Hierarchical temporal prediction captures motion processing along the visual pathway

  1. Yosef Singer  Is a corresponding author
  2. Luke CL Taylor
  3. Ben DB Willmore
  4. Andrew J King  Is a corresponding author
  5. Nicol S Harper  Is a corresponding author
  1. University of Oxford, United Kingdom

Abstract

Visual neurons respond selectively to features that become increasingly complex from the eyes to the cortex. Retinal neurons prefer flashing spots of light, primary visual cortical (V1) neurons prefer moving bars, and those in higher cortical areas favor complex features like moving textures. Previously, we showed that V1 simple cell tuning can be accounted for by a basic model implementing temporal prediction - representing features that predict future sensory input from past input (Singer et al., 2018). Here we show that hierarchical application of temporal prediction can capture how tuning properties change across at least two levels of the visual system. This suggests that the brain does not efficiently represent all incoming information; instead, it selectively represents sensory inputs that help in predicting the future. When applied hierarchically, temporal prediction extracts time-varying features that depend on increasingly high-level statistics of the sensory input.

Data availability

All custom code used in this study was implemented in Python. The code for the models and analyses shown in Figures 1-8 and associated sections can be found at https://bitbucket.org/ox-ang/hierarchical_temporal_prediction/src/master/. The V1 neural response data (Ringach et al., 2002) used for comparison with the temporal prediction model in Figure 6 came from http://ringachlab.net/ ("Data & Code", "Orientation tuning in Macaque V1"). The V1 image response data used to test the models included in Figure 9 were downloaded with permission from https://github.com/sacadena/Cadena2019PlosCB (Cadena et al., 2019). The V1 movie response data used to test these models were collected in the Laboratory of Dario Ringach at UCLA and downloaded from https://crcns.org/data-sets/vc/pvc-1 (Nahaus and Ringach, 2007; Ringach and Nahaus, 2009). The code for the models and analyses shown in Figure 9 and the associated section can be found at https://github.com/webstorms/StackTP and https://github.com/webstorms/NeuralPred. The movies used for training the models in Figure 9 are available at https://figshare.com/articles/dataset/Natural_movies/24265498.

Article and author information

Author details

  1. Yosef Singer

    Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
    For correspondence
    yosef.singer@stcatz.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4480-0574
  2. Luke CL Taylor

    Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Ben DB Willmore

    Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2969-7572
  4. Andrew J King

    Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
    For correspondence
    andrew.king@dpag.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5180-7179
  5. Nicol S Harper

    Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
    For correspondence
    nicol.harper@dpag.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7851-4840

Funding

Wellcome Trust (WT108369/Z/2015/Z)

  • Ben DB Willmore
  • Andrew J King
  • Nicol S Harper

University of Oxford Clarendon Fund

  • Yosef Singer
  • Luke CL Taylor

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Stephanie E Palmer, University of Chicago, United States

Version history

  1. Preprint posted: March 13, 2019 (view preprint)
  2. Received: October 14, 2019
  3. Accepted: October 4, 2023
  4. Accepted Manuscript published: October 16, 2023 (version 1)
  5. Version of Record published: November 7, 2023 (version 2)

Copyright

© 2023, Singer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 697
    views
  • 130
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yosef Singer
  2. Luke CL Taylor
  3. Ben DB Willmore
  4. Andrew J King
  5. Nicol S Harper
(2023)
Hierarchical temporal prediction captures motion processing along the visual pathway
eLife 12:e52599.
https://doi.org/10.7554/eLife.52599

Share this article

https://doi.org/10.7554/eLife.52599

Further reading

    1. Medicine
    2. Neuroscience
    Yunlu Xue, Yimin Zhou, Constance L Cepko
    Research Advance

    Retinitis pigmentosa (RP) is an inherited retinal disease in which there is a loss of cone-mediated daylight vision. As there are >100 disease genes, our goal is to preserve cone vision in a disease gene-agnostic manner. Previously we showed that overexpressing TXNIP, an α-arrestin protein, prolonged cone vision in RP mouse models, using an AAV to express it only in cones. Here, we expressed different alleles of Txnip in the retinal pigmented epithelium (RPE), a support layer for cones. Our goal was to learn more of TXNIP’s structure-function relationships for cone survival, as well as determine the optimal cell type expression pattern for cone survival. The C-terminal half of TXNIP was found to be sufficient to remove GLUT1 from the cell surface, and improved RP cone survival, when expressed in the RPE, but not in cones. Knock-down of HSP90AB1, a TXNIP-interactor which regulates metabolism, improved the survival of cones alone and was additive for cone survival when combined with TXNIP. From these and other results, it is likely that TXNIP interacts with several proteins in the RPE to indirectly support cone survival, with some of these interactions different from those that lead to cone survival when expressed only in cones.

    1. Neuroscience
    Juan Jose Rodriguez Gotor, Kashif Mahfooz ... John F Wesseling
    Research Article

    Vesicles within presynaptic terminals are thought to be segregated into a variety of readily releasable and reserve pools. The nature of the pools and trafficking between them is not well understood, but pools that are slow to mobilize when synapses are active are often assumed to feed pools that are mobilized more quickly, in a series. However, electrophysiological studies of synaptic transmission have suggested instead a parallel organization where vesicles within slowly and quickly mobilized reserve pools would separately feed independent reluctant- and fast-releasing subdivisions of the readily releasable pool. Here, we use FM-dyes to confirm the existence of multiple reserve pools at hippocampal synapses and a parallel organization that prevents intermixing between the pools, even when stimulation is intense enough to drive exocytosis at the maximum rate. The experiments additionally demonstrate extensive heterogeneity among synapses in the relative sizes of the slowly and quickly mobilized reserve pools, which suggests equivalent heterogeneity in the numbers of reluctant and fast-releasing readily releasable vesicles that may be relevant for understanding information processing and storage.