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Abstract The computational principles underlying predictive capabilities in animals are poorly

understood. Here, we wondered whether predictive models mediating prey capture could be

reduced to a simple set of sensorimotor rules performed by a primitive organism. For this task, we

chose the larval zebrafish, a tractable vertebrate that pursues and captures swimming microbes.

Using a novel naturalistic 3D setup, we show that the zebrafish combines position and velocity

perception to construct a future positional estimate of its prey, indicating an ability to project

trajectories forward in time. Importantly, the stochasticity in the fish’s sensorimotor

transformations provides a considerable advantage over equivalent noise-free strategies. This

surprising result coalesces with recent findings that illustrate the benefits of biological stochasticity

to adaptive behavior. In sum, our study reveals that zebrafish are equipped with a recursive prey

capture algorithm, built up from simple stochastic rules, that embodies an implicit predictive model

of the world.

Introduction
It is becoming clear from recent ethological and neuroscience studies that remarkable capabilities in

animals are often built by combining sets of more basic behaviors. For example, seemingly compli-

cated behaviors like schooling in fish arise from stereotypic visuomotor rules being executed by

members of the group, without reference to the emerging global pattern (Couzin and Krause,

2003). Bees learning to pull strings for hidden rewards appear to be displaying insight and ingenu-

ity, but are in fact instituting a set of observational and associative learning rules in sequence

(Alem et al., 2016). The synthesis of intelligence from the interaction of ‘mindless’ behavioral mod-

ules has long been a staple of computer science and artificial intelligence (Brooks, 1991; Min-

sky, 1988; Braitenberg, 1986). However, a precise mechanistic explanation of how intelligent

behavior is generated has remained elusive.

Intelligence itself can been defined as the practice of model-building about ourselves and our sur-

roundings (Lake et al., 2017). Indeed, humans and animals have evolved internal models that allow

us to both predict ongoing dynamics in the environment and anticipate how our own actions give

rise to consequences in the world (Battaglia et al., 2013; Ullman et al., 2017; Baillargeon, 1987;

Mischiati et al., 2015; Borghuis and Leonardo, 2015). Much progress has been made on the neuro-

biological and computational principles that could mediate these complex abilities, but how exactly

internal models are built from component behavioral parts is unknown. Moreover, many theories of

mind rely on deterministic digital logic, while the brain generates intelligence using noisy, stochastic

units in neurons (e.g. McCulloch and Pitts, 1943). Noise in any computing system is usually consid-

ered inconvenient and a nuisance to be overcome (Körding and Wolpert, 2004). However, there is

precedent for noisy sensory detection and stochastic movements working to the benefit of many ani-

mals. Crayfish and paddlefish, for instance, both take advantage of stochastic resonance to detect
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sparse prey and predators (Douglass et al., 1993; Russett et al., 1999). Beneficially stochastic for-

aging has been observed in animals ranging down to micro-organisms, while predated animals use

mixed stochastic strategies to avoid predictability by predators (Jensen, 2018).

Can internal models that mediate predictive abilities be reduced to a set of simple rules that are

benefited by the stochasticity of neural systems? We posit that explicit physical intelligence is likely

built upon a framework of more primitive sensorimotor behaviors that constitute an implicit model

of how objects exist and move within the world (i.e. Brooks, 1991). Therefore, characterizing the

goals, algorithms, and advantages of animals possessing implicit models should provide insight into

the evolution of more advanced forms of predictive knowledge (Spelke and Hespos, 2018).

Here, we examine these questions through characterization and computational modeling of 3D

prey capture sequences executed by the larval zebrafish. The larval zebrafish, a teleost

with ~100,000 neurons, is a tractable model organism amenable to an array of modern neuroscience

techniques (Avella et al., 2012; Dunn et al., 2016). Prey capture requires the zebrafish to select,

pursue, and ultimately consume fast moving single-celled organisms swimming through its environ-

ment. We chose this model system and behavior for a multitude of reasons. Foremost, we hypothe-

sized that the pursuit of fast-moving prey should be benefitted by internal models; the ability to

extrapolate prey trajectories forward in time and the prediction of how each pursuit movement

impacts prey position would both, a priori, appear to be helpful in capturing fast-moving objects

(e.g. Yoo et al., 2019; Borghuis and Leonardo, 2015). Furthermore, there is precedent for the

zebrafish constructing relatively complex behaviors from simple rules. For example, stabilization of

position in turbulent streams is accomplished by instantiating a curl-detector for local water flow and

an optomotor response (Oteiza et al., 2017; Naumann et al., 2016), while energy-efficient foraging

emerges from the zebrafish’s innate tendency to locomote via alternating series of unidirectional

turns (Dunn et al., 2016). Finally, the zebrafish’s ongoing behavior is largely probabilistic, reflecting

the stochasticity of its neural systems. For instance, the precise number of unidirectional turns in any

spontaneous swimming stretch is stochastic, while turn magnitude in response to angular optic flow

varies widely (Dunn et al., 2016; Naumann et al., 2016).

We build upon foundational studies in zebrafish prey capture (Patterson et al., 2013;

Trivedi and Bollmann, 2013; Bianco et al., 2011) by analyzing this behavior in its natural 3D setting,

whereas previous studies have typically neglected vertical fish and prey movements. Moreover, we

develop an experimental and computational framework that can simultaneously record fish and prey

trajectories. This approach allowed us to accurately map the fish’s sensorimotor transformations in

response to ongoing prey features, which are described in an egocentric spherical coordinate system

that specifies the fish’s three-dimensional point of view. Particularly, we illustrate three main ele-

ments of the fish’s prey capture algorithm that reflect an implicit intuitive model of physics. First,

sensorimotor transformations during prey capture are largely controlled by the azimuth angle, alti-

tude angle and computed radial distance of prey before the fish initiates a pursuit movement. Sec-

ond, all aspects of the fish’s 3D movement choices are strongly and proportionally modulated by the

angular and radial velocity of its prey. Combining these two rules yields an emergent strategy

whereby the fish predicts future prey locations and recursively halves the angle of attack. Third, we

show that the speed of the fish’s recursive hunting strategy is benefited by noise in its sensorimotor

transformations. Importantly, this stochasticity is graded, meaning that the further away a prey item

is from the fish’s goal, the more variable the outcome of the fish’s choice becomes. Using a series of

computational models and virtual prey capture simulations, we show that position perception, veloc-

ity projection, and graded variance are all essential for effective and energy-efficient prey capture

performance. This suggests that the fish’s implicit models are, in fact, adaptive to the animal.

Overall, this work reveals that even the most complex behavior in larval zebrafish can be reduced

to a set of simple rules. These rules coalesce to generate a stochastic recursive algorithm embodied

by zebrafish during hunting, which ultimately reflects an implicit predictive model of the world.
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Results

Developing a 3D environment for elucidating hunting sequences in
zebrafish
We first sought to characterize the sensorimotor transformations larval zebrafish implement when

pursuing and capturing paramecia. Hunting sequences were recorded from 46 larval zebrafish using

a behavioral setup that could simultaneously image the fish and its prey from the top and side at

high resolution and speed (Figure 1A). Custom computer vision software was designed to recon-

struct the fish’s 3D position and two of the principal axes, yaw and pitch (Figure 1B), as well as the

trajectories of paramecia in the environment (Figure 1C). These reconstructions allowed us to spa-

tially map prey position and velocity to an egocentric spherical coordinate system originating at the

mouth of the fish. Hereby, each paramecium is assigned an azimuth, altitude and distance as a posi-

tional coordinate (‘Prey Az, Prey Alt, Prey Dist’), along with angular (Prey dAz / dt, Prey dAlt / dt) and

radial (Prey dDist / dt) velocities with respect to the fish’s 3D point of view (Figure 1D). To view the

prey environment from the fish’s reconstructed 3D perspective, see Video 1.

