Triolo et al., 2012 - Unchanged

Vinculin Vcl Beppu et al., 2015 - Descending
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Figure 3. Developmental mRNA abundance profiles of myelin-associated genes. (A) K-means clustering was performed for the mRNA profiles of those

1046 proteins in our myelin proteome inventory for which significant mRNA expression was found by RNA-Seq in the sciatic nerve of rats dissected at

ages E21, P6, P18 and 6 months (M6). Note that this filtering strategy allows to selectively display the developmental abundance profiles of those

transcripts that encode myelin-associated proteins rather than of all transcripts present in the nerve. Standardized mRNA abundance profiles are shown

Figure 3 continued on next page
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Pathological proteomic profile of peripheral myelin in a neuropathy
model
The results presented thus far were based on analyzing myelin of healthy wild type mice; yet we also

sought to establish a straightforward method to systematically assess myelin diversity, as exemplified

by alterations in a pathological situation. As a model we chose mice carrying a homozygous deletion

of the periaxin gene (Prx-/-) (Court et al., 2004; Gillespie et al., 2000). Periaxin (PRX) is the third-

most abundant peripheral myelin protein (Figure 2) and scaffolds the dystroglycan complex in

Schwann cells. Prx-/- mice represent an established model of Charcot-Marie-Tooth disease type 4F

(Guilbot et al., 2001; Berger et al., 2006; Marchesi et al., 2010). Aiming to assess the myelin pro-

teome, we purified myelin from pools of sciatic nerves dissected from Prx-/- and control mice at P21.

Upon SDS-PAGE separation and silver staining the band patterns appeared roughly similar

(Figure 5A), with the most obvious exception of the absence of the high-molecular weight band

constituted by periaxin in Prx-/- myelin. Yet, several other bands also displayed genotype-dependent

differences in intensity. As expected, PRX was also undetectable by MSE in Prx-/- myelin, in which

Figure 3 continued

(n = 4 biological replicates per age). Known myelin genes are displayed in red. For comparison, Pmp22 mRNA was included although the small

tetraspan protein PMP22 was not mass spectrometrically identified due to its unfavorable distribution of tryptic cleavage sites. Normalized counts for all

mRNAs including those displaying developmentally unchanged abundance are provided in Figure 3—source data 1. (B) Numbers of mRNAs per

cluster.

The online version of this article includes the following source data for figure 3:

Source data 1. Normalized developmental mRNA abundance data fi sheet 1: normalized values for all individual 4 biological replicates per age fi

sheet 2: normalized values for biological replicates averaged to give mean per age.
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Figure 4. Categorization of annotated protein functions. All proteins identified in peripheral myelin by UDMSE

(turquoise) and the respective developmental expression clusters (Figure 3; shades of red) were analyzed for

overrepresented functional annotations using gene ontology (GO) terms. The graph displays the percentage of

proteins in each cluster that were annotated with a particular function. For comparison, known myelin proteins

were annotated. n.o., not over-represented.
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Table 2. Peripheral myelin proteins identified in PNS myelin involved in neuropathological diseases.

Proteins mass-spectrometically identified in peripheral myelin were analyzed regarding the involvement of the ortholog human gene

in neuropathological diseases. PMP22 was added, though it was not identified by MS analyses due to its unfavorable distribution of

tryptic cleavage sites. CMT, Charcot-Marie-Tooth disease; DHMN, distal hereditary motor neuropathy; DI-CMTC, dominant intermedi-

ate CMTC; DFN, X-linked deafness; HMN, hereditary motor neuropathy; HSAN, hereditary sensory and autonomic neuropathy; HNA,

hereditary sensory and autonomic neuropathy; OMIM, Online Mendelian Inheritance in Man; PHARC, polyneuropathy, hearing loss,

ataxia, retinitis pigmentosa and cataract; SCA, spinocerebellar ataxia; SPG, spastic paraplegia.

Protein name Gene name OMIM# Gene locus Neuropathy

Monoacylglycerol lipase ABHD12 ABHD12 613599 20p11.21 Pharc

Apoptosis-inducing factor 1 AIFM1 300169 Xq26.1 CMTX4, DFNX5

Na+/K+ -transporting ATPase a1 ATP1A1 182310 1p13.1 CMT2DD

Cytochrome c oxidase subunit 6A1 COX6A1 602072 12q24.31 CMTRID

Dystrophin-related protein 2 DRP2 300052 Xq22.1 CMTX

Dynactin subunit 1 DCTN1 601143 2p13.1 DHMN7B

Dynamin 2 DNM2 602378 19p13.2 CMT2M, CMTDIB

Cytoplasmic dynein 1 heavy chain 1 DYNC1H1 600112 14q32.31 CMT20, SMALED1

E3 SUMO-protein ligase EGR2 129010 10q21.3 CMT1D, CMT3, CMT4E

Glycine-tRNA ligase GARS (Gart) 600287 7p14.3 CMT2D, HMN5A

Gap junction ß1 protein/Cx32 GJB1 304040 Xq13.1 CMTX1

Guanine nucleotide-binding protein ß4 GNB4 610863 3q26.33 CMTDIF

Histidine triad nucleotide-binding protein 1 HINT1 601314 5q23.3 NMAN

Hexokinase 1 HK1 142600 10q22.1 CMT4G

Heat shock protein ß1 HSPB1 602195 7q11.23 CMT2F, DHMN2B

Kinesin heavy chain isoform 5A KIF5A 602821 12q13.3 SPG10

Prelamin A/C LMNA 150330 1q22 CMT2B1

Neprilysin MME 120520 3q25.2 CMT2T, SCA43

Myelin protein zero/P0 MPZ 159440 1q23.3 CHN2,CMT1B, CMT2I,
CMT2J,CMT3, CMTDID,
Roussy-Levy syndrome

Myotubularin-related protein 2 MTMR2 603557 11q21 CMT4B1

Alpha-N-acetylglucosaminidase NAGLU (NAGA) 609701 17q21.2 CMT2V

NDRG1, N-myc downstream
regulated

NDRG1 605262 8q24.22 CMT4D

Neurofilament heavy polypeptide NEFH 162230 22q12.2 CMT2CC

Neurofilament light polypeptide NEFL 162280 8p21.2 CMT2E, CMT1F, CMTDIG

Peripheral myelin protein 2 PMP2 170715 8q21.13 CMT1G

Peripheral myelin protein 22 PMP22 601907 17p12 CMT1A, CMT1E, CMT3, HNPP,
Roussy-Levy syndrome

