Distinct inactive conformations of the dopamine D2 and D3 receptors correspond to different extents of inverse agonism

  1. J Robert Lane  Is a corresponding author
  2. Ara M Abramyan
  3. Pramisha Adhikari
  4. Alastair C Keen
  5. Kuo-Hao Lee
  6. Julie Sanchez
  7. Ravi Kumar Verma
  8. Herman D Lim
  9. Hideaki Yano
  10. Jonathan A Javitch  Is a corresponding author
  11. Lei Shi  Is a corresponding author
  1. University of Nottingham, United Kingdom
  2. National Institute on Drug Abuse, National Institutes of Health, United States
  3. Monash University, Australia
  4. Columbia University, United States

Abstract

By analyzing and simulating inactive conformations of the highly-homologous dopamine D2 and D3 receptors (D2R and D3R), we find that eticlopride binds D2R in a pose very similar to that in the D3R/eticlopride structure but incompatible with the D2R/risperidone structure. In addition, risperidone occupies a sub-pocket near the Na+ binding site, whereas eticlopride does not. Based on these findings and our experimental results, we propose that the divergent receptor conformations stabilized by Na+-sensitive eticlopride and Na+-insensitive risperidone correspond to different degrees of inverse agonism. Moreover, our simulations reveal that the extracellular loops are highly dynamic, with spontaneous transitions of extracellular loop 2 from the helical conformation in the D2R/risperidone structure to an extended conformation similar to that in the D3R/eticlopride structure. Our results reveal previously unappreciated diversity and dynamics in the inactive conformations of D2R. These findings are critical for rational drug discovery, as limiting a virtual screen to a single conformation will miss relevant ligands.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. J Robert Lane

    Division of Pharmacology, Physiology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
    For correspondence
    Rob.Lane@nottingham.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  2. Ara M Abramyan

    Computational Chemistry and Molecular Biophysics Unit, National Institute on Drug Abuse, National Institutes of Health, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Pramisha Adhikari

    Computational Chemistry and Molecular Biophysics Unit, National Institute on Drug Abuse, National Institutes of Health, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Alastair C Keen

    Division of Pharmacology, Physiology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Kuo-Hao Lee

    Computational Chemistry and Molecular Biophysics Unit, National Institute on Drug Abuse, National Institutes of Health, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Julie Sanchez

    Division of Pharmacology, Physiology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Ravi Kumar Verma

    Computational Chemistry and Molecular Biophysics Unit, National Institute on Drug Abuse, National Institutes of Health, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Herman D Lim

    Department of Pharmacology and Medicinal Chemistry, Monash University, Parkville, Australia
    Competing interests
    The authors declare that no competing interests exist.
  9. Hideaki Yano

    Computational Chemistry and Molecular Biophysics Unit, National Institute on Drug Abuse, National Institutes of Health, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Jonathan A Javitch

    Department of Psychiatry, Columbia University, New York, United States
    For correspondence
    jaj2@cumc.columbia.edu
    Competing interests
    The authors declare that no competing interests exist.
  11. Lei Shi

    Computational Chemistry and Molecular Biophysics Unit, National Institute on Drug Abuse, National Institutes of Health, Baltimore, United States
    For correspondence
    lei.shi2@nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4137-096X

Funding

National Institutes of Health (Z1A DA000606-03)

  • Lei Shi

National Institutes of Health (MH54137)

  • Jonathan A Javitch

National Health and Medical Research Council (APP1049564)

  • J Robert Lane

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,194
    views
  • 353
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. J Robert Lane
  2. Ara M Abramyan
  3. Pramisha Adhikari
  4. Alastair C Keen
  5. Kuo-Hao Lee
  6. Julie Sanchez
  7. Ravi Kumar Verma
  8. Herman D Lim
  9. Hideaki Yano
  10. Jonathan A Javitch
  11. Lei Shi
(2020)
Distinct inactive conformations of the dopamine D2 and D3 receptors correspond to different extents of inverse agonism
eLife 9:e52189.
https://doi.org/10.7554/eLife.52189

Share this article

https://doi.org/10.7554/eLife.52189

Further reading

    1. Biochemistry and Chemical Biology
    2. Cancer Biology
    Flavie Coquel, Sing-Zong Ho ... Philippe Pasero
    Research Article

    Cancer cells display high levels of oncogene-induced replication stress (RS) and rely on DNA damage checkpoint for viability. This feature is exploited by cancer therapies to either increase RS to unbearable levels or inhibit checkpoint kinases involved in the DNA damage response. Thus far, treatments that combine these two strategies have shown promise but also have severe adverse effects. To identify novel, better-tolerated anticancer combinations, we screened a collection of plant extracts and found two natural compounds from the plant, Psoralea corylifolia, that synergistically inhibit cancer cell proliferation. Bakuchiol inhibited DNA replication and activated the checkpoint kinase CHK1 by targeting DNA polymerases. Isobavachalcone interfered with DNA double-strand break repair by inhibiting the checkpoint kinase CHK2 and DNA end resection. The combination of bakuchiol and isobavachalcone synergistically inhibited cancer cell proliferation in vitro. Importantly, it also prevented tumor development in xenografted NOD/SCID mice. The synergistic effect of inhibiting DNA replication and CHK2 signaling identifies a vulnerability of cancer cells that might be exploited by using clinically approved inhibitors in novel combination therapies.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Santi Mestre-Fos, Lucas Ferguson ... Jamie HD Cate
    Research Article

    Stem cell differentiation involves a global increase in protein synthesis to meet the demands of specialized cell types. However, the molecular mechanisms underlying this translational burst and the involvement of initiation factors remains largely unknown. Here, we investigate the role of eukaryotic initiation factor 3 (eIF3) in early differentiation of human pluripotent stem cell (hPSC)-derived neural progenitor cells (NPCs). Using Quick-irCLIP and alternative polyadenylation (APA) Seq, we show eIF3 crosslinks predominantly with 3’ untranslated region (3’-UTR) termini of multiple mRNA isoforms, adjacent to the poly(A) tail. Furthermore, we find that eIF3 engagement at 3’-UTR ends is dependent on polyadenylation. High eIF3 crosslinking at 3’-UTR termini of mRNAs correlates with high translational activity, as determined by ribosome profiling, but not with translational efficiency. The results presented here show that eIF3 engages with 3’-UTR termini of highly translated mRNAs, likely reflecting a general rather than specific regulatory function of eIF3, and supporting a role of mRNA circularization in the mechanisms governing mRNA translation.