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Abstract Vertebrate appendage regeneration requires precisely coordinated remodeling of the

transcriptional landscape to enable the growth and differentiation of new tissue, a process

executed over multiple days and across dozens of cell types. The heterogeneity of tissues and

temporally-sensitive fate decisions involved has made it difficult to articulate the gene regulatory

programs enabling regeneration of individual cell types. To better understand how a regenerative

program is fulfilled by neural progenitor cells (NPCs) of the spinal cord, we analyzed pax6-

expressing NPCs isolated from regenerating Xenopus tropicalis tails. By intersecting chromatin

accessibility data with single-cell transcriptomics, we find that NPCs place an early priority on

neuronal differentiation. Late in regeneration, the priority returns to proliferation. Our analyses

identify Pbx3 and Meis1 as critical regulators of tail regeneration and axon organization. Overall,

we use transcriptional regulatory dynamics to present a new model for cell fate decisions and their

regulators in NPCs during regeneration.

Introduction
In contrast to mammals, Xenopus tadpoles are able to undergo scarless healing and full regenera-

tion of the limb, spinal cord, or tail after injury (Beck et al., 2009; Kakebeen and Wills, 2019; Lee-

Liu et al., 2017; Tseng and Levin, 2008). While lifelong regenerative healing is a characteristic

shared by many amphibians and fish, the regenerative capacity of Xenopus declines during meta-

morphosis, and is lost in the adult (Filoni and Bosco, 1981; Mitogawa et al., 2015; Suzuki et al.,

2006). Xenopus therefore represents an especially useful model for understanding the cell-intrinsic

and –extrinsic properties governing regeneration.

In Xenopus as in other regenerative animals, the event of a major injury triggers a rapid transcrip-

tional remodeling of the injured tissue. It is now well-established that some aspects of this remodel-

ing recapitulate developmental signaling events. In particular, developmental signaling pathways

such as Wnt, FGF, BMP, TGF-ß, Notch and Shh are upregulated, and are required for full regenera-

tion of the limb, tail, and spinal cord (Beck et al., 2003; Ho and Whitman, 2008; Slack et al., 2008;

Taniguchi et al., 2014). Genome-wide transcriptomic studies have confirmed that numerous genes

associated with embryonic development are re-expressed during regeneration (Chang et al., 2017;

Lee-Liu et al., 2014; Love et al., 2011). However, these studies have been carried out on bulk

regenerating tissue, making it difficult to identify what signals or factors are required to promote

regeneration in specific cell types. Recently, single-cell transcriptomic analysis (scRNA-Seq) of both

the regenerating Xenopus laevis tail and the regenerating axolotl limb have begun to identify the

transcriptional signatures associated with distinct cell types (Aztekin et al., 2019; Gerber et al.,
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2018; Pelzer et al., 2020). These studies also highlighted intriguing distinctions between the mod-

els. The regenerating axolotl limb shows a transcriptional convergence between all connective tissue

cell types, associated with the formation of the undifferentiated limb blastema (Gerber et al., 2018),

while in the Xenopus tail, cell type identities are kept clearly intact as regeneration progresses

(Aztekin et al., 2019). While these studies substantially advance our atlas of the genes expressed by

different cell types in regeneration, they do not identify the transcription factors that interpret and

respond to injury cues, nor the transcriptional regulatory elements that trigger changes in expression

profiles.