Ribose-phosphate
pyrophosphokinase 1

PRPS1 311850 Xq22.3 Arts syndrome, CMTX5, DFNX1

Periaxin PRX 605725 19q13.2 CMT4F, CMT3

Ras-related protein Rab 7a RAB7A 602298 3q21.3 CMT2B

Septin 9 SEPT9 604061 17q25.3 HNA

Transitional ER-ATPase VCP 601023 9p13.3 CMT2Y

Tryptophan-tRNA
ligase, cytoplasmic

WARS 191050 14q32.32 HMN9

Tyrosine-tRNA
ligase, cytoplasmic

YARS 603623 1p35.1 DI-CMTC
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Figure 5. Molecular analysis of myelin in the Prx-/- mouse model of CMT4F. (A) Myelin purified from sciatic nerves dissected from Prx-/- and control

mice at P21 was separated by SDS-PAGE (0.5 mg protein load) and proteins were visualized by silver staining. Bands constituted by the most abundant

myelin proteins (MPZ/P0, MBP, PRX) are annotated. Note that no band constituted by PRX was detected in Prx-/- myelin and that several other bands

also display genotype-dependent differences in intensity. Gel shows n = 2 biological replicates representative of n = 3 biological replicates. (B) The

Figure 5 continued on next page
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most of the total myelin protein was constituted by MPZ/P0 and MBP (Figure 5B; Figure 5—source

data 1).

Upon differential analysis by DRE-UDMSE (Figure 5—source data 2), multiple proteins displayed

genotype-dependent differences as visualized in a heatmap displaying those 40 proteins of which

the abundance was reduced or increased with the highest statistical significance in Prx-/- compared

to control myelin (Figure 5C). For example, the abundance of the periaxin-associated dystrophin-

related protein 2 (DRP2) was strongly reduced in Prx-/- myelin, as previously shown by immunoblot-

ting (Sherman et al., 2001). Notably, the abundance of multiple other proteins was also significantly

reduced in Prx-/- myelin, including the extracellular matrix protein laminin C1 (LAMC1; previously

termed LAMB2), the laminin-associated protein nidogen (NID1), Ig-like cell adhesion molecules

(CADM4, MAG), the desmosomal junction protein desmin (DES), cytoskeletal and cytoskeleton-asso-

ciated proteins (EPB41L3, MAP1A, CORO1A, SPTBN1, various microtubular and intermediate fila-

ment monomers), the monocarboxylate transporter MCT1 (also termed SLC16A1) and the MCT1-

associated (Philp et al., 2003) immunoglobulin superfamily protein basigin (BSG, also termed

CD147). On the other hand, proteins displaying the strongest abundance increase in Prx-/- myelin

included immune-related proteins (LGALS3, LYZ2, CTSD), cytoskeletal and cytoskeleton-associated

proteins (CAPG, CORO1C, CNN3, several myosin heavy chain subunits), peroxisomal enzymes (CAT,

HSD17B4, MDH1) and known myelin proteins (PLLP/plasmolipin, CRYAB, GJB1/CX32). For compari-

son, the abundance of the marker proteolipid protein (PLP/DM20) (Patzig et al., 2016a) and the

periaxin-associated integrin beta-4 (ITGB4) (Raasakka et al., 2019) in myelin was unaltered in Prx-/-

myelin. Together, differential proteome analysis finds considerably more proteins and protein

groups to be altered in Prx-/- myelin than previously known (Figure 5C,D–D’’’), probably reflecting

the complex pathology observed in this model (Court et al., 2004; Gillespie et al., 2000).

The monocarboxylate transporter MCT1/SLC16A1 expressed by myelinating oligodendrocytes

(Lee et al., 2012; Fünfschilling et al., 2012) and Schwann cells (Domènech-Estévez et al., 2015;

Morrison et al., 2015) has been proposed to supply lactate or other glucose breakdown products

to axons, in which they may serve as substrate for the mitochondrial production of ATP

(Morrison et al., 2013; Saab et al., 2013; Rinholm and Bergersen, 2014). In this respect it was

Figure 5 continued

relative abundance of proteins in myelin purified from Prx-/- sciatic nerves as quantified by MSE is given as percent with relative standard deviation (%

+/- RSD). Note the increased relative abundance of MPZ/P0 and MBP compared to wild-type myelin (see Figure 2) when PRX is lacking. Mass

spectrometric quantification based on 3 biological replicates with 4 technical replicates each (see Figure 5—source data 1). (C,D) Differential

proteome analysis by DRE-UDMSE of myelin purified from Prx-/- and wild-type mice. Mass spectrometric quantification based on 3 biological replicates

per genotype with 4 technical replicates each (see Figure 5—source data 2). (C) Top 40 proteins of which the abundance is reduced (blue) or

increased (red) in peripheral myelin purified from Prx-/- compared to wild-type mice with the highest level of significance according to the -log10

transformed q-value (green). In the heatmaps, each horizontal line corresponds to the fold-change (FC) of a distinct protein compared to its average

abundance in wild-type myelin plotted on a log2 color scale. Heatmaps display 12 replicates, that is 3 biological replicates per genotype with 4

technical replicates each. (D-D‘‘‘) Volcano plots representing genotype-dependent quantitative myelin proteome analysis. Data points represent

quantified proteins in Prx-/- compared to wild-type myelin and are plotted as the log2-transformed fold-change (FC) on the x-axis against the -log10-

transformed q-value on the y-axis. Stippled lines mark a -log10-transformed q-value of 1.301, reflecting a q-value of 0.05 as significance threshold.