Larval zebrafish swim in discrete ‘bouts’, which consist of a pulse of velocity lasting ~200 ms, fol-

lowed by a variable period of intermittent quiescence (Figure 2A; Budick and O’Malley, 2000). We

took advantage of this unique facet of fish behavior to frame each bout performed during a hunting

sequence as an individual ‘decision’ based on the spherical position and velocity of pursued prey.

Specifically, we identified the start-time and end-time of each swim bout using fluctuations in tail var-

iance and velocity (see Materials and methods). This allowed us to precisely understand how the fish

transforms pre-bout prey features into movements that displace and rotate the fish to a new location

in 3D space at the end of the bout.

Hunting sequences themselves consist of an initiation bout, multiple pursuit bouts, and a termina-

tion bout. Initiation bouts were identified by detecting whether the eyes on a given bout have con-

verged. Eye convergence, which allows the use of stereovision by creating a small binocular zone, is

a well-known correlate of hunting state entrance in zebrafish (Gahtan et al., 2005; Bianco et al.,

2011). Hunt sequences were therefore identified by clustering the continuous eye angle record for

both eyes during each bout (Figure 1B, Figure 1—figure supplement 1A). Hunt sequences were

terminated on the bouts where fish either struck at their pursued prey or clearly quit pursuit. Quit-

ting has been called an ‘aborted’ hunt in the literature (Henriques et al., 2019; Johnson et al.,

2019), and most aborts in our dataset, as in other studies, corresponded to the cluster demarking

deconvergence of the eyes (Figure 1—figure supplement 1B) and a return to an exploratory state.

The average hunting sequence ending in a strike in our dataset lasted for five bouts (Interquartile

Range = 4 to 7).

Zebrafish typically choose the closest prey item when initiating a hunt
sequence
Nearly all hunt sequences in our dataset began with the choice of a single prey item to pursue (Fig-

ure 1—figure supplement 1B). The choice of prey item was straightforward. Fish almost invariably

chose the closest paramecium in the environment conditioned on the fact that the paramecium was

fairly close to its midline in azimuth and significantly above it in altitude (Figure 1—figure supple-

ment 2; maz = 0.7˚ saz = 48.4˚; malt = 19.9˚ salt = 19.7˚; mdist = 3.4 mm sdist = 1.6 mm). There was no

particular bias of prey choice in terms of direction or magnitude of velocity (Figure 1—figure sup-

plement 2A, bottom panels).

Sensorimotor transformations during prey capture are largely
controlled by Pre-Bout prey position
After choosing a prey item during an initiation bout, the fish engages in a series of pursuit bouts

(see Video 1) that can each influence the position, yaw, and pitch of the animal (Figure 2A). Pursuit

bouts are conducted until prey are positioned in a ‘strike zone’, which defines the termination condi-

tion for successful hunts in spherical coordinates relative to the fish: this zone is directly in front of,

and considerably above the fish (Figure 2B; avg. 0.9˚ Prey Az, 17.4˚ Prey Alt, .870 mm Prey Dist;

Mearns et al., 2019). We investigated whether displacements and rotations during pursuit bouts

were influenced by 3D prey position before each bout. For the rest of this manuscript, only
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Figure 1. A novel 3D experimental paradigm for mapping prey trajectories to fish movement choices. (A) 3D rendering of rig design and features. (B)

Computer vision algorithms extract the continuous eye angle, yaw, pitch, and tail angle of the zebrafish. In every frame, prey are detected using a

contour finding algorithm. (C) Prey contours from the two cameras are matched in time using a correlation and 3D distance-based algorithm, allowing

3D reconstruction of prey trajectories. (D) Prey features are mapped to a spherical coordinate system originating at the fish’s mouth. Altitude is positive

above the fish, negative below. Azimuth is positive right of the fish, negative left. Distance is the magnitude of the vector pointing from the fish’s mouth

to the prey.

Figure 1 continued on next page
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sensorimotor transformations during hunt sequences in which a strike was performed are described.

However, the algorithm the fish uses during aborts is nearly identical (Figure 2—figure supplement

1; note that the last three bouts in abort sequences tend to go awry for unknown reasons;

Henriques et al., 2019).

For every pursuit bout, we calculate an axis of motion in egocentric spherical coordinates along

which fish displace during the bout. This axis is defined by an azimuth and an altitude angle (‘Bout

Az’, ‘Bout Alt’), and the magnitude of displacement along this axis is termed ‘Bout Distance’.

Because the axis of motion during bouts is not perfectly aligned to the axis of symmetry, yaw and

pitch changes are independently described per bout (‘Bout DYaw’, ‘Bout DPitch’). Diagrams of rota-

tion and displacement variables are provided alongside Figure 2C and D.

Each bout aspect is primarily controlled by the position of the prey relative to the fish immedi-

ately preceding bout initiation (Figure 2C and D). Regression fits show that Bout Az and Bout DYaw

are well correlated to Prey Az, with negligible offset (0.3˚ and 0.48˚). This transformation simply

implies that fish displace and turn towards their prey. A similar linear relationship is seen when map-

ping Bout Alt and Bout DPitch of pursuit bouts to Prey Alt, but this time with significant negative off-

sets (�15.13˚ and �1.79˚). These negative offsets imply that if Prey Alt before a pursuit bout is 0˚,

which one may preconceive as the fish’s ultimate ‘goal’, the fish will dive downwards by ~15˚ and

rotate downward by ~2˚, thereby consistently maintaining the prey above itself at the end of pursuit

bouts. Schematics of these rules are shown in Figure 2E and F. Interestingly, these positional trans-

formations reflect the fish’s preferred position in which to strike for prey consumption:

with prey directly in front and significantly above the fish (Figure 2B).

Bout Distance along the axis of motion established by Bout Az and Bout Alt is a more complex

variable and will be addressed below.

All 3D movements during prey capture are strongly modulated by prey
velocity
Fish must capture prey that can move very quickly (in our assay, 74% 3D vector velocity >3 parame-

cium lengths per second, 27% > 6 paramecium lengths per second; avg. Prey dAz / dt = 29˚/s, Prey

dAlt / dt = 25˚/s; Figure 3—figure supplement

1A). We therefore surmised that prey velocity

perception should be required for prey capture.

Previous studies had suggested that kinematics

of zebrafish movements change from slow to

fast bouts based on whether prey are approach-

ing or swimming away from the fish

(Patterson et al., 2013). Our 3D setup allowed

us to conduct a detailed analysis of prey velocity

perception in all planes.

We find that every movement the fish per-

forms during prey capture is strongly and pro-

portionally influenced by both the radial and

angular velocity of its prey (Figure 3). All angular

bout variables are amplified if prey are moving

away from the fish (Figure 3 light colors) and

dampened when prey are moving towards the

fish (Figure 3 dark colors; Figure 3—figure sup-

plement 1B). Modulation of bout features is pro-

portional to the velocity of the prey, as it is well

Figure 1 continued

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Figure supplement 1. Identificaiton of hunt sequences.

Figure supplement 2. Fish tend to choose the closest available prey when initiating hunt sequences.

Figure supplement 2—source data 1. Source data describing prey at hunt initiations.

Video 1. In each instance, a hunt is shown from the top

and side cameras simultaneously, followed by a virtual

reality reconstruction of the fish’s point of view during

the hunt. The virtual reality reconstruction, built in

Panda3D, is generated from 3D prey coordinates and

unit vectors derived from the 3D position, pitch, and

yaw of the fish.

https://elifesciences.org/articles/51975#video1
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Figure 2. Fish execute 3D movements based on the position of their prey. (A) During hunt sequences, fish swim in bouts that can be detected using tail

variance. Bouts can change the yaw, pitch, and position of the fish, while time between bouts is marked by quiescence. (B) Histograms showing the

distributions of spherical prey positions when fish successfully ate a paramecium during a strike. (C, D) Regression fits between prey position and bout

variables executed by the fish. (E, F) Features of sensorimotor transformations based on prey position: fish swim forward if prey are directly in front.