To address these gaps, we sought to articulate the gene regulatory network and transcriptional

dynamics associated with regeneration by specifically targeting NPCs, a critical cell type for regener-

ation. NPCs represent the focus of some therapeutic efforts to restore human motor function follow-

ing spinal cord injury in regenerative medicine (Khazaei et al., 2019; Levi et al., 2018; Shin et al.,

2015) and much effort has been applied to defining the in vivo and in vitro programs that guide

their cell fate decisions in the developing spinal cord as well as in culture. During development, neu-

ral stem cells give rise to distinct domains of lineage-restricted progenitor cells defined by their

expression of specific transcription factors across the dorsal ventral axis (Alaynick et al., 2011;

Lai et al., 2016). The decision to exit the cell cycle and undergo terminal neuronal differentiation is

directed by extrinsic cues, particularly repression of Notch signaling, which is highly conserved

across vertebrates (Lara-Ramirez et al., 2019). Following amputation, the spinal cord first begins to

repair by closing the open end to form the tube-like neural ampulla, a structure formed by ependy-

mal cells. Progenitor cells then contribute to both growth and new differentiation as the newly

regenerated spinal cord elongates (Beck et al., 2009; Gaete et al., 2012; Stefanelli, 1951). There-

fore, neural progenitors must balance their decisions between proliferating to repopulate lost tissue

and differentiating to mature neurons. The global transcriptional dynamics that govern these deci-

sions, including the transcription factors required and their target sites across the genome, remain

poorly defined.

To identify gene regulatory dynamics in neural progenitors during regeneration, we analyzed the

transcription and chromatin accessibility profiles of neural progenitors purified from pax6:GFP trans-

genic Xenopus tropicalis tails over a regenerative timecourse. Using both ATAC-Seq and scRNA-

Seq, we show that by 24 hr post amputation (hpa), pax6+ neural progenitors place a high priority on

differentiation to motor and interneuron subtypes, and only later at 72hpa do they accessibilize

genes associated with proliferation and self-renewal. By intersecting transcriptional and chromatin

accessibility data, we identified candidate transcriptional regulators associated with both early and

later changes in this neural progenitor gene expression profile. Further analysis of two of these,

Pbx3 and Meis1, revealed similar loss-of-function phenotypes, including reduced tail regeneration

and disorganization of regenerated neural tissues. Taken together, we present an integrated tran-

scriptional regulatory analysis of regeneration in pax6-expressing NPCs that highlights both parallels

and distinctions relative to embryonic development, and present novel candidates regulating regen-

eration in this critical cell type.

Results

Transgenic pax6:GFP is expressed in NPCs during regeneration
We selected the Xtr.Tg(pax6:GFP;cryga:RFP;actc1:RFP) transgenic line (hereafter abbreviated pax6:

GFP) to track NPCs over the course of regeneration (Hartley et al., 2001; Hirsch et al.,

2002; Horb et al., 2019; 31,88). Pax6 is a highly conserved paired box transcription factor essential

for central nervous system development (Bel-Vialar et al., 2007; Osumi et al., 2008; Walther and

Gruss, 1991). Because the expression pattern of this line has primarily been characterized earlier in

development, we first wanted to confirm that GFP was found in a pattern consistent with pax6

expression and NPC distribution (Ericson et al., 1997; Hartley et al., 2001). To do so, we imaged

whole mount tadpoles to identify where the pax6:GFP+ cells were localized anteroposteriorly in a

stage 41 tadpole, finding that pax6 is expressed in the forebrain, hindbrain, eye, and spinal cord

(Figure 1A). In lateral confocal images of whole-mount transgenic tails, we found that the GFP

expression domain spanned the same dorsal ventral domain as the spinal cord (Figure 1B). Trans-

verse sections of a stage 41 tadpole also revealed a broad dorsoventral pax6+ domain surrounding
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Figure 1. Expression dynamics of pax6:GFP in the regenerating spinal cord. (A) Left, cartoon depiction of a NF stage 41 tadpoles with known pax6+

domains colored green. Right, Stage 41, transgenic tadpole expressing GFP under the control of pax6 promoter tadpole. For all images in this figure,

the green channel represents pax6 reporter GFP fluorescence and the cyan channel represents DAPI staining. (B) Confocal image of a lateral view of a

whole-mount transgenic stage 41 tadpole. (C–F) Transverse cryosections through the posterior spinal cord of a transgenic stage 41 tadpole. (D–F)