Highlighted are the datapoints representing the Top 10 proteins displaying highest zdist values (Euclidean distance between the two points (0,0) and

(x,y) with x = log2(FC) and y = -log10(q-value) (red circles in D), immune-related proteins (purple circles in D‘), proteins of the extracellular matrix (ECM;

yellow circles in D‘‘) and known myelin proteins (blue circles in D‘‘‘). n.d., not detected; n.q., no q-value computable due to protein identification in one

genotype only. Also see Figure 5—figure supplement 1. (E) Immunoblot of myelin purified from Prx-/- and control sciatic nerves confirms the reduced

abundance of DRP2, SLC16A1/MCT1, BSG and PMP2 in Prx-/- myelin, as found by differential DRE-UDMSE analysis (in C,D). PRX was detected as

genotype control; PLP/DM20 and ATP1A1 serve as markers. Blot shows n = 2 biological replicates per genotype. (F) Teased fiber preparations of sciatic

nerves dissected from Prx-/- and control mice immunolabelled for MAG (red) and SLC16A1 (green). Note that SLC16A1 co-distributes with MAG in

Schmidt-Lanterman incisures (SLI) in control but not in Prx-/- nerves, in accordance with the reduced abundance of SLC16A1 in Prx-/- myelin (C–E). Also

note that, in Prx-/- myelin, SLI were largely undetectable by MAG immunolabeling.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Label-free quantification of proteins in PNS myelin fractions from Prx-/- mice by MSE Identification and quantification data of detected

myelin-associated proteins.

Source data 2. Label-free quantification of proteins in PNS myelin fractions from WT and Prx-/- mice by DRE-UDMSE Identification and quantification

data of detected myelin-associated proteins by DRE-UDMSE.

Figure supplement 1. Clustered heatmap of Pearson’s correlation coefficients for protein abundance comparing genotypes.
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striking to find the abundance of MCT1 significantly reduced in peripheral myelin when PRX is lack-

ing (Figure 5C), a result that we were able to confirm by immunoblotting (Figure 5E) and immuno-

labeling of teased fiber preparations of sciatic nerves (Figure 5F). Notably, reduced expression of

MCT1 in Slc16a1+/- mice impairs axonal integrity at least in the CNS (Lee et al., 2012; Jha et al.,

2020). The reduced abundance of MCT1 thus represents an interesting novel facet of the complex

pathology in Prx-/- mice. Considering that the integrity of peripheral axons may be impaired in Prx-/-

mice, we assessed their quadriceps nerves. Indeed, Prx-/- mice displayed reduced axonal diameters,

a progressively reduced total number of axons and a considerable number of myelin whorls lacking

a visible axon (Figure 6), indicative of impaired axonal integrity (Edgar et al., 2009). Yet we note

that molecular or neuropathological features other than the reduced abundance of MCT1 probably

also contribute to the axonopathy in Prx-/- mice.

Together, gel-free, label free proteome analysis provides a cost- and time-efficient method that

provides an accurate, sensitive tool to gain systematic insight into the protein composition of healthy

peripheral myelin and its alterations in pathological situations. Indeed, gel-free proteome analysis is

particularly powerful and comprehensive compared to 2D-DIGE; the workflow presented here

appears readily applicable to other neuropathy models, thereby promising discovery of relevant

novel features of their neuropathology.

Discussion
We used gel-free, label-free quantitative mass spectrometry to assess the protein composition of

myelin biochemically purified from the sciatic nerves of wild-type mice, thereby establishing a

straightforward and readily applicable workflow to approach the peripheral myelin proteome. The

key to comprehensiveness was to combine the strengths of three data acquisition modes, that is,

MSE for correct quantification of high-abundant proteins, UDMSE for deep quantitative proteome

coverage including low-abundant proteins and DRE-UDMSE for differential analysis. We suggest that

DRE-UDMSE provides a good compromise between dynamic range, identification rate and instru-

ment run time for routine differential myelin proteome profiling as a prerequisite for a molecular

understanding of myelin (patho)biology. We have also integrated the resulting compendium with

RNA-Seq-based mRNA abundance profiles in peripheral nerves and neuropathy disease loci. Beyond

providing the largest peripheral myelin proteome dataset thus far, the workflow is appropriate to

serve as starting point for assessing relevant variations of myelin protein composition, for example,

in different nerves, ages, species and in pathological conditions. The identification of numerous

pathological alterations of myelin protein composition in the Prx-/- neuropathy model indicates that

the method is well suited to assess such diversity.

Aiming to understand nervous system function at the molecular level, multiple ‘omics‘-scale proj-

ects assess the spatio-temporal expression profiles of all mRNAs and proteins in the CNS including

oligodendrocytes and myelin (Zhang et al., 2014; Patzig et al., 2016b; Sharma et al., 2015;

Thakurela et al., 2016; Marques et al., 2016). Yet, peripheral nerves are also essential for normal

sensory and motor capabilities. Prior approaches to the molecular profiles of Schwann cells and PNS

myelin thus far, however, were performed >8 years ago (Nagarajan et al., 2002; Le et al., 2005;

Ryu et al., 2008; Patzig et al., 2011; Verheijen et al., 2003; Buchstaller et al., 2004;

D’Antonio et al., 2006), and the techniques have considerably advanced since. For example, current

gel-free, label-free mass spectrometry can simultaneously identify and quantify the vast majority of

proteins in a sample, thereby providing comprehensive in depth-information. Moreover, RNA-Seq

technology has overcome limitations of the previously used microarrays for characterizing mRNA

abundance profiles with respect to the number of represented genes and the suitability of the oligo-

nucleotide probes. The present compendium thus provides high confidence with respect to the

identification of myelin proteins, their relative abundance and their developmental mRNA expression

profiles. This view is supported by the finding that over 80% of the total myelin proteome is consti-

tuted by approximately 50 previously known myelin proteins. We believe that the majority of the

other identified proteins represent low-abundant myelin-associated constituents in line with the high

efficiency of biochemical myelin purification. Doubtless, however, the myelin proteome also com-

prises contaminants from other cellular sources, underscoring the need of independent validation

for establishing newly identified constituents as true myelin proteins.
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Figure 6. Progressive loss and reduced diameters of peripheral axons in Prx-/- mice. (A–D) Genotype-dependent quantitative assessment of light

micrographs of toluidine-stained semi-thin sectioned quadriceps nerves dissected at 2, 4 and 9 months of age reveals progressive loss of peripheral