Figure 2 continued on next page
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fit by multiple linear regression transforming position and velocity of prey into fish bout variables

(see Figure 3 legend).

We next wondered whether velocity perception constitutes a prediction of future prey position.

Given that most bouts zebrafish make during hunts are 176 ms long (IQR = 144 ms to 208 ms), we

can calculate from each prey velocity the change in prey position that would occur during an average

bout. We find that zebrafish transform projected prey position changes by 1.43 for Bout Az,. 31 for

Bout DYaw, 1.70 for Bout Alt, and. 18 for Bout DPitch (see Figure 3 legend). Critically, these values

closely approximate the coefficients describing bout transformations to prey position itself in Fig-

ure 2. This is the first hint that the fish has reduced the problem of position prediction to adding

velocity multiplied by bout time to its current prey position percept. In this sense, the fish are per-

forming Euler’s Method of approximating a future position based on its instantaneous derivative.

The final bout variable to address, Bout Distance, is more nuanced than the other four bout fea-

tures. The linear relationship between Bout Distance and Prey Distance, in general, is only strong

when prey are <4 mm from the fish (Figure 3C). Bout Distance is significantly modulated by radial

prey velocity (dDist / dt; see Figure 1D) when prey are within 2 mm (Figure 3C). In this spatial win-

dow, radial velocity of prey coming toward the fish dampens Bout Distance while radial velocity

moving away from the fish amplifies Bout Distance. Indeed, multiple regression finds an overall cor-

relation between Bout Distance and Prey Distance with significant dampening when Prey dDist /

dt < 0 and amplification of Bout Distance when Prey dDist / dt > 0 (Figure 3C legend for

coefficients).

Computational models of prey capture behavior show efficiency and
success arise from velocity perception
Next, we asked to which degree the use of prey velocity contributes to the animal’s ability to effi-

ciently and successfully capture prey. To that end we constructed a Virtual Prey Capture Simulation

Environment in which computational models of fish behavior with different ‘powers’ can be pitted

against each other. Each of these models varied along two axes: how the fish perceives its prey and

how it transforms prey perception into movements. The relative powers possessed by each model

allowed us to assess how the fish balances prey capture speed and accuracy with the energy

required for such a movement sequence. We started by re-creating paramecium trajectories of 225

hunt sequences initiated by the fish that resulted in a real-life strike (Figure 4A,

Materials and methods). From the initial conditions of these trajectories, we launched five models

that transform current paramecium features into 3D bouts as the prey moves through the

environment.

Each model initiates a bout at the precise moment when the real fish initiated a bout during the

sequence, and model sequences are terminated when the prey enters the virtual strike zone

(Figure 2B, Materials and methods). Moreover, we compare all models to the real 3D fish trajectory

(the ‘real fish’ model, Figure 4 Model 1 [Blue]), both assuring that our 3D bout and strike-zone char-

acterizations recapitulate real-life performance, and allowing us to compare post-bout coordinates

of all models to the characterization of real bouts.

The capabilities of each model are as follows (Figure 4A): First, a multiple regression model was

fit on only positional features of the paramecium (Model 2 [Orange]). This model linearly transforms

current position of the prey into 3D bout features according to the regression fits in Figure 2C,D

(and the bout distance fit from 3C). Model 3 (Green), a multiple regression model fit on both the

position and velocity of prey, accounts for the amplification and dampening of bout features by prey

Figure 2 continued

Otherwise, if prey are on right, fish displace and rotate right; and vice versa. Fish displace downward if prey are at 0˚ altitude, but displace with no

altitude change if prey are at 13.75˚. In all schematics (C–F), positions and orientations at the beginning of the bout are represented by transparent fish,

and by opaque fish at the end of the bout.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Source data for all bouts conducted in dataset.

Figure supplement 1. Prey capture algorithm during aborted hunt sequences.
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dark colors indicate that prey are moving toward the fish in the same 5˚ window of space. A pattern emerges of dampening movements when prey

velocity is towards the fish, and amplifying movements when prey velocity is away from the fish. Point locations are means with error bars representing

95% CIs. Multiple regression fitting of bout variables to prey position and velocity in all planes confirm and quantify the dampening and amplification

(azimuth velocity moving left to right of the fish is positive, altitude velocity upward is positive). Bout Az is biased by .251 * Prey dAz / dt (.219 - .283 95%

CI), Bout DYaw by .054 * Prey dAz / dt (.046-.061 95% CI), Bout Alt by .300 * Prey dAlt / dt (.268 - .331 95% CI), and Bout DPitch by .031 * Prey dAlt / dt

(.024 - .039 95% CI). Dividing these coefficients by the average bout length (0.176 s) yields the projected positional coefficients described in the text. (C)

Bout Distance is linearly proportional to Prey Distance but only within 4 mm of the fish, with breakdown in relationship above 6 mm. Likewise,

dampening of Bout Distance when Prey dDist / dt < 0 (prey approaching radially), and amplifying when Prey dDist / dt > 0 (prey moving afar), occurs in

two windows: 0–1 mm, and 1–2 mm from the fish. Overall, multiple regression finds: Bout Distance = 0.105 * Prey Dist + .053 * Prey dDist / dt (95%

CIs = 0.094-.116, .034-.071), which reflects the fact that ~70% of pursuit bouts occur when prey are within 2 mm. (*: p<0.05/6, Bonferroni corrected two-

tailed t-tests. p-values: 0–1 mm = 2.7 * 10�6, 1–2 mm: 0.0016, 2–3 mm: 0.38, 3–4 mm: 0.73, 4–6 mm: .00046, 6+: 0.92).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Distribution of prey velocity and example prey velocity-based biasing of bout features.
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velocity in Figure 3; position transforms are thus linearly biased by the velocity coefficients

described in the Figure 3 legend.

Models 4–6 are ‘Choice’ models which can draw from a distribution of 1782 pursuit bouts con-

ducted by fish in our dataset during sequences ending in a strike. This bout pool can be thought of

as the ‘pursuit repertoire’ of larval zebrafish. Model 4 (Red) simply assembles random bouts drawn

from the bout pool into a hunt sequence. Model 5 (Purple) chooses the ideal bout from the pool,

with each bout scored on its achievement in reducing the prey’s azimuth, altitude, and distance to

the mean values of the strike zone (see Materials and methods). Model 5 does not have access to

the velocity of the prey, meaning that it will zero in on the pre-bout prey position. Lastly, Model 6

(Gold) has the same capabilities to choose ideally as Model 5, but will extrapolate the current prey

velocity and add its time multiplied bias to the current position. Therefore, Model 6 can predict the

future paramecium position at the end of the bout, but chooses ideally instead of linearly.

To compare the models, we describe four facets of their performance intended to score raw hunt-

ing success as well as energetic cost: First, how many times out of 225 the model achieved success

in placing the virtual prey in its strike zone. Second, how much total energy was expended by the
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Figure 4. Virtual prey capture simulation reveals necessity of velocity perception. (A) A virtual prey capture environment mimicking the prey capture

tank was generated to test three different types of models, and six models overall, described in the schematic. Models control a virtual fish consisting

of a 3D position (red dot) and a 3D unit vector pointing in the direction of the fish’s heading. Virtual fish are started at the exact position and rotation

where fish initiated hunts in the dataset. Prey trajectories are launched that reconstruct the real paramecium movements that occurred during hunts.