Figure 1 continued on next page
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the central canal of the spinal cord (Figure 1C). GFP expression in transgenic tadpoles included

much of the same domain as the NSC marker Sox2 (Figure 1D). Notably, both nuclear Sox2 and

cytoplasmic GFP driven by pax6 are localized medially around the central canal, while markers asso-

ciated with differentiated neurons such as Dcx and neurofilament are largely found in the spinal cord

periphery (Figure 1E,F). Thus we concluded that we could use GFP expression to capture a large

proportion of NPCs and thereby interrogate their population-level regulatory dynamics, although we

can’t conclusively rule out the possibility that some NSCs are excluded from this domain, or that

some differentiated neurons may be included in GFP-expressing cells.

To better understand when NPCs enter the regenerating spinal cord, we amputated pax6:GFP

transgenic tadpoles and followed reentry of GFP+ cells into the regenerating spinal cord tissue.

Transgenic tadpoles were collected at 0 hr post amputation (0hpa), 6hpa, 24hpa, and 72hpa and

imaged for reporter GFP fluorescence. We found that pax6:GFP+ cells can be clearly identified in

the regenerating tail as early as 6hpa (Figure 1G). By 24hpa, the GFP+ cells are found in the bulb of

the neural ampulla (Beck et al., 2009; Stefanelli, 1951). By 72hpa, GFP+ cells are present all along

the anteroposterior axis of the regenerated spinal cord. From these experiments, we concluded that

pax6:GFP+ cells are appropriately localized as they repopulate the regenerated spinal cord.

The chromatin accessibility profile of FACS-sorted NPCs is highly
enriched for neural-specific regulatory regions
We set out to identify the chromatin accessibility signature of NPCs over a regeneration timecourse

using ATAC-Seq (Buenrostro et al., 2013). To perform this cell-type specific genomic analysis of

regeneration in neural progenitors, we optimized a method to isolate pax6:GFP+ fluorescent cells

from transgenic tadpoles by flow cytometry (Figure 1—figure supplement 1) (see

Materials and methods for details). The posterior third of stage 41 tadpole tails were amputated and

ATAC-Seq libraries were made from amputated tail tips (uninjured) or the newly regenerated tissue

at 0hpa, 6hpa, 24hpa, or 72hpa (Figure 2A). The timepoints were collected in two conditions. The

first, ‘all-tissue’ libraries refer to libraries made from total tail tissue, which includes all of the cell

types in the tail. The second, ‘pax6’ refers to libraries made from GFP+ sorted cells (Figure 2A).

Each library was prepared from between 1200 and 4000 cells, either with no GFP gate applied and

therefore containing all cell types (‘all tissue’) or with a GFP gate applied as in Figure 1—figure sup-

plement 1C (‘pax6’). Sample preparation details for each library are detailed in Supplementary file

1a. Quantitative RT-PCR of sorted GFP+ cells confirmed highly elevated expression of gfp and pax6,

with low levels of neuronal-specific tubb2b or cardiac actin, confirming the identity of these cells

with low levels of contamination (Figure 1—figure supplement 1D). Libraries for each timepoint

and condition were made in triplicate, multiplexed and sequenced on the Illumina Next-Seq plat-

form (see Materials and methods for details). Read alignment and peak calling was performed using

an inhouse pipeline detailed in Materials and methods; library QC metrics are reported in

Supplementary file 1b and Figure 2—figure supplement 1. Sequenced libraries were selected for

analysis if they met minimum ENCODE standards for ATAC-Seq libraries (www.encodeproject.org/

atac-seq).