Figure 6 continued on next page
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Do myelin proteins exist that escape identification by standard proteomic approaches? Indeed,

some proteins display atypically distributed lysine and arginine residues, which represent the cleav-

age sites of the commonly used protease trypsin. The tryptic digest of these proteins leads to pepti-

des that are not well suited for chromatographic separation and/or mass spectrometric detection/

sequencing, as exemplified by the small hydrophobic tetraspan-transmembrane myelin proteins

MAL (Schaeren-Wiemers et al., 2004) and PMP22 (Adlkofer et al., 1995). We can thus not exclude

that additional proteins with atypical tryptic digest patterns exist in peripheral myelin, which would

need to be addressed by the use of alternative proteases. Moreover, potent signaling molecules

including erbB receptor tyrosine kinases (Riethmacher et al., 1997; Woldeyesus et al., 1999) and

G-protein coupled receptors (GPRs) (Ackerman et al., 2018; Monk et al., 2011; Monk et al., 2009)

display exceptionally low abundance. Such proteins may be identified when applying less stringent

identification criteria, e.g., by requiring the sequencing of only one peptide per protein. However,

lower stringency would also result in identifying false-positive proteins, which we wished to avoid for

the purpose of the present compendium. We note that a truly comprehensive spatio-temporally

resolved myelin proteome should preferentially also include systematic information about protein

isoforms and post-translational modifications, which still poses technical challenges.

Mutations affecting the periaxin (PRX) gene in humans cause CMT type 4F (Guilbot et al., 2001;

Kabzinska et al., 2006; Baránková et al., 2008; Tokunaga et al., 2012); the neuropathology result-

ing from mutations affecting periaxin has been mainly investigated in the Prx-/- mouse model.

Indeed, Prx-/- mice display a progressive peripheral neuropathy including axon/myelin-units with

abnormal myelin thickness, demyelination, tomaculae, onion bulbs, reduced nerve conduction veloc-

ity (Gillespie et al., 2000), reduced abundance and mislocalization of the periaxin-associated DRP2

(Sherman et al., 2001) and reduced internode length (Court et al., 2004). Absence of SLIs

(Gillespie et al., 2000) and bands of Cajal (Court et al., 2004) imply that the non-compact myelin

compartments are impaired when PRX is lacking. In the differential analysis of myelin purified from

Prx-/- and control mice we find that the previously reported reduced abundance of DRP2

(Sherman et al., 2001) represents one of the strongest molecular changes in the myelin proteome

when PRX is lacking. Notably, the reported morphological changes in this neuropathy model

(Sherman et al., 2001; Court et al., 2004; Gillespie et al., 2000) go along with alterations affecting

the abundance of multiple other myelin-associated proteins, including junctional, cytoskeletal, extra-

cellular matrix and immune-related proteins as well as lipid-modifying enzymes. Thus, the neuropa-

thology in Prx-/- mice at the molecular level is more complex than previously anticipated. It is striking

that the abundance of the monocarboxylate transporter MCT1/SLC16A1 that may contribute to the

metabolic supply of lactate from myelinating cells to axons (Beirowski et al., 2014; Domènech-

Estévez et al., 2015; Kim et al., 2016; Gonçalves et al., 2017; Stassart et al., 2018) is strongly

reduced in Prx-/- myelin. Considering that MCT1 in Schwann cells mainly localizes to Schmidt Lanter-

man incisures (SLI) (Domènech-Estévez et al., 2015) and that SLI are largely absent from myelin

when PRX is lacking (Gillespie et al., 2000), the reduced abundance of MCT1 in Prx-/- myelin may

be a consequence of the impaired myelin ultrastructure. Yet, considering that SLI are part of the

cytosolic channels that may represent transport routes toward Schwann cell-dependent metabolic

support of myelinated axons, the diminishment of MCT1 may contribute to reduced axonal diame-

ters or axonal loss in Prx-/- mice, probably in conjunction with other molecular or morphological

defects. Together, the in depth-analysis of proteins altered in neuropathy models can contribute to

an improved understanding of nerve pathophysiology.

Compared to a previous approach (Patzig et al., 2011), the number of proven neuropathy genes

of which the encoded protein is mass spectrometrically identified in peripheral myelin has increased

Figure 6 continued

axons in Prx-/- compared to control mice. (A) Representative micrographs. Arrows point at myelinated axons; asterisk denotes an unmyelinated axon;

arrowhead points at a myelin whorl lacking a recognizable axon. Scale bars, 10 mm. (B) Total number of axons per nerve that are not associated with a

Remak bundle. (C) Total number of myelinated axons per nerve. (D) Total number per nerve of myelin whorls that lack a recognizable axon. Mean +/SD,

n = 3–4 mice per genotype and age; *p<0.05, **p<0.01, ***p<0.001 by Student’s unpaired t-test. (E–G) Genotype-dependent assessment of myelinated

axons shows a shift toward reduced axonal diameters in quadriceps nerves of Prx-/- compared to control mice at 2 months (E), 4 months (F) and 9

months (G) of age. Data are presented as frequency distribution with 0.5 mm bin width. ***, p<0.001 by two-sided Kolmogorow-Smirnow test. For

precise p-values see methods section.
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four-fold from eight to 32 in the present study. This reflects both that the number of proteins identi-

fied in myelin has approximately doubled and that more neuropathy genes are known due to the

common use of genome sequencing. We note that our compendium comprises not only myelin-

associated proteins causing (when mutated) demyelinating CMT1 (e.g., MPZ/P0, NEFL, PMP2) or

intermediate CMT4 (GDAP1, NDRG1, PRX) but also axonal CMT2 (RAB7, GARS, HSPB1). Yet, the

expression of genes causative of CMT2 is not necessarily limited to neurons, as exemplified by the

classical myelin protein MPZ/P0. Indeed, a subset of MPZ-mutations causes axonal CMT2I or CMT2J

(Gallardo et al., 2009; Leal et al., 2014; Tokuda et al., 2015; Duan et al., 2016; Fabrizi et al.,

2018), probably reflecting impaired axonal integrity as consequence of a mutation primarily affect-

ing Schwann cells. We also note that the nuclear EGR2/KROX20 causative of demyelinating CMT1D

has not been mass spectrometrically identified in myelin, reflecting that Schwann cell nuclei are effi-

ciently removed during myelin purification.