The virtual fish moves in bouts timed to real life bouts, and if the prey enters the strike zone (defined by the distributions in Figure 2B,

Materials and methods), the hunt is terminated. (B) Barplots (total #) and box plots (median and quartiles) showing performance of all six models in

success (# Strikes), energy use per hunt sequence, and how many bouts each model performed during the hunt (a metric of hunt speed). (C) KDE plots

showing the distribution of Post-Bout Prey Az and Post-Bout Prey Alt distributions for each model during virtual hunts. Dotted lines demark the strike

zone mean.
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bout combination used during the hunt (see Materials and methods). Third, how many total bout

choices the model made per hunt as a metric for capture speed (Figure 4B). And lastly, the Post-

Bout Prey Az and Alt prey coordinate for each transformation was plotted to illustrate how well each

model does in reducing prey coordinates to the strike zone (Figure 4C). Performance of each model

for an example prey trajectory can be viewed in Video 2.

The first clear result is that the velocity-based regression Model 3 (Green) improves hunting suc-

cess over the position-only regression Model 2 (Orange) by 65%. Moreover, the average number of

bouts is one less for the velocity model, matching the average of the real fish (Blue). This indicates

that the velocity information processed by the fish, which allows projection of future prey coordi-

nates, is critical for both its success rate and speed in capture. When examining the Post-Bout Prey

Az for the regression models, the velocity-based Model three shows a tighter distribution around 0˚,

indicating that it is closer to the strike zone on average than position-only Model 2 (Figure 4C, right

top panels). This is also true for Post-Bout Prey Alt, where the green plot shows a stronger bias

toward the strike zone.

Velocity information is also critical to the performance of ideal choice models. As expected, the

random choice Model 4 (Red) performs very poorly, indicating that although similar ‘types’ of pursuit

bouts are chosen, success can only be gained by accounting for prey features. Model 5 (Purple),

interestingly, does not outperform the real fish in terms of success (3% worse) or average speed of

capture, and expends significantly more energy. Model 5 therefore issues high energy bouts (i.e.

bouts that strongly rotate and displace the fish), but without any average improvement over what

the fish actually did, owing to the high velocity of the average prey item (Figure 3—figure supple-

ment 1A). Model 6 (Gold), however, by accounting for prey velocity and choosing ideally, improves

success rate over Model 1 (Real Fish) and 5 (Ideal Position) by 14% and 17%, reduces the average

number of required bouts by 1, and more effectively reduces Post-Bout Prey Az and Alt to the

strike-zone (Figure 4C, bottom panels). Nevertheless, Model 6 expends the most energy of any

model per hunt sequence, meaning that fully ideal choice comes at an energetic cost.

We therefore conclude that position perception improves performance over issuing random pur-

suit bouts with no reference to the prey, and that velocity information in all formats improves model

performance over position perception alone. Of note, the high energy usage of the ideal models rel-

ative to the real fish argues against the natural implementations of these seemingly optimal strate-

gies. Lastly, although the real fish takes fewer bouts to reach the target than the regression models

(#2, #3), it requires slightly more total energy to do so. This implies that a modicum of additional

energy is expended per bout, and we speculate that the generation of stochasticity in the real fish’s

algorithm (described below) is to blame.

Pre-Bout to Post-Bout prey
coordinate transformation reveals
a canonical hunting strategy
We next wondered which of the numerous prey

capture strategies observed in nature arises from

the rules implemented in Figures 2 and 3. For

example, a strategy of immediately zeroing the

angle of attack is used by many predators and is

called ‘pure pursuit’. Other common strategies

include ‘deviated pursuit’, where a constant

angle of attack is maintained throughout the

hunting sequence. We find that larval zebrafish

use neither of the two, but rather reduce Prey

Az and Prey Alt by a factor of 0.5 at each bout.

In the first two panels of Figure 5A (blue and

yellow), the post bout angle of attack is plotted

against the pre bout angle, and a constant ratio

of ~0.5, regardless of prey velocity direction, is

apparent in the slopes of the regression lines.

This strategy of reducing prey angle in both

planes to a fixed proportion on each bout is

Video 2. Virtual prey capture simulation environment.

Each model from Figure 4 begins at the same position

and orientation and is given the task of hunting the

same paramecium trajectory. In this representative hunt

sequence, every model except the Random Choice and

Multiple Regression (Position Only) models consume

the prey (indicated by red STRIKE flash). As is typical in

the simulations, the Ideal Choice (Position) model lags

the Ideal Choice (Velocity) model by one bout.

https://elifesciences.org/articles/51975#video2
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schematically depicted in Figure 5B and Figure 5—figure supplement 1. Notably, when prey are

below the fish, the slope changes to 0.9, meaning that the fish is only getting 10% closer in altitude

per bout. This poor performance for negative Prey Alt is consistent with our observation that hunt

initiations are triggered almost exclusively by prey located above the fish. In fact, 92.4% of all bouts

in our dataset occur when prey are above 0˚ Alt (Figure 5—figure supplement 2).

Next, we analyzed how much the radial distance to the prey object is reduced as a consequence

of each pursuit bout. We find that on average fish become 16% closer to the prey per bout, or in

other words, the Prey Distance is scaled by 0.84 at every iteration. This reduction, however, is signifi-

cantly less for prey objects that move radially away from the fish (0.87) versus when prey move

toward it (0.81; Figure 5A, light red vs dark red regression fits), which is consistent with the fact that

the fish does not modulate Bout Distance based on radial prey velocity when prey are further than 2

mm away (see Figure 3C). However, once prey are maneuvered to within 2 mm, radial velocity is

taken into consideration and the two fits converge on similar outcomes. Importantly, 69% of pursuit

bouts occur when prey are 0–2 mm from the fish, indicating that Bout Distance is typically modu-

lated by radial prey velocity, and that fish can most often achieve a preferred Post-Bout Prey Dis-

tance after a bout is completed.

To summarize, because fish account for prey velocity in all directions (Figure 3), they are on aver-

age capable of achieving a fixed proportional reduction of Prey Az, Alt, and Dist during pursuit

bouts. These proportions are consistent from the beginning to the end of hunting sequences

(Figure 5C); therefore, this data reflects a ‘deterministic recursive algorithm’ for prey capture: The

fish recursively transforms current prey coordinates into more favorable prey coordinates by a fixed

scale factor in all planes until the strike zone is attained (Figure 5D).

Graded stochasticity in Pre-Bout to Post-Bout prey coordinates benefits
hunting efficiency
Interestingly, we noticed a clear graded increase in variance of the post-bout coordinate in all spher-

ical planes as pre-bout coordinates trended away from the strike zone (Figure 5A, Figure 6A left

panels, Figure 6—figure supplement 1). This suggested to us that the fish is implementing a sto-

chastic recursive algorithm rather than the deterministic recursion described in Figure 5D.

In order to capture the stochasticity of pre-bout to post-bout prey transforms made by zebrafish

during pursuit, we chose to use probabilistic generative models (Dirichlet Process Mixture Models:

‘DPMMs’). These models are Bayesian, non-parametric models which avoid the key problem in the

statistical modeling field of having to arbitrarily specify the number of variables that best character-

izes your data (Gershman and Blei, 2012). They can be thought of as ‘probabilistic programs’ that

accurately mimic fish choices given a particular pre-bout prey coordinate (Goodman et al., 2008;

Mansinghka et al., 2015; Cusumano-Towner et al., 2019). Using this framework, we sought to

uncover whether a stochastically implemented version of the recursive hunting algorithm was benefi-

cial to the fish. To that end, we pitted a stochastic algorithm defined by our Bayesian model against

the deterministic algorithm (5D) and compared performances of both models to each other and to

the performance of the real fish (Figure 6B). Remarkably, the stochastic model outperformed the

deterministic model in terms of capture speed (# Bouts to Capture, Figure 6B; Wilcoxon signed

rank = 7.5 * 10�17). This suggested that the fish’s strategy of graded stochastic transforms centered

on a preferred post-bout value is actually beneficial versus accurately achieving a fixed, preferred

post-bout value. Moreover, although everything except initial prey position has been abstracted

away, the performance of the stochastic model approaches that of the real fish (Figure 6B, right

panel).