Having verified the quality of ATAC-Seq libraries made from sorted pax6:GFP+ cells and bulk tail

tissue, we first confirmed that the overall tissue conditions had chromatin accessibility signatures

that could be easily differentiated. Taking an unbiased approach, we used multi-dimensional scaling

(MDS) to identify how similar or different the pax6 and all-tissue libraries are overall. We found that

the pax6 libraries cluster away from the clustered all-tissue libraries (Figure 2B). We then examined

individual gene regulatory loci. The majority of peaks called were located within 500 bp of a tran-

scription start site for both all tissue and pax6 libraries, confirming that the majority of ATAC-Seq

Figure 1 continued

Immunofluorescence images of the spinal cord sections stained with (D) anti-Sox2, (E) anti-Dcx, and (F) anti-neurofilament. (G) Regeneration timecourse

of Xtr.Tg(pax6:GFP) tadpole over the first 72 hr following tail amputation. The white box in the top photos correspond with enlarged green channel

below. White arrows indicate amputation plane.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. FACS gating was set using wild-type tadpoles to avoid false-positive GFP+ cells.
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Figure 2. Pax6 ATAC-Seq libraries resolve accessible neural specific regions that were not identified in all-tissue libraries. (A) Experimental design for

FACS isolation of reporter cells for sequencing library preparations. (B) MDS plot of sequenced pax6 and all-tissue ATAC-Seq libraries. (C)

Representative histograms showing distance of called peaks to transcription start sites (tss). (D) IGV browser tracks of a house keeping gene, odc and

reporter line specific gene, pax6. Shaded bar in odc represents a peak retained in pax6 and all-tissue libraries; shaded bar in pax6 represents a peak

called in pax6 libraries, but not in all-tissue. (E) Bar plot showing percent of differentially accessible (DA) peaks that are more accessible in pax6 or all-

tissue libraries within an individual timepoint or across all timepoints. (F) Differentially accessible regions were annotated to the nearest TSS and used

to call GO:BP terms. Top, GO terms from regions more accessible in pax6 libraries than in all-tissue libraries. Bottom, GO terms from regions more

accessible in all-tissue libraries than pax6 libraries. (G) Heat map depicting accessibility of 21/254 randomly sampled peaks that call the GO term:

Neurogenesis. pax6 promoter region is boxed.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure 2 continued on next page
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signal is concentrated in nucleosome-depleted promoters, as expected (Buenrostro et al., 2013;

Figure 2C). Both pax6 and all-tissue libraries shared common peaks around a control housekeeping

promoter (odc) (Dhorne-Pollet et al., 2013) without any apparent significant differences in accessi-

bility (Figure 2D, left). By contrast, upstream of the pax6 TSS, all pax6 library timepoints share a

peak that is absent in all-tissue libraries (Figure 2D, right). From this first proof-of-principle test, we

concluded that ATAC-Seq libraries from sorted cells can be used to identify chromatin accessibility

differences in NPCs relative to other tissues, and that ATAC-Seq of these sorted cells can be used to

find tissue-specific accessible regions that are beneath the detection sensitivity of bulk analysis of all

of the tissues together. We then progressed to genome-wide analysis of differences between pax6:

GFP+ calls and bulk tissue.

Our next goal was to identify categories of gene regulatory regions that have increased accessi-

bility in NPCs relative to bulk tail tissue. To this end, we interrogated the global NPC chromatin sig-

nature by compiling all pax6 library peaks into one peak file and all of the all-tissue peaks into a

second peak file and calling differentially accessible peaks between these two compiled files. We

identified 3604 regions that were more accessible in the pax6 libraries than the all-tissue libraries,

which we assigned to the nearest TSS, and used the associated gene names as input for gene ontol-

ogy (GO) analysis using gProfileR2 (Raudvere et al., 2019; Figure 2E–F). Genes with increased

accessibility in pax6:GFP+ cells showed statistically significant enrichment for neural-associated

terms such as ‘Neurogenesis’, ‘Nervous system development’, and ‘Neuron differentiation,’ confirm-

ing the neural progenitor identity of our pax6:GFP cells (Figure 2F, top, and Supplementary file

1c). We visually confirmed the increased accessibility of regions calling the term ‘Neurogenesis’ with

a heat map (Figure 2G). The reverse analysis identified 5251 regions that are more accessible in all-

tissue libraries than pax6 libraries, which are associated with broad GO categories relating to ubiqui-

tous cellular processes (i.e. ‘Cellular biosynthetic process’, ‘Transcription from RNA Polymerase II’,

and Cellular metabolic process’) (Figure 2F, bottom, Supplementary file 1d). From this analysis, we

concluded that the overall chromatin accessibility of NPCs is readily distinguished from bulk tissue

and strongly reflects their distinct neural character.