While morphological analysis of peripheral nerves by light and electron microscopy is routine in

numerous laboratories, systematic molecular analysis has been less straightforward. Using the sciatic

nerve as a model, we show that systematic assessment of the myelin proteome and the total nerve

transcriptome are suited to determine comprehensive molecular profiles in healthy nerves and in

myelin-related disorders. Myelin proteome analysis can thus complement transcriptome analysis in

assessing development, function and pathophysiology of peripheral nerves.

Materials and methods

Mouse models
Prx-/- mice (Gillespie et al., 2000) were kept on c57Bl/6 background in the animal facility of the Uni-

versity of Edinburgh (United Kingdom). Genotyping was by PCR on genomic DNA using the forward

primers 5‘-CAGATTTGCT CTGCCCAAGT and 5‘-CGCCTTCTAT CGCCTTCTTGAC in combination

with reverse primer 5‘-ATGCCCTCAC CCACTAACAG. The PCR yielded a 0.5 kb fragment for the

wildtype allele and a 0.75 kb product for the mutant allele. The age of experimental animals is given

in the figure legends. All animal work conformed to United Kingdom legislation (Scientific Proce-

dures) Act 1986 and to the University of Edinburgh Ethical Review Committee policy; Home Office

project license No. P0F4A25E9.

Myelin purification
A light-weight membrane fraction enriched for myelin was purified from sciatic nerves of mice by

sucrose density centrifugation and osmotic shocks as described (Patzig et al., 2011; Erwig et al.,

2019a). Myelin accumulates at the interface between 0.29 and 0.85 M sucrose. Prx-/- and wild type

control C57Bl/6 mice were sacrificed by cervical dislocation at postnatal day 21 (P21). For each

genotype, myelin was purified as three biological replicates (n = 3); each biological replicate repre-

senting a pool of 20 sciatic nerves dissected from 10 mice. Protein concentration was determined

using the DC Protein Assay Kit (Bio-Rad).

Filter-aided sample preparation for proteome analysis
Protein fractions corresponding to 10 mg myelin protein were dissolved and processed according to

a filter-aided sample preparation (FASP) protocol essentially as previously described for synaptic

protein fractions (Ambrozkiewicz et al., 2018) and as adapted to CNS myelin (Erwig et al., 2019a;

Erwig et al., 2019b). Unless stated otherwise, all steps were automated on a liquid-handling work-

station equipped with a vacuum manifold (Freedom EVO 150, Tecan) by using an adaptor device

constructed in-house. Briefly, myelin protein samples were lysed and reduced in lysis buffer (7 M

urea, 2 M thiourea, 10 mM DTT, 0.1 M Tris pH 8.5) containing 1% ASB-14 by shaking for 30 min at

37˚C. Subsequently, the sample was diluted with ~10 volumes lysis buffer containing 2% CHAPS to

reduce the ASB-14 concentration and loaded on centrifugal filter units (30 kDa MWCO, Merck Milli-

pore). After removal of the detergents by washing twice with wash buffer (8 M urea, 10 mM DTT,

0.1 M Tris pH 8.5), proteins were alkylated with 50 mM iodoacetamide in 8 M urea, 0.1 M Tris pH

8.5 (20 min at RT), followed by two washes with wash buffer to remove excess reagent. Buffer was

exchanged by washing three times with 50 mM ammonium bicarbonate (ABC) containing 10% ace-

tonitrile. After three additional washes with 50 mM ABC/10% acetonitrile, which were performed by
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centrifugation to ensure quantitative removal of liquids potentially remaining underneath the ultrafil-

tration membrane, proteins were digested overnight at 37˚C with 400 ng trypsin in 40 ml of the same

buffer. Tryptic peptides were recovered by centrifugation followed by two additional extraction

steps with 40 ml of 50 mM ABC and 40 ml of 1% trifluoroacetic acid (TFA), respectively. Aliquots of

the combined flow-throughs were spiked with 10 fmol/ml of yeast enolase-1 tryptic digest standard

(Waters Corporation) for quantification purposes and directly subjected to analysis by liquid chroma-

tography coupled to electrospray mass spectrometry (LC-MS). A pool of all samples was injected at

least before and after any sample set to monitor stability of instrument performance.

Mass spectrometry
Nanoscale reversed-phase UPLC separation of tryptic peptides was performed with a nanoAcquity

UPLC system equipped with a Symmetry C18 5 mm, 180 mm � 20 mm trap column and a HSS T3

C18 1.8 mm, 75 mm � 250 mm analytical column (Waters Corporation) maintained at 45˚C. Injected

peptides were trapped for 4 min at a flow rate of 8 ml/min 0.1% TFA and then separated over 120

min at a flow rate of 300 nl/min with a gradient comprising two linear steps of 3–35% mobile phase

B in 105 min and 35–60% mobile phase B in 15 min, respectively. Mobile phase A was water contain-

ing 0.1% formic acid while mobile phase B was acetonitrile containing 0.1% formic acid. Mass spec-

trometric analysis of tryptic peptides was performed using a Synapt G2-S quadrupole time-of-flight

mass spectrometer equipped with ion mobility option (Waters Corporation). Positive ions in the

mass range m/z 50 to 2000 were acquired with a typical resolution of at least 20.000 FWHM (full

width at half maximum) and data were lock mass corrected post-acquisition. UDMSE and DRE-

UDMSE analyses were performed in the ion mobility-enhanced data-independent acquisition mode

with drift time-specific collision energies as described in detail by Distler et al. (2016) and

Distler et al. (2014b). Specifically, for DRE-UDMSE a deflection device (DRE lens) localized between

the quadrupole and the ion mobility cell of the mass spectrometer was cycled between full (100%

for 0.4 s) and reduced (5% for 0.4 s) ion transmission during one 0.8 s full scan. Continuum LC-MS

data were processed for signal detection, peak picking, and isotope and charge state deconvolution

using Waters ProteinLynx Global Server (PLGS) version 3.0.2 (47). For protein identification, a custom

database was compiled by adding the sequence information for yeast enolase 1 and porcine trypsin

to the UniProtKB/Swiss-Prot mouse proteome and by appending the reversed sequence of each

entry to enable the determination of false discovery rate (FDR). Precursor and fragment ion mass tol-

erances were automatically determined by PLGS 3.0.2 and were typically below 5 ppm for precursor

ions and below 10 ppm (root mean square) for fragment ions. Carbamidomethylation of cysteine

was specified as fixed and oxidation of methionine as variable modification. One missed trypsin

cleavage was allowed. Minimal ion matching requirements were two fragments per peptide, five

fragments per protein, and one peptide per protein. The FDR for protein identification was set to

1% threshold.