To confirm that graded stochasticity in our Bayesian model was responsible for its increased prey

capture speed, we simply injected proportional noise into deterministic bout choices and asked

whether we could speed up prey capture (Figure 6C,D). This was clearly the case (Wilcoxon Signed

Rank: 1.87 * 10�9 azimuth, 3.96 * 10�14 distance); common scenarios that we observed in these sim-

ulations are illustrated in Figure 6C. The deterministic algorithm definitively achieves the strike zone

in a fixed number of transforms (Figure 6C, top), but injecting proportional noise can either directly

improve on deterministic choices (‘Beneficial’ panel, 6C), start poorly but then recover and outpace

deterministic choices (‘Recovery’, 6C), or perform detrimentally (‘Detrimental’, 6C). Nevertheless,

the average performance when injecting proportional noise is typically equivalent or better by one

bout (Figure 6D). Given that successful hunts in our dataset had an interquartile range of 4 to 7 total
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bouts, improving by one bout constitutes an average 14–25% gain in capture speed. We therefore

conclude that the fish’s graded stochasticity produces performance that is curiously beneficial to the

fish while hunting prey.

A)

0 10 20 30 40 50 60 70

Prebout Prey Alt [°]

−60

−40

−20

0

20

40

60

80

100

P
o

st
b

o
u

t 
P

re
y

 A
lt

 [
°]

  0 .52x  +  9 . 4 9 ,  r 2  =  0 . 2 2
  0 .59x  +  6 . 3 4 ,  r 2  =  0 . 3 0

C)

D)

−80 −60 −40 −20 0 20 40 60 80
−100

−75

−50

−25

0

25

50

75

100

  0 .51 x  +  0 . 5 ,  r  =  0 . 3 7

  0 .55 x  +  0 . 3 2 ,  r 2  =  0 . 4 2
2

0 1 2 3 4 5 6
0

1

2

3

4

5

6   

0 .81 x  +  -0 . 0 4 ,  r 2  =  0 . 9 2

 

 0 .87 x  +  -0 . 0 2 ,  r 2  =  0 . 9 4

Prebout Prey Az [°]

P
o

st
b

o
u

t 
P

re
y

 A
z 

[°
]

Prebout Prey Dist [mm]

P
o

st
b

o
u

t 
P

re
y

 D
is

t 
[m

m
]

Bouts 1-3 Bouts 4-6 Bouts 7+All Bouts

S
lo

p
e

0.0

0.4

0.8

α
0

α
1

α
2

α
3

 α
N-1  

2
α

N  
~~

function PREYCAPTURE(prey_coordinate, bout_counter) returns bout_counter, the number of bouts required for capture

inputs: prey_coordinate, a percept of the current prey in spherical coordinates

bout_counter, the number of bouts the agent has performed since hunt initiation 

if STRIKE(prey_coordinate):

bout_counter ß bout_counter + 1
return bout_counter

else: ** replace DETERMINISTIC_TRANSFORM(prey_position) 

prey_coordinate ß DETERMINISTIC_TRANSFORM(prey_position)  with STOCHASTIC_TRANSFORM(prey_position) to sample DPMM

bout_counter ß bout_counter + 1 (see Figure 6), which implements graded variance 

PREYCAPTURE(prey_coordinate, bout_counter)

B)

Figure 5. A cannonical ’halving’ strategy emerges. (A) Regression plots showing relationships between pre-bout prey coordinates and post-bout prey

coordinates. Dark colors, prey are moving toward the fish. Light colors, prey are moving away from the fish. 95% CI on azimuth transforms’ y-intercept

includes 0˚. Top right panel fit on all distances < 6 mm (see Figure 3C). (B) Schematic showing recursive halving of the angle of attack during pursuit.

(C) Regression slopes are constant across the hunt sequence; color coded to 5A. (D) Pseudocode describing the recursive prey capture algorithm that

transforms according to 5A until it arrives at the strike zone. The combined (both velocity directions) distance transform is .84 * Pre-Bout Prey Dist -.

0125 mm = Post Bout Prey Dist. The azimuth transform is .53 * Pre-Bout Prey Az = Post Bout Prey Az. The altitude transformation is .54 * Pre-Bout Prey

Alt + 8.34˚ = Post Bout Prey Alt. Implementing these equations recursively will terminate the algorithm at 18.1˚ Prey Alt (since .54 * 18.1˚ + 8.34˚ = 18.1˚)

and 0˚ Prey Az (.53 * 0˚ = 0˚), which aligns precisely with the strike zone described in Figure 2B. See Appendix for full pseudocode of all sub-functions.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Schematic showing that the fish will reduce the post-bout angle of attack to the same value regardless of whether prey is

moving towards or away from the fish (see Figure 5A).

Figure supplement 2. Regression fits between Pre-Bout and Post-Bout Prey Alt differ depending on whether prey altitude is positive or negative

before the bout.

Figure supplement 3. Transformation by the initiation bout of Pre-Bout to Post-Bout Prey Az and Alt.
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Figure 6. Graded stochasticity in sensorimotor transformations improves hunting performance. (A) KDE plots of post-bout variable distributions for pre-

bout input coordinates described in the legend, color-coded to the KDEs (i.e. the blue KDE in Az is the distribution of all Post-Bout Prey Az given that

Pre-Bout Prey Az is 5˚). Real data is binned in 5˚ windows for angles and. 25 mm bins for distance. DPMM-generated post-bout variables are directly

simulated from the model 5000 times, conditioned on the pre-bout value in the legend. (B) The median performance of the DPMMs embedded in a

recursive loop (stochastic recursion algorithm; run 200 times per initial prey position) typically ties or outperforms the deterministic recursion model,

which transforms with the same pre-bout to post-bout slopes as the DPMMs. Pink line is the performance of the real fish. Right panel: KDE plot of data

from 6A, showing that the stochastic algorithm approaches the speed of the real fish. (C, D) A Graded Variance Algorithm where proportional noise is

injected into each choice (equations below) is applied 500 times per initial distance (0.1 mm to 10 mm, .1 mm steps) or azimuth (10˚ to 200˚ in steps of

2˚). Termination condition is a window from. 1 mm to 1 mm for distance, �10˚ to 10˚ for azimuth (see Appendix for full algorithm). Deterministic

Figure 6 continued on next page
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Discussion
In our study, we uncovered three basic rules that larval zebrafish implement while hunting their fast-

moving prey: 1) prey position linearly governs the aspects of five degrees of freedom in which fish

can rotate or translate through the water: rotation in yaw and pitch, as well as lateral, vertical and

radial displacement; 2) prey velocity modulates all of these aspects of 3D motion and allows the fish

to project prey position forward in time; and 3) prey coordinate transformation operates via graded

variance based on prey proximity to the strike zone. The first two rules are interesting, since their 3D

features and specific contingencies have not been examined in zebrafish, and it certainly was not

clear that position prediction was already implemented at the larval stage. This general strategy of

using velocity to increase prey capture efficiency, however, is implemented in many hunting organ-

isms such as dragon flies and salamanders (e.g. Borghuis and Leonardo, 2015), while superposition

of position and motion information has been observed in Drosophila (Bahl et al., 2013). The third

rule, which describes the benefits of stochasticity in these hunting algorithms has, to our knowledge,

not been described in any trajectory prediction assay to date.

As we show, the aforesaid rules work in tandem to generate excellent, energy efficient perfor-

mance in prey capture (Figures 4 and 6), which is the most complex behavior that larval zebrafish

perform and would appear to require elements of physical knowledge. We focus our discussion on

how these rules apply to related studies on the neural mechanisms of prey capture, how examining

prey capture at two levels of abstraction was beneficial to our study, and how the fish’s algorithms

appear to be built around the inherent constraints of its own body.

