Distinct inactive conformations of the dopamine D2 and D3 receptors correspond to different extents of inverse agonism

  1. J Robert Lane  Is a corresponding author
  2. Ara M Abramyan
  3. Pramisha Adhikari
  4. Alastair C Keen
  5. Kuo-Hao Lee
  6. Julie Sanchez
  7. Ravi Kumar Verma
  8. Herman D Lim
  9. Hideaki Yano
  10. Jonathan A Javitch  Is a corresponding author
  11. Lei Shi  Is a corresponding author
  1. University of Nottingham, United Kingdom
  2. National Institute on Drug Abuse, National Institutes of Health, United States
  3. Monash University, Australia
  4. Columbia University, United States

Abstract

By analyzing and simulating inactive conformations of the highly-homologous dopamine D2 and D3 receptors (D2R and D3R), we find that eticlopride binds D2R in a pose very similar to that in the D3R/eticlopride structure but incompatible with the D2R/risperidone structure. In addition, risperidone occupies a sub-pocket near the Na+ binding site, whereas eticlopride does not. Based on these findings and our experimental results, we propose that the divergent receptor conformations stabilized by Na+-sensitive eticlopride and Na+-insensitive risperidone correspond to different degrees of inverse agonism. Moreover, our simulations reveal that the extracellular loops are highly dynamic, with spontaneous transitions of extracellular loop 2 from the helical conformation in the D2R/risperidone structure to an extended conformation similar to that in the D3R/eticlopride structure. Our results reveal previously unappreciated diversity and dynamics in the inactive conformations of D2R. These findings are critical for rational drug discovery, as limiting a virtual screen to a single conformation will miss relevant ligands.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. J Robert Lane

    Division of Pharmacology, Physiology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
    For correspondence
    Rob.Lane@nottingham.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  2. Ara M Abramyan

    Computational Chemistry and Molecular Biophysics Unit, National Institute on Drug Abuse, National Institutes of Health, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Pramisha Adhikari

    Computational Chemistry and Molecular Biophysics Unit, National Institute on Drug Abuse, National Institutes of Health, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Alastair C Keen

    Division of Pharmacology, Physiology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Kuo-Hao Lee

    Computational Chemistry and Molecular Biophysics Unit, National Institute on Drug Abuse, National Institutes of Health, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Julie Sanchez

    Division of Pharmacology, Physiology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Ravi Kumar Verma

    Computational Chemistry and Molecular Biophysics Unit, National Institute on Drug Abuse, National Institutes of Health, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Herman D Lim

    Department of Pharmacology and Medicinal Chemistry, Monash University, Parkville, Australia
    Competing interests
    The authors declare that no competing interests exist.
  9. Hideaki Yano

    Computational Chemistry and Molecular Biophysics Unit, National Institute on Drug Abuse, National Institutes of Health, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Jonathan A Javitch

    Department of Psychiatry, Columbia University, New York, United States
    For correspondence
    jaj2@cumc.columbia.edu
    Competing interests
    The authors declare that no competing interests exist.
  11. Lei Shi

    Computational Chemistry and Molecular Biophysics Unit, National Institute on Drug Abuse, National Institutes of Health, Baltimore, United States
    For correspondence
    lei.shi2@nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4137-096X

Funding

National Institutes of Health (Z1A DA000606-03)

  • Lei Shi

National Institutes of Health (MH54137)

  • Jonathan A Javitch

National Health and Medical Research Council (APP1049564)

  • J Robert Lane

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Yibing Shan, DE Shaw Research, United States

Version history

  1. Received: September 25, 2019
  2. Accepted: January 24, 2020
  3. Accepted Manuscript published: January 27, 2020 (version 1)
  4. Version of Record published: March 3, 2020 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,143
    views
  • 348
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. J Robert Lane
  2. Ara M Abramyan
  3. Pramisha Adhikari
  4. Alastair C Keen
  5. Kuo-Hao Lee
  6. Julie Sanchez
  7. Ravi Kumar Verma
  8. Herman D Lim
  9. Hideaki Yano
  10. Jonathan A Javitch
  11. Lei Shi
(2020)
Distinct inactive conformations of the dopamine D2 and D3 receptors correspond to different extents of inverse agonism
eLife 9:e52189.
https://doi.org/10.7554/eLife.52189

Share this article

https://doi.org/10.7554/eLife.52189

Further reading

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Katarzyna Marta Zoltowska, Utpal Das ... Lucía Chávez-Gutiérrez
    Research Article

    Amyloid β (Aβ) peptides accumulating in the brain are proposed to trigger Alzheimer’s disease (AD). However, molecular cascades underlying their toxicity are poorly defined. Here, we explored a novel hypothesis for Aβ42 toxicity that arises from its proven affinity for γ-secretases. We hypothesized that the reported increases in Aβ42, particularly in the endolysosomal compartment, promote the establishment of a product feedback inhibitory mechanism on γ-secretases, and thereby impair downstream signaling events. We conducted kinetic analyses of γ-secretase activity in cell-free systems in the presence of Aβ, as well as cell-based and ex vivo assays in neuronal cell lines, neurons, and brain synaptosomes to assess the impact of Aβ on γ-secretases. We show that human Aβ42 peptides, but neither murine Aβ42 nor human Aβ17–42 (p3), inhibit γ-secretases and trigger accumulation of unprocessed substrates in neurons, including C-terminal fragments (CTFs) of APP, p75, and pan-cadherin. Moreover, Aβ42 treatment dysregulated cellular homeostasis, as shown by the induction of p75-dependent neuronal death in two distinct cellular systems. Our findings raise the possibility that pathological elevations in Aβ42 contribute to cellular toxicity via the γ-secretase inhibition, and provide a novel conceptual framework to address Aβ toxicity in the context of γ-secretase-dependent homeostatic signaling.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Ya-Juan Wang, Xiao-Jing Di ... Ting-Wei Mu
    Research Article Updated

    Protein homeostasis (proteostasis) deficiency is an important contributing factor to neurological and metabolic diseases. However, how the proteostasis network orchestrates the folding and assembly of multi-subunit membrane proteins is poorly understood. Previous proteomics studies identified Hsp47 (Gene: SERPINH1), a heat shock protein in the endoplasmic reticulum lumen, as the most enriched interacting chaperone for gamma-aminobutyric acid type A (GABAA) receptors. Here, we show that Hsp47 enhances the functional surface expression of GABAA receptors in rat neurons and human HEK293T cells. Furthermore, molecular mechanism study demonstrates that Hsp47 acts after BiP (Gene: HSPA5) and preferentially binds the folded conformation of GABAA receptors without inducing the unfolded protein response in HEK293T cells. Therefore, Hsp47 promotes the subunit-subunit interaction, the receptor assembly process, and the anterograde trafficking of GABAA receptors. Overexpressing Hsp47 is sufficient to correct the surface expression and function of epilepsy-associated GABAA receptor variants in HEK293T cells. Hsp47 also promotes the surface trafficking of other Cys-loop receptors, including nicotinic acetylcholine receptors and serotonin type 3 receptors in HEK293T cells. Therefore, in addition to its known function as a collagen chaperone, this work establishes that Hsp47 plays a critical and general role in the maturation of multi-subunit Cys-loop neuroreceptors.