Analysis of proteomic data
For each genotype (Prx-/- and wild type control mice sacrificed at P21), biochemical fractions

enriched for PNS myelin were analyzed as three biological replicates (n = 3 per condition); each bio-

logical replicate representing a pool of 20 sciatic nerves dissected from 10 mice. The samples were

processed with replicate digestion and injection, resulting in four technical replicates per biological

replicate and thus a total of 12 LC-MS runs per condition to be compared, essentially as previously

reported for CNS myelin (Patzig et al., 2016b; Erwig et al., 2019b). The freely available software

ISOQuant (www.isoquant.net) was used for post-identification analysis including retention time align-

ment, exact mass and retention time (EMRT) and ion mobility clustering, peak intensity normaliza-

tion, isoform/homology filtering and calculation of absolute in-sample amounts for each detected

protein (Distler et al., 2016; Distler et al., 2014b; Kuharev et al., 2015) according to the TOP3

quantification approach (Silva et al., 2006; Ahrné et al., 2013). Only peptides with a minimum

length of seven amino acids that were identified with scores above or equal to 5.5 in at least two

runs were considered. FDR for both peptides and proteins was set to 1% threshold and only proteins

reported by at least two peptides (one of which unique) were quantified using the TOP3 method.

The parts per million (ppm) abundance values (i.e. the relative amount (w/w) of each protein in

respect to the sum over all detected proteins) were log2-transformed and normalized by subtraction

Siems et al. eLife 2020;9:e51406. DOI: https://doi.org/10.7554/eLife.51406 19 of 31

Tools and resources Neuroscience

http://www.isoquant.net
https://doi.org/10.7554/eLife.51406


of the median derived from all data points for the given protein. Significant changes in protein abun-

dance were detected by moderated t-statistics essentially as described (Ambrozkiewicz et al.,

2018; Erwig et al. (2019b) ) across all technical replicates using an empirical Bayes approach and

false discovery (FDR)-based correction for multiple comparisons (Kammers et al., 2015). For this

purpose, the Bioconductor R packages ‘limma’ (Ritchie et al., 2015) and ‘q-value’ (Storey, 2003)

were used in RStudio, an integrated development environment for the open source programming

language R. Proteins identified as contaminants (e.g. components of blood or hair cells) were

removed from the analysis. Proteins with ppm values below 100 which were not identified in one

genotype were considered as just above detection level and also removed from the analysis. The rel-

ative abundance of a protein in myelin was accepted as altered if both statistically significant (q-

value <0.05). Pie charts, heatmaps and volcano plots were prepared in Microsoft Excel 2013 and

GraphPad Prism 7. Pearson’s correlation coefficients derived from log2-transformed ppm abundance

values were clustered and visualized with the tool heatmap.2 contained in the R package gplots

(CRAN.R-project.org/package = gplots). Only pairwise complete observations were considered to

reduce the influence of missing values on clustering behavior. The mass spectrometry proteomics

data have been deposited to the ProteomeXchange Consortium (proteomecentral.proteomex-

change.org) via the PRIDE partner repository (Vizcaı́no et al., 2016) with the dataset identifier

PXD015960.

Gel electrophoresis and silver staining of gels
Protein concentration was determined using the DC Protein Assay kit (BioRad). Samples were sepa-

rated on a 12% SDS-PAGE for 1 hr at 200 V using the BioRad system, fixated overnight in 10% [v/v]

acetic acid and 40% [v/v] ethanol and then washed in 30% ethanol (2 � 20 min) and ddH2O (1 � 20

min). For sensitization, gels were incubated 1 min in 0.012% [v/v] Na2S2O3 and subsequently washed

with ddH2O (3 � 20 s). For silver staining, gels were impregnated for 20 min in 0.2% [w/v] AgNO3/

0.04% formaldehyde, washed with ddH2O (3 � 20 s) and developed in 3% [w/v] Na2CO3/0.02% [w/v]

formaldehyde. The reaction was stopped by exchanging the solution with 5% [v/v] acetic acid.

Immunoblotting
Immunoblotting was performed as described by Schardt et al. (2009) and de Monasterio-Schrader

et al. (2013). Primary antibodies were specific for dystrophin-related-protein 2 (DRP2; Sigma;

1:1000), peripheral myelin protein 2 (PMP2; ProteinTech Group 12717–1-AP; 1:1000), proteolipid

protein (PLP/DM20; A431; Jung et al., 1996; 1:5000), Monocarboxylate transporter 1 (MCT1/

SLC16A1; Stumpf et al., 2019; 1:1000), periaxin (PRX; Gillespie et al., 1994; 1:1000), sodium/potas-

sium-transporting ATPase subunit alpha-1 (ATP1A1; 1:2000; Abcam #13736–1-AP), myelin protein

zero (MPZ/P0; Archelos et al., 1993; kind gift by J Archelos-Garcia; 1:10.000), voltage-dependent

anion-selective channel protein (VDAC; Abcam #ab15895; 1:1000), basigin (BSG/CD147; Protein-

Tech Group #ab64616; 1:1000), neurofilament H (NEFH/NF-H; Covance #SMI-32P; 1:1000), voltage-

gated potassium channel subunit A member 1 (KCNA1; Neuromab #73–007; 1:1000), EGR2/

KROX20 (Darbas et al., 2004; kind gift by D Meijer, Edinburgh; 1:1000) and myelin basic protein

(MBP; 1:2000). To generate the latter antisera, rabbits were immunized (Pineda Antikörper Service,

Berlin, Germany) with the KLH-coupled peptide CQDENPVVHFFK corresponding to amino acids

212–222 of mouse MBP isoform 1 (Swisprot/Uniprot-identifier P04370-1). Anti-MBP antisera were

purified by affinity chromatography and extensively tested for specificity by immunoblot analysis of

homogenate of brains dissected from wild-type mice compared to Mbpshiverer/shiverer mice that lack

expression of MBP. Appropriate secondary anti-mouse or -rabbit antibodies conjugated to HRP

were from dianova. Immunoblots were developed using the Enhanced Chemiluminescence Detec-

tion kit (Western Lightning Plus, Perkin Elmer) and detected with the Intas ChemoCam system

(INTAS Science Imaging Instruments GmbH, Göttingen, Germany).