From algorithms to neurobiology
With respect to the neural implementations of the algorithms we describe, the transformation of

angular prey position into informative neural activity is encapsulated to a large extent by the abun-

dant research related to retinotopic maps (e.g. Sperry, 1963; Apter, 1946; Muto et al., 2013; but

see Avitan et al., 2016). The encoding of distance to an object has been well studied in mammalian

visual neuroscience and is primarily focused on binocular disparity allowing stereoscopic comparison

of each eye’s retinotopic map (DeAngelis et al., 1998), with some studies focusing on monocular

motion parallax (e.g. Nadler et al., 2008). Neuronal encoding of object speed, however, requires

more sophisticated circuitry and much less is known about its implementation during prey capture.

Speed sensitive neurons that discriminate between ‘fast’ and ‘slow’ prey-like stimuli have been

uncovered in the zebrafish optic tectum (Bianco and Engert, 2015), while ‘small field’ tectal neurons

that respond to velocity have been found in toads (Ewert, 1987).

Unlike these and other reports studying velocity during prey capture (Trivedi and Bollmann,

2013; Patterson et al., 2013; Monroy and Nishikawa, 2011), we specifically contend that velocity

perception is used to point-estimate a future prey position, and that the fish conducts bouts to

achieve this estimate, on average, by biasing their prey position-controlled movements. We show

that the perception and projection of velocity is key to prey capture success, and that without it, the

azimuth and altitude coordinates of prey after bouts are less likely to lie near the strike zone (Fig-

ure 4). This type of predictive use of velocity is reminiscent of elegant behavioral studies that have

illustrated trajectory prediction in salamanders and dragonflies (Mansinghka et al., 2015;

Borghuis and Leonardo, 2015). Quantitative descriptions of such complex algorithms are an

Figure 6 continued

recursion algorithm (Figure 5D) is also run on each initial azimuth and distance with .53 * az for azimuth and .84 * dist - .0125 mm as the fixed

transforms. Graded Variance uses these exact transforms as the mean while injecting graded noise: sd = 0.137 * dist + 0.034 mm; saz = .36 * az + 7.62˚,

which were fit using linear regression on samples generated by our Bayesian model (6B). (C) shows examples of Graded Variance performance

(‘stochastic’) vs. deterministic performance for an example start distance of 3.8 mm. (D) is a barplot comparing the deterministic performance for each

input distance and azimuth to the median Graded Variance (‘stochastic’) performance where we directly injected noise. Average performance using

noise injection typically ties or defeats deterministic choices by one bout.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Generators for BayesDB simulations.

Figure supplement 1. Standard deviation is plotted for each individual fish per five degree bin of prey space, indicating that graded stochasticity is not

simply observed in the pooled bout population, but at the level of single fish.
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absolute necessity for generating hypotheses about neural implementations (Marr, 1982), and vir-

tual prey capture setups for head fixed larvae provide promising inroads for testing our work at the

neural level (Bianco and Engert, 2015; Avitan et al., 2016; Trivedi and Bollmann, 2013). Relatedly,

monkeys also predict future locations of virtual prey using Newtonian physical attributes in a very

similar paradigm to that shown here. In the monkey brain, these attributes are all reflected by neural

activity in the dorsal anterior cingulate, which has no known homolog in the zebrafish, nor in other

simple animals that use predictive prey models (Yoo et al., 2019). This suggests that in more primi-

tive organisms the necessary computations are executed in earlier evolved brain areas which also

might play an essential role in the primate.

The stochasticity that gives rise to the graded variance we describe can have several biological

sources. It will be important to unravel whether the neural command signals arriving at muscles grow

in variance with increased amplitude or if instead the muscles receive fixed input from the brain for a

given prey condition, but themselves respond with graded noise. If the source of the variance is

largely of a neuronal nature, then it would be interesting to study where exactly in the pathway from

sensory areas to motor neurons such noise starts to appear (Stern et al., 2017). Further elucidation

of the fish’s probabilistic strategy should eventually integrate our findings into more general theories

describing the utility of noisy biological behavior (see Jensen, 2018; Wiesenfeld and Moss, 1995,

for review) and intentionally probabilistic circuit structures for solving computational problems

(Mansinghka et al., 2008).

Strategic behavior arises from simple behavioral rules
The stochastic recursive algorithm in Figure 6 describes the progression of pre-bout to post-bout

prey coordinates without explicitly accounting for prey velocity or specifically executing fish move-

ments. This transformation pattern, which reveals a preferred future prey position and thus a trajec-

tory prediction ability, emerges from the execution of the position and velocity-based rules

described in Figures 2 and 3. Zebrafish prey capture in Figure 6C has, in fact, been reduced to a

single input and a recursive series of stochastic divisions with a termination condition, which largely

recapitulates the performance of the fish (Figure 6B, DPMM). It is unlikely that we would have found

such a straightforward description of proportionality and stochasticity at the lower level of abstrac-

tion (i.e. in the fish’s actual sensorimotor transformations), because pre-bout to post-bout prey trans-

formation is a formulation of fish movements along five different axes acting simultaneously.

Describing prey capture in this way allowed us to assess the goals of the fish on each bout (i.e.

Marr, 1982), revealed that the fish possess an implicit model of how objects move in the world, and

may lead to descriptions about how fish are evaluating their own performance during prey capture.

With regard to the benefits of the zebrafish’s strategy, the proportional reduction of angle and

distance saves energy at the expense of speed (Figure 4). Ideal bout choice improved speed of prey

capture in our modeling data (Figure 4, Model 6); but it did so at the price of spending almost twice

as much energy per paramecium captured. This suggests that the increase in feeding rate that the

ideal model would afford seems not to be essential for providing an adaptive advantage. Interest-

ingly, the inherent stochasticity in the algorithm significantly improves the speed of capture (Fig-

ure 6) while adding only a modicum of energy expenditure (Figure 4: comparison of Real Fish

Model 1 vs. deterministic regression Model 3). This suggests that the fish has evolved a proper bal-

ance between energy expenditure and speed of capture. On the whole, the evolution of an efficient

algorithm for prey capture in the zebrafish is in agreement with the theme of efficient behaviors aris-

ing from simple rules. However, quantifying the fish’s overall energy consumption in a context where

they often quit is difficult: energy consumption should therefore be revisited, incorporating work on

the decay of the prey capture algorithm in the last three pursuit bouts of aborted sequences (e.g.

Henriques et al., 2019; Johnson et al., 2019).

With respect to hunting schemes, predatory animals have evolved a variety of strategies to opti-

mize pursuit and intercept prey. Tiger beetles, for example, engage in pure pursuit where the angle

of attack is kept constant at zero degrees (Haselsteiner et al., 2014). Salamanders, on the other

hand, lead the trajectory of their prey (Borghuis and Leonardo, 2015). Dragonflies and falcons often

utilize a strategy of maintaining a constant line of sight which affords the benefit of motion camou-

flage (Kane and Zamani, 2014, Mizutani et al., 2003; but see Mischiati et al., 2015). Relevantly,

dragonflies also implement an implicit predictive model of their prey as well as a model of the

effects of their own body movements on prey drift, which foreshadowed the possible use of
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predictive models across animals with small brains (Mischiati et al., 2015). Larval zebrafish have

been assumed to engage in pure pursuit, the simplest and most heuristic of these strategies. How-

ever, we find that the strategy used by these animals is more complex and reflects an implicit predic-

tive model of where prey will be at a specified time in the future. Furthermore, the quantal nature of

the zebrafish’s swim bouts allowed us to uncover that the angle of attack is recursively and stochasti-

cally reduced by an average proportion until the prey enters a terminal strike zone.

Embodied physical knowledge
One branch of artificial intelligence research advocates against a central processing unit where rele-

vant computation occurs in favor of a distributed network of sensorimotor transformations, tuned to

the capabilities of the body, that can accomplish the goals of the system (Brooks, 1991). Our study

reinforces these sentiments and suggests that approaching the study of the brain without consider-

ing its embodiment may be precarious.

