Abstract

The use of non-viral vectors for in vivo gene therapy could drastically increase safety, whilst reducing the cost of preparing the vectors. A promising approach to non-viral vectors makes use of DNA/cationic liposome complexes (lipoplexes) to deliver the genetic material. Here we use coarse-grained molecular dynamics simulations to investigate the molecular mechanism underlying efficient DNA transfer from lipoplexes. Our computational fusion experiments of lipoplexes with endosomal membrane models show two distinct modes of transfection: parallel and perpendicular. In the parallel fusion pathway, DNA aligns with the membrane surface, showing very quick release of genetic material shortly after the initial fusion pore is formed. The perpendicular pathway also leads to transfection, but release is slower. We further show that the composition and size of the lipoplex, as well as the lipid composition of the endosomal membrane, have a significant impact on fusion efficiency in our models.

Data availability

All raw data of fusion experiments and analysis software amount to TBs of data, so are available upon request. A data package has been prepared and deposited to Dryad, under the DOI 10.5061/dryad.fqz612jq4

The following data sets were generated

Article and author information

Author details

  1. Bart Marlon Herwig Bruininks

    Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5136-0864
  2. Paulo C T Souza

    Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
    Competing interests
    No competing interests declared.
  3. Helgi Ingolfsson

    Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
    Competing interests
    No competing interests declared.
  4. Siewert-Jan J Marrink

    Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
    For correspondence
    s.j.marrink@rug.nl
    Competing interests
    Siewert-Jan J Marrink, S.J.M acknowledges funding from the ERC through an Advanced grant COMP-MICR-CROW-MEM".".
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8423-5277

Funding

H2020 European Research Council (COMP-MICR-CROW-MEM)

  • Siewert-Jan J Marrink

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Michael M Kozlov, Tel Aviv University, Israel

Version history

  1. Received: September 20, 2019
  2. Accepted: February 24, 2020
  3. Accepted Manuscript published: April 16, 2020 (version 1)
  4. Version of Record published: April 17, 2020 (version 2)

Copyright

© 2020, Bruininks et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,020
    views
  • 744
    downloads
  • 41
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Bart Marlon Herwig Bruininks
  2. Paulo C T Souza
  3. Helgi Ingolfsson
  4. Siewert-Jan J Marrink
(2020)
A molecular view on the escape of lipoplexed DNA from the endosome
eLife 9:e52012.
https://doi.org/10.7554/eLife.52012

Share this article

https://doi.org/10.7554/eLife.52012

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Weichen Song, Yongyong Shi, Guan Ning Lin
    Tools and Resources

    We propose a new framework for human genetic association studies: at each locus, a deep learning model (in this study, Sei) is used to calculate the functional genomic activity score for two haplotypes per individual. This score, defined as the Haplotype Function Score (HFS), replaces the original genotype in association studies. Applying the HFS framework to 14 complex traits in the UK Biobank, we identified 3619 independent HFS–trait associations with a significance of p < 5 × 10−8. Fine-mapping revealed 2699 causal associations, corresponding to a median increase of 63 causal findings per trait compared with single-nucleotide polymorphism (SNP)-based analysis. HFS-based enrichment analysis uncovered 727 pathway–trait associations and 153 tissue–trait associations with strong biological interpretability, including ‘circadian pathway-chronotype’ and ‘arachidonic acid-intelligence’. Lastly, we applied least absolute shrinkage and selection operator (LASSO) regression to integrate HFS prediction score with SNP-based polygenic risk scores, which showed an improvement of 16.1–39.8% in cross-ancestry polygenic prediction. We concluded that HFS is a promising strategy for understanding the genetic basis of human complex traits.

    1. Computational and Systems Biology
    Qianmu Yuan, Chong Tian, Yuedong Yang
    Tools and Resources

    Revealing protein binding sites with other molecules, such as nucleic acids, peptides, or small ligands, sheds light on disease mechanism elucidation and novel drug design. With the explosive growth of proteins in sequence databases, how to accurately and efficiently identify these binding sites from sequences becomes essential. However, current methods mostly rely on expensive multiple sequence alignments or experimental protein structures, limiting their genome-scale applications. Besides, these methods haven’t fully explored the geometry of the protein structures. Here, we propose GPSite, a multi-task network for simultaneously predicting binding residues of DNA, RNA, peptide, protein, ATP, HEM, and metal ions on proteins. GPSite was trained on informative sequence embeddings and predicted structures from protein language models, while comprehensively extracting residual and relational geometric contexts in an end-to-end manner. Experiments demonstrate that GPSite substantially surpasses state-of-the-art sequence-based and structure-based approaches on various benchmark datasets, even when the structures are not well-predicted. The low computational cost of GPSite enables rapid genome-scale binding residue annotations for over 568,000 sequences, providing opportunities to unveil unexplored associations of binding sites with molecular functions, biological processes, and genetic variants. The GPSite webserver and annotation database can be freely accessed at https://bio-web1.nscc-gz.cn/app/GPSite.