1. Computational and Systems Biology
  2. Genetics and Genomics
Download icon

Deep learning models predict regulatory variants in pancreatic islets and refine type 2 diabetes association signals

Research Article
  • Cited 0
  • Views 1,068
  • Annotations
Cite this article as: eLife 2020;9:e51503 doi: 10.7554/eLife.51503

Abstract

Genome-wide association analyses have uncovered multiple genomic regions associated with T2D, but identification of the causal variants at these remains a challenge. There is growing interest in the potential of deep learning models - which predict epigenome features from DNA sequence - to support inference concerning the regulatory effects of disease-associated variants. Here, we evaluate the advantages of training convolutional neural network (CNN) models on a broad set of epigenomic features collected in a single disease-relevant tissue – pancreatic islets in the case of type 2 diabetes (T2D) - as opposed to models trained on multiple human tissues. We report convergence of CNN-based metrics of regulatory function with conventional approaches to variant prioritization – genetic fine-mapping and regulatory annotation enrichment. We demonstrate that CNN-based analyses can refine association signals at T2D-associated loci and provide experimental validation for one such signal. We anticipate that these approaches will become routine in downstream analyses of GWAS.

Article and author information

Author details

  1. Agata Wesolowska-Andersen

    The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8688-2814
  2. Grace Zhuo Yu

    Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  3. Vibe Nylander

    Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  4. Fernando Abaitua

    The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  5. Matthias Thurner

    The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7329-9769
  6. Jason M Torres

    The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7537-7035
  7. Anubha Mahajan

    The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  8. Anna L Gloyn

    The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1205-1844
  9. Mark I McCarthy

    Department of Human Genetics, Genentech, South San Francisco, United States
    For correspondence
    mark.mccarthy@drl.ox.ac.uk
    Competing interests
    Mark I McCarthy, Senior editor, eLife; has served on advisory panels for Pfizer, NovoNordisk, Zoe Global; has received honoraria from Merck, Pfizer, NovoNordisk and Eli Lilly; has stock options in Zoe Global and has received research funding from Abbvie, Astra Zeneca, Boehringer Ingelheim, Eli Lilly, Janssen, Merck, NovoNordisk, Pfizer, Roche, Sanofi Aventis, Servier & Takeda. As of June 2019, is an employee of Genentech, and holds stock in Roche.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4393-0510

Funding

Wellcome (099673/Z/12/Z)

  • Matthias Thurner

Horizon 2020 Framework Programme (T2D Systems)

  • Anna L Gloyn

NIH Clinical Center (U01-DK105535)

  • Anna L Gloyn
  • Mark I McCarthy

NIH Clinical Center (U01-DK085545)

  • Anna L Gloyn

National Institute for Health Research (NF-SI-0617-10090)

  • Anna L Gloyn

Wellcome (090532)

  • Mark I McCarthy

Wellcome (106130)

  • Anna L Gloyn
  • Mark I McCarthy

Wellcome (098381)

  • Mark I McCarthy

Wellcome (203141)

  • Anna L Gloyn
  • Mark I McCarthy

Wellcome (212259)

  • Mark I McCarthy

Wellcome (095101)

  • Anna L Gloyn

Wellcome (200837)

  • Anna L Gloyn

Medical Research Council (MR/L020149/1)

  • Anna L Gloyn

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Stephen Parker, University of Michigan, United States

Publication history

  1. Received: August 30, 2019
  2. Accepted: January 27, 2020
  3. Accepted Manuscript published: January 27, 2020 (version 1)

Copyright

© 2020, Wesolowska-Andersen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,068
    Page views
  • 238
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Fabian Pallasdies et al.
    Research Article Updated
    1. Computational and Systems Biology
    2. Neuroscience
    Sophia Karpenko et al.
    Research Article Updated