Specifically, interesting relationships in the data we provide suggest that the fish’s algorithms are

built around the capabilities and constraints of its body. First, the amount of ‘fixed noise’ in the fish’s

azimuth transformations is 7.64˚. This is the standard deviation of Post-Bout Prey Az given a Pre-

Bout Prey Az coordinate of 0˚, the minimum of graded stochasticity observed in Figure 6A. The

standard deviation of the strike zone itself is 7.2˚ in azimuth. We contend that the similarity between

these two numbers suggests that the fish’s strike zone is constructed to deal with noise that the fish

cannot overcome in its motor program. If the prey is at, for example, 5˚ azimuth, performing another

bout to get to the very center of the strike zone (~0˚ Az) would in many cases worsen the Post-Bout

Prey Az coordinate due to fixed noise. Perfection is the enemy of good in this case. In this sense, the

command to end pursuit and issue a strike is triggered by a visual releasing stimulus that evolved

due to the fish’s own bodily constraints. This is akin to the idea of embodied cognition

(Maturana and Varela, 1987). Further evidence for embodied knowledge comes from the bias in

the fish’s responses to prey altitude. The fish’s algorithm for transforming prey altitude biases the

prey to ~18˚ above the fish, which aligns almost perfectly with the mean altitude coordinate at which

they strike (17.4˚, Figures 2, 3 and 5). The mechanics of the fish jaw necessitate this: to open its jaw

widely for paramecium entrance into the mouth, the fish must tilt its head up due to torsional con-

straints (Mearns et al., 2019). Therefore, the fish’s entire sensation of prey altitude and its method

of keeping the prey above it by biasing its bouts downward emerge from the way its jaw co-oper-

ates with the rest of its head. Also of note is that graded variance is minimal for altitude transforma-

tions at Pre-Bout Alt = 20˚ (Figure 6A), whereas the azimuth minimum is at 0˚; this is also likely a

function of its jaw features, which allows the least motor noise when the prey are located in the ideal

strike position.

Finally, it is tempting to speculate that, in addition to possessing an implicit model of how objects

move, the zebrafish is also equipped with a second forward model that predicts how its own body

movements should give rise to expected sensory input (Figure 5). One way to determine the exis-

tence of this model is to test whether fish can adjust the gain of their movements in settings where

they do not consistently achieve their preferred post-bout outcomes (i.e. Ahrens et al., 2012).

All things considered, the implicit predictive model of 3D prey motion shown in this study is: 1)

embodied by the fish’s stochastic recursive algorithm 2) shaped by the constraints and capabilities

of the fish and 3) formulated by the interaction of three simple rules. These rules transform position

of prey into fish movements, bias the vigor of fish movements based on prey velocity, and inject pro-

portional noise into each sensorimotor transformation. Importantly, these more nuanced features of

the fish’s hunting algorithm would not have been revealed without examining prey capture in its

more naturalistic 3D setting, which we believe has laid a groundwork for future studies examining

the ontogeny, plasticity, and neural implementation of prey capture algorithms and physical knowl-

edge in general (e.g. Avitan et al., 2017).

Materials and methods

Key resources table

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Software, algorithm BayesDB arxiv arxiv:1512.05006 http://probcomp.csail.mit.
edu/software/bayesdb/

Strain, strain
background
(Danio rerio)

WIK ZFIN ZFIN_ZDB-GENO-010531–2

Animals
Experiments were conducted according to the guidelines of the National Institutes of Health and

were approved by the Standing Committee on the Use of Animals in Research of Harvard University.

All experiments were performed on dpf 7–8 larval zebrafish of the WIK strain. Fish were raised in an

automated system where they were delivered paramecia twice a day from dpf4 onward. Importantly,

fish in the system experienced a full range of paramecium movement due to the height of the water

in their home tank (~6’). Fish were fasted for 4–6 hr before experiments.

Behavioral setup
After the fasting period, fish were added with ~100 paramecia (Paramecia Multimicronucleatum) in

the dark to a 2 cm x 2 cm x 2 cm cube tank made of clear acrylic capped with coverglass. 3.56 mega-

pixel images were simultaneously acquired from the top and side of the tank using two Point Grey

Grasshopper 3 NIR cameras; the cameras were synchronized by a TTL pulse triggered by a Pyboard

microcontroller at 62.5 Hz. Custom acquisition code was written using C# with the EmguCV library

for high-speed video-writing.

Camera positions were calibrated by using known reference points (i.e. body features of the fish)

for the shared plane of the cameras. Identification of known object positions in both planes was

extremely accurate (~200 micron mean error), calculated by average position of the fish’s eye center

in both cameras over all experiments. This allowed accurate reconstruction of 3D prey and fish fea-

tures (see below).

For the duration of the experiment, fish were illuminated with an infrared LED array, and after 2

min in the dark, fish were exposed to a uniform white LED which commenced prey capture. Fish

hunted in the white light illuminated condition for 8 min before the experiment was terminated. Fish

that did not consume more than one paramecium over the 8 min experiment were discarded for

analysis (46/53 fish passed this criteria).

Behavioral analysis
Custom Python software using the OpenCV library was written to extract the body features of the

fish (eye convergence angle, tail curvature, yaw, 3D position) and the position of each paramecium

in the XY and XZ planes. Pitch was calculated by taking the 2D vertical angle in the side camera and

fitting a cone to the fish using the yaw angle from the top camera. The tail angle of the fish was fed

to a bout detection algorithm that returned frames where swim bouts were initiated and terminated

using tail angle variance and bout velocity.

Hunt sequences were identified by spectral clustering (scikit-learn) the continuous eye angle of

both eyes over each swim bout for all fish into five clusters. One of the five clusters showed clear

convergence of both eyes at bout initiation (‘hunt initiation cluster’), while a second cluster showed

clear deconvergence (‘hunt termination cluster’, see Figure 1—figure supplement 1A). Custom

annotation software cycled through frames marked as hunt initiations and allowed the user to termi-

nate hunt sequences on frames where the fish consumed its prey or clearly quit hunting. Most hunt

terminations coincided with the hunt termination cluster.

Upon identifying the frame boundaries of hunt sequences, a 3D prey trajectory reconstruction

algorithm was applied that matched prey discovered in the two separate cameras. This is a nontrivial

task because the two cameras only overlap in one axis; any two prey items that share similar values

in the overlapping plane must be separated using dynamics in time. We therefore matched prey
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trajectories from the top and side using correlation of velocity profiles and post-hoc 3D position sim-

ilarity. In this way, each prey item is assigned an ID for a given hunt sequence; the user is required to

specify the prey ID that is struck at on strikes, and the ‘best guess’ prey ID that fish pursue during

abort sequences. All prey trajectories for each hunt sequence are mapped to a spherical coordinate

system based on unit vectors fit from the fish’s XYZ position, pitch, and yaw, with its origin at the

fish’s oral cavity. Manual quality control for mistakes in fish characterization or prey reconstruction

was applied rarely by eliminating hunt sequences from analysis showing clear mistakes from the

computer vision algorithms.

Regression fitting and modeling environment
All regression models were fit with Generalized Linear Model tools using the Python StatsModels

package. When regression fits are shown in figures, we used the Seaborn library in Python, and 95%

CIs for fits are represented as light shaded regions behind the regression line.

Ideal choice models used in the Virtual Prey Capture Simulation Environment cycled through

bouts combined in a ‘bout pool’ from all 46 zebrafish that were performed during sequences that

ended in a strike. Each bout during Choice was pre-filtered for bout duration before scoring for prey

closeness to the strike zone; ideal bouts could not be shorter than the bout chosen by the fish at

that juncture, and could not extend past the time of the next bout chosen by the fish.