Analysis of differentially accessible peaks between pax6 libraries
reveals an early prioritization of neuronal differentiation in
regeneration
Having established that the overall chromatin signature of NPCs could be used to identify neural-

specific processes, we next identified the cellular processes being prioritized by NPCs at discrete

regenerative stages. We therefore systematically identified differentially accessible regions of the

chromatin that were uniquely accessible at each timepoint relative to the flanking timepoints and

performed GO analysis on the genes neighboring these regions (Figure 3A–C). GO analysis

returned ~30–100 terms, thus, to distill the list to main processes, we used ReviGO’s semantics algo-

rithm to reduce redundancy of the GO terms (Supek et al., 2011). Supplementary files 1e-g con-

tain the entire list of GO terms returned from gProfiler and Supplementary files 1h-j contain the

results from ReviGO.

We first examined genes associated with regulatory regions that are uniquely accessible at 6hpa.

Genes preferentially accessible at 6hpa called six families of GO terms (Figure 3D). Notably, ‘Neph-

ron Tubule Morphogenesis’ was well represented, and included regulatory regions from foxd1,

gata3, smo, sall1, osr1, pax2, stat1, hoxd11, wnt6, nog, wnt11, irx3, cited1 (Figure 3G). In addition

to patterning the nephron, the majority of these genes are expressed in neural stem cells during dor-

soventral neural patterning of the spinal cord and early differentiation (Alaynick et al., 2011;

Delile et al., 2019). At this time in regeneration, we observe the spinal cord repairing itself by clos-

ing the neural tube and forming the neural ampulla. We have shown in Figure 1D that pax6:GFP+

cells populate the regenerated neural ampulla, therefore, we hypothesize that these cells represent

ependymoglial cells with NSC character that have been described previously (Beck et al., 2009;

Figure 2 continued

Figure supplement 1. Low input ATAC-Seq libraries meet sufficient quality for downstream analysis.
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Figure 3. Differential accessibility analysis of pax6 libraries over regenerative time reveals chromatin accessibility prioritizes first tubule morphogenesis,

followed by neural differentiation, and later proliferation. From left to right, data represents the 6hpa timepoint, 24hpa timepoint, and 72hpa timepoint.

(A–C) Venn diagrams depicting number of unique and shared peaks called in each of the timepoint contrasts within the pax6 libraries. The intersect

represents peaks that were both becoming accessible at a given timepoint, then losing accessibility. The green number in each contrast represents the

timepoint that is more accessible. (D–F) All regions represented in (A–C) were used for GO:BP analysis with gProfileR2. ReviGO was then used to

reduce redundancy in output GO terms and identify main families of terms. Tree graphs depict the hierarchy of reduced GO list. The central grey circle

is the vertex of the graph representing the set of all GO terms included in the data, the second level of circles are the families of GO terms called by

ReviGO, and the third level of circles represents GO terms in each family. Terms provided are the family names. (G–I) Heatmap of accessibility of

regions that were used to call GO terms: ‘Nephron Tubule Morphogenesis’, ‘Neuron Differentiation’, and ‘Neural Precursor Cell Proliferation’.
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Chernoff et al., 2018; McHedlishvili et al., 2007; Muñoz et al., 2015; O’Hara et al., 1992;

Reimer et al., 2009).

We then identified regions that were most accessible at the 24hpa timepoint. This analysis recov-

ered two main families of GO terms, the largest of which was ‘Neuron Development’ (Figure 3E).