Immunolabelling of teased fibers
Teased fibers were prepared as previously described by Sherman et al. (2001) and Catenaccio and

Court (2018). For each genotype, one male mouse was sacrificed by cervical dislocation at P17.

Immunolabelling of teased fibers was performed as described by Patzig et al. (2016b). Briefly,

teased fibers were fixed for 5 min in 4% paraformaldehyde, permeabilized 5 min with ice-cold
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methanol, washed in PBS (3 � 5 min) and blocked for 1 hr at 21˚C in blocking buffer (10% horse

serum, 0.25% Triton X-100, 1% bovine serum albumin in PBS). Primary antibodies were applied over-

night at 4˚C in incubation buffer (1.5% horse serum, 0.25% Triton X-100 in PBS). Samples were

washed in PBS (3 � 5 min) and secondary antibodies were applied in incubation buffer (1 hr, RT).

Samples were again washed in PBS (2 � 5 min), and 4‘,6-diamidino-2-phenylindole (DAPI; 1:50 000

in PBS) was applied for 10 min at RT. Samples were briefly washed 2x with ddH2O and mounted

using Aqua-Poly/Mount (Polysciences, Eppelheim, Germany). Antibodies were specific for myelin-

associated glycoprotein (MAG clone 513; Chemicon MAB1567; 1:50) and MCT1/SLC16A1 (107). Sec-

ondary antibodies were donkey a-rabbit-Alexa488 (Invitrogen A21206; 1:1000) and donkey a-

mouse-Alexa555 (Invitrogen A21202; 1:1000). Labeled teased fibers were imaged using the confocal

microscope Leica SP5. The signal was collected with the objective HCX PL APO lambda blue 63.0.

x1.20. DAPI staining was excited with 405 nm and collected between 417 nm - 480 nm. To excite

the Alexa488 fluorophore an Argon laser with the excitation of 488 nm was used and the emission

was set to 500 nm - 560 nm. Alexa555 was excited by using the DPSS561 laser at an excitation of

561 nm and the emission was set to 573 nm - 630 nm. To export and process the images LAS AF lite

and Adobe Photoshop were used.

mRNA abundance profiles
Raw data were previously established (Fledrich et al., 2018) from the sciatic nerves of wild type

Sprague Dawley rats at the indicated ages (E21, P6, P18; n = 4 per time point). Briefly, sciatic nerves

were dissected, the epineurium was removed, total RNA was extracted with the RNeasy Kit (Qia-

gen), concentration and quality (ratio of absorption at 260/280 nm) of RNA samples were deter-

mined using the NanoDrop spectrophotometer (ThermoScientific), integrity of the extracted RNA

was determined with the Agilent 2100 Bioanalyser (Agilent Technologies) and RNA-Seq was per-

formed using the Illumina HiSeq2000 platform. RNA-Seq raw data are available under the GEO

accession number GSE115930 (Fledrich et al., 2018). For the present analysis, the fastqfiles were

mapped to rattus norvegicus rn6 using Tophat Aligner and then quantified based on the Ensemble

Transcripts release v96. The raw read counts were then normalized using the R package DESeq2.

The normalized gene expression data was then standardized to a mean of zero and a standard devi-

ation of one, therefore genes with similar changes in expression are close in the euclidian space.

Clustering was performed on the standardized data using the R package mfuzz. Transcripts display-

ing abundance differences of less than 10% coefficient of variation were considered developmentally

unchanged.

Venn diagrams
Area-proportional Venn diagrams were prepared using BioVenn (Hulsen et al., 2008) at www.bio-

venn.nl/.

GO-term
For functional categorization of the myelin proteome the associated gene ontology terms were sys-

tematically analyzed on the mRNA abundance cluster using the Database for Annotation, Visualiza-

tion and Integrated Discovery (DAVID; https://david.ncifcrf.gov). For comparison known myelin

proteins according to literature were added.

Histological analysis
Prx-/- and control mice were perfused at the indicated ages intravascularly with fixative solution

(2.5% glutaraldehyde, 4% paraformaldehyde, 0.1 M sodium cacodylate buffer, pH 7.4). Quadriceps

nerves were removed, fixed for 2 hr at room temperature, followed by 18 hr at 4˚C in the same fixa-

tive, postfixed in OsO4, dehydrated a graded series of ethanol, followed by propylene oxide and

embedded in Araldite. All axons not associated with a Remak bundle were counted and categorized

as myelinated or non-myelinated. All myelin profiles lacking a recognizable axon were counted. The

total number of axons were counted on micrographs of toluidine blue stained Araldite sections (0.5

mm) of quadriceps nerves. Precise p-values for the quantitative comparison between Ctrl and Prx-/-

mice were: Total number of axons (Figure 6B; Student’s unpaired t-test): 2 mo p=0.01734; 4 mo

p=2.1E-05; 9 mo p=0.007625; Number of myelinated axons (Figure 6C; Student’s unpaired t-test): 2
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mo p=0.00444; 4 mo p=2.12E-05; 9 mo p=0.005766; Number of empty myelin profiles (Figure 6D;