Prey trajectories used in the modeling environment were selected from real capture sequences

where the fish struck at the prey and the prey was swimming (>330 microns per second; 89% of all

hunted prey records pass velocity criteria, which through inspection distinguishes swimming from

floating prey). All virtual hunt reconstructions were initiated with the virtual fish and prey items in the

exact same positions and orientations as when the real sequences were initiated. Energy consump-

tion in the virtual environment was calculated under the assumption that the head to center of mass

distance for a larval zebrafish is .53 mm (as measured in ImageJ) and the mass of the fish is 1 mg

(Avella et al., 2012). Rotational energy of yaw and pitch and kinetic energy of center of mass dis-

placement were added for each bout. Strike zone achievement was defined by the 95% CI on the

angular position of a prey item during successful strikes (Figure 2B), likewise conditioned on the

radial distance being less than two standard deviations from the mean.

Both regression and ideal models choose initiation bouts and pursuit bouts independently. The

first bout of regression models is fit on only initiation bouts, and the first bout of choice models is

chosen from the pool of all initiation plus pursuit bouts. This is largely because initiation bout trans-

formations are significantly different from pursuits (Figure 5—figure supplement 3).

Abstracted models and Bayesian nonparametric methods
Pseudocode describing the transformations of pre-bout to post-bout paramecium locations (Appen-

dix, Figure 5D) were written according to the method of Russell and Norvig (2010). The Appendix

contains all pseudocode required to implement the deterministic and stochastic choices made in

Figures 5 and 6.

We inferred mixture models in Figure 6 from empirical data (Pre-Bout Prey Az, Alt, Dist and

Post-Bout Prey Az Alt, Dist for all pursuit bouts in the dataset) using a non-parametric Bayesian prior

called a Dirichlet Process Mixture Model (DPMM) (Rasmussen, 1999; Antoniak, 1974;

Mansinghka et al., 2016). In order to accurately reflect realistic, stochastic pre-bout to post-bout

transformations, our model choice had to be multivariate, heteroskedastic, and include multi-modal

probability distributions over pursuit choices. While our linear parametric models (Figure 5A) cap-

tured the average transformation made by the fish in multiple velocity conditions, analytically tracta-

ble model families are unable to qualitatively capture the above phenomena. DPMMs can

approximate a broad class of multivariate distributions without requiring a priori specification of the

number of components in the mixture model. The mixture models generated via a DPMM prior can

be converted to probabilistic programs for inference to generate the kinds of conditional simulations

used in Figure 6 (Saad et al., 2019). In this representation, each pre-bout to post-bout prey trans-

formation made by a zebrafish can be thought of as arising from a program that first chooses a pro-

totypical transform (corresponding to a component in the mixture), and then generates a random

transform from a distribution over transforms associated with the prototype. We used the BayesDB

software library (Mansinghka et al., 2015; Saad and Mansinghka, 2016) to implement the
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computations needed to build these models and generate conditional simulations. BayesDB simula-

tions were embedded inside a recursive loop that take an initial prey position as input and output

the number of bouts until striking (see PREYCAPTURE algorithm in Figure 5D with STOCHASTIC_-

TRANSFORM substitution). When comparing deterministic and stochastic models in Figure 6, the

initiation bout for both models was equal and deterministic; only pursuit bouts differed between

deterministic and DPMM models. The deterministic model transformed using the average slopes of

10,000 samples generated from the DPMMs to isolate stochastic effects. For validation of noise

injection in Figure 6C and D, the GRADED_VARIANCE algorithm in the Appendix was used.

Data and software availability
All software related to behavioral analysis, modeling, and virtual prey capture simulation is freely

available at www.github.com/larrylegend33/PreycapMaster (copy archived at https://github.com/

elifesciences-publications/PreycapMaster; Bolton, 2019). The software is licensed under a GNU

General Public License 3.0. Source data for analysis and simulations is enclosed as ‘Source Data’ in

relevant figures. Source Data for Figure 2 contains all pursuit bouts analyzed in the dataset; it was

used to construct Figures 2, 3, 5 and 6A, and is accompanied by instructions for running queries.

Source Data for Figure 6 contains the generators for simulating from the DPMMs in Figure 6. Using

the code at www.github.com/larrylegend33/PreycapMaster and the generators in Source Data – Fig-

ure 6 requires obtaining the BayesDB software package, which is freely available at http://prob-

comp.csail.mit.edu/software/bayesdb/.
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Appendix 1

function STRIKE(prey_coordinate) returns true if prey in strike zone and false otherwise
inputs: prey_coordinate, a percept of the current prey position
local variables: strikezone, 95% CI of strike probability based on 2B norm fits, or bounds of a

fixed window for single coordinate
if prey_coordinate in strikezone then return true
else return false

function ALT_COEFFS(prey_alt) returns alt_coefficients, a list containing a slope and
y-intercept for deterministic transform of alt coordinates

inputs: prey_alt, a percept of the current altitude of the prey item
local variables: alt_slope | prey_alt_positive = .54

alt_yint | prey_alt_positive = 8.34o

alt_slope | prey_alt_negative = .92
alt_yint | prey_alt_negative = 7.03 o

if prey_alt > 0, then return [alt_slope | prey_alt_positive, alt_yint | prey_-
alt_positive]

else return [alt_slope | prey_alt_negative, alt_yint | prey_alt_negative]

from
Figure 5B

function DETERMINISTIC_TRANSFORM(prey_coordinate) returns new_prey_coordinate,
inputs: prey_coordinate, a percept of the current spherical prey coordinate as a

list [‘az’, ‘alt’, ‘dist’]
local variables: az_slope = .53

alt_slope
alt_yint from Figure 5A
dist_slope = .84
dist_yint = -.0125 mm
new_prey_coordinate, the new spherical prey position after

transform
alt_slope, alt_yint  ALT_COEFFS(prey_position[‘alt’])
new_prey_coordinate  [prey_coordinate[‘az’] * az_slope,

prey_coordinate[‘alt’] * alt_slope + alt_yint,
prey_coordinate[‘dist’] * dist_slope + dist_yint]

return new_prey_coordinate

from
Figure 5A

function PREYCAPTURE(prey_coordinate, bout_counter) returns
bout_counter, the number of bouts required for capture

inputs: prey_coordinate, a percept of the current prey in
spherical coordinates

bout_counter,the number of bouts the agent
has performed since hunt initiation

if STRIKE(prey_coordinate):
bout_counter  bout_counter + 1
return bout_counter

else:

prey_coordinate  DETERMINISTIC_TRANSFORM(prey_posi-
tion)

bout_counter  bout_counter + 1
PREYCAPTURE(prey_coordinate, bout_counter)

** replace DETERMINISTIC_TRANS-
FORM(prey_position)
with STOCHASTIC_TRANSFORM

(prey_position) to sample DPMM
(see Figure 6), which implements

graded variance
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function GRADED_VARIANCE(prey_coordinate, bout_counter, dist_or_angle) returns bout_counter, the
number of bouts required for capture

inputs: prey_coordinate, a percept of the current prey position in spherical coordinates
bout_counter, the number of bouts the agent has performed since hunt initiation
dist_or_angle, string representing whether input is a distance or an azimuth angle

local_variables:
m a value representing the average transform
s the standard deviation of the average transform that decreases with proximity to the strike

zone
if STRIKE(prey_coordinate):

bout_counter  bout_counter + 1
return bout_counter

else:
if dist_or_angle == ‘angle’:

m 53* prey_coordinate
s  .36 * prey_coordinate + 7.62˚

if dist_or_angle == ‘distance’:
m 84* prey_coordinate - .0125 mm
s  0.137 * prey_coordinate + 0.034 mm

prey_coordinate  GAUSSIAN_DRAW(m, s)
bout_counter  bout_counter + 1
GRADED_VARIANCE(prey_coordinate, bout_counter, dist_or_ang)
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