Student’s unpaired t-test): 2 mo p=0.004445; 4 mo p=0.001461; 9 mo p=0.000695; Axonal diame-

ters (Figure 6E–G; two-sided Kolmogorow-Smirnow test): 2 mo p=2.20E-16; 4 mo p=2.20E-16; 9

mo p=2.20E-16.
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Matthieu JM, Costantino-Ceccarini E, Bény M, Reigner J. 1980. Evidence for the association of 2’,3’-cyclic-
nucleotide 3’-phosphodiesterase with myelin-related membranes in peripheral nervous system. Journal of
Neurochemistry 35:1345–1350. DOI: https://doi.org/10.1111/j.1471-4159.1980.tb09008.x, PMID: 6255099

Michailov GV, Sereda MW, Brinkmann BG, Fischer TM, Haug B, Birchmeier C, Role L, Lai C, Schwab MH, Nave
KA. 2004. Axonal neuregulin-1 regulates myelin sheath thickness. Science 304:700–703. DOI: https://doi.org/
10.1126/science.1095862, PMID: 15044753

Micko S, Schlaepfer WW. 1978. Protein composition of axons and myelin from rat and human peripheral nerves.
Journal of Neurochemistry 30:1041–1049. DOI: https://doi.org/10.1111/j.1471-4159.1978.tb12397.x,
PMID: 666897

Mikol DD, Scherer SS, Duckett SJ, Hong HL, Feldman EL. 2002. Schwann cell caveolin-1 expression increases
during myelination and decreases after axotomy. Glia 38:191–199. DOI: https://doi.org/10.1002/glia.10063,
PMID: 11968057

Miyamoto T, Morita K, Takemoto D, Takeuchi K, Kitano Y, Miyakawa T, Nakayama K, Okamura Y, Sasaki H,
Miyachi Y, Furuse M, Tsukita S. 2005. Tight junctions in Schwann cells of peripheral myelinated axons: a lesson
from claudin-19-deficient mice. The Journal of Cell Biology 169:527–565. DOI: https://doi.org/10.1083/jcb.
200501154, PMID: 15883201

Monk KR, Naylor SG, Glenn TD, Mercurio S, Perlin JR, Dominguez C, Moens CB, Talbot WS. 2009. A G protein-
coupled receptor is essential for Schwann cells to initiate myelination. Science 325:1402–1405. DOI: https://doi.
org/10.1126/science.1173474, PMID: 19745155
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J, Aguzzi A, Orfaniotou F, Hesse D, Schwab MH, Möbius W, Nave KA, Werner HB. 2011. Quantitative and
integrative proteome analysis of peripheral nerve myelin identifies novel myelin proteins and candidate
neuropathy loci. Journal of Neuroscience 31:16369–16386. DOI: https://doi.org/10.1523/JNEUROSCI.4016-11.
2011, PMID: 22072688
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Möbius W, Guarente L, Casaccia-Bonnefil P, Jahn O, Nave KA. 2007. Proteolipid protein is required for
transport of sirtuin 2 into CNS myelin. Journal of Neuroscience 27:7717–7730. DOI: https://doi.org/10.1523/
JNEUROSCI.1254-07.2007, PMID: 17634366

Whitaker JN. 1981. The protein antigens of peripheral nerve myelin. Annals of Neurology 9:56–64. DOI: https://
doi.org/10.1002/ana.410090710, PMID: 6164338

Woldeyesus MT, Britsch S, Riethmacher D, Xu L, Sonnenberg-Riethmacher E, Abou-Rebyeh F, Harvey R, Caroni
P, Birchmeier C. 1999. Peripheral nervous system defects in erbB2 mutants following genetic rescue of heart
development. Genes & Development 13:2538–2548. DOI: https://doi.org/10.1101/gad.13.19.2538,
PMID: 10521398

Yamada H, Shimizu T, Tanaka T, Campbell KP, Matsumura K. 1994. Dystroglycan is a binding protein of laminin
and merosin in peripheral nerve. FEBS Letters 352:49–53. DOI: https://doi.org/10.1016/0014-5793(94)00917-1,
PMID: 7925941

Yang D, Bierman J, Tarumi YS, Zhong YP, Rangwala R, Proctor TM, Miyagoe-Suzuki Y, Takeda S, Miner JH,
Sherman LS, Gold BG, Patton BL. 2005. Coordinate control of axon defasciculation and myelination by laminin-
2 and -8. Journal of Cell Biology 168:655–666. DOI: https://doi.org/10.1083/jcb.200411158, PMID: 15699217

Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, Phatnani HP, Guarnieri P, Caneda C, Ruderisch
N, Deng S, Liddelow SA, Zhang C, Daneman R, Maniatis T, Barres BA, Wu JQ. 2014. An RNA-sequencing
transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. Journal of
Neuroscience 34:11929–11947. DOI: https://doi.org/10.1523/JNEUROSCI.1860-14.2014, PMID: 25186741

Siems et al. eLife 2020;9:e51406. DOI: https://doi.org/10.7554/eLife.51406 31 of 31

Tools and resources Neuroscience

https://doi.org/10.1101/gad.1116203
http://www.ncbi.nlm.nih.gov/pubmed/14522948
https://doi.org/10.1093/nar/gkv1145
http://www.ncbi.nlm.nih.gov/pubmed/26527722
https://doi.org/10.1523/JNEUROSCI.1034-18.2018
https://doi.org/10.1523/JNEUROSCI.1034-18.2018
http://www.ncbi.nlm.nih.gov/pubmed/29941446
https://doi.org/10.1523/JNEUROSCI.1254-07.2007
https://doi.org/10.1523/JNEUROSCI.1254-07.2007
http://www.ncbi.nlm.nih.gov/pubmed/17634366
https://doi.org/10.1002/ana.410090710
https://doi.org/10.1002/ana.410090710
http://www.ncbi.nlm.nih.gov/pubmed/6164338
https://doi.org/10.1101/gad.13.19.2538
http://www.ncbi.nlm.nih.gov/pubmed/10521398
https://doi.org/10.1016/0014-5793(94)00917-1
http://www.ncbi.nlm.nih.gov/pubmed/7925941
https://doi.org/10.1083/jcb.200411158
http://www.ncbi.nlm.nih.gov/pubmed/15699217
https://doi.org/10.1523/JNEUROSCI.1860-14.2014
http://www.ncbi.nlm.nih.gov/pubmed/25186741
https://doi.org/10.7554/eLife.51406