Strikingly, the majority of genes that call this GO term become more accessible from 6 to 24hpa, but

lose that accessibility at 72hpa (Figure 3H). Genes with preferentially accessible regulatory regions

at 24hpa include factors known to function in multiple aspects of neuronal differentiation and

growth. Examples of these include neuritogenesis and growth cone formation (dclk2, rapgef2, auts2,

nedd4l, unc5a), axonogenesis and axon guidance (dbn1, sema6a, fry, ptch1), neuronal migration

(dclk2, rapgef2, auts2, pcdh18), and transcriptional regulation of neuron differentiation (skor2, isl1,

nfatc4, vax2). The enrichment of these terms, and their specificity for functions carried out by differ-

entiating neurons rather than proliferating progenitors, agrees well with previous published bulk

RNA-Seq analysis (Chang et al., 2017) showing enrichment for similar neuronal morphogenesis

terms, such as axonogenesis and dendritogenesis, in the first day post amputation.

Finally, we assessed the processes being prioritized at 72hpa. This analysis resulted in five main

GO families being called (Figure 3F), including ‘neuronal precursor cell proliferation’. Notably, cell

cycle and proliferation related terms were absent at the 6hpa and 24hpa timepoints. The regions

calling this term were all more accessible at 72hpa than the 24hpa timepoint, however about half

were not differentially accessible with respect to the uninjured tail (Figure 3I), suggesting that by

72hpa, these regions are regaining similarity to their uninjured state. Altogether, we were able to

resolve processes specific to neural progenitor cell function at each timepoint. These suggest that

NPCs first prioritize ependymal tube morphogenesis at 6hpa, neural differentiation at 24hpa, and

cell proliferation at 72hpa.

Comparative analysis of uninjured and 24hpa tail single cell RNA-Seq
data sets reveals expansion in differentiated neuronal clusters at 24hpa
Our ATAC-Seq analysis suggested that neural progenitor cells may place a high transcriptional regu-

latory priority on neuronal differentiation early in regeneration, at 24hpa. To determine whether this

was reflected in the transcriptional profile and cell-type composition of neural cells, we used single-

cell RNA-Seq to interrogate the profile of neural cell types present before and 24 hr after amputa-

tion. We sequenced the transcriptomes of individual NPCs from uninjured and regenerating tails, an

analogous population to those collected for ATAC-seq. In total, we sequenced 2617 and 1,090 cells

from uninjured and 24hpa tissues, respectively. Using Seurat we aligned the two data sets with their

integrated analyses and used UMAP dimensional reduction to find clusters (Becht et al., 2018;

Butler et al., 2018; Stuart et al., 2019). From this analysis, we revealed 19 unique clusters (Fig-

ure 4—figure supplement 1A), which were enriched for but not fully restricted to the neural line-

age. A total of 781 uninjured cells and 296 cells from 24hpa cells fell into neural clusters, which

comprised NPC/NSCs (defined by expression of sox2), transitioning neurons (neurog1; neurod1),

and differentiated neurons (elavl4) (Figure 4—figure supplement 1B). To gain the highest-possible

resolution of cell types within these broad neural clusters, we subsetted neural cells, re-performed

dimensionality reduction and called eight unique sub-clusters, including spinal cord progenitors,

floor plate progenitors, differentiating neurons, interneurons, motor neurons, vulnerable motor neu-

rons, motor neurons (leptin+), and dopaminergic neurons (Figure 4A). These clusters agreed well

with the neural cell types recently identified for tail regeneration in X. laevis, and we applied the

same naming conventions (Aztekin et al., 2019).

Several landmark insights emerged from this single-cell analysis of neural lineages in the tadpole

tail. First, we were able to identify new candidate molecular markers for progenitors (vwcx2l.2,

iqca1, daw1), floor plate progenitors (bicc, vasn), differentiating neurons (nhlh1, tmem178.2), motor

neurons (prdm14, prdm1, kcnb2), leptin+ motor neurons (abcb1, asns, lepr), vulnerable motor neu-

rons (mmp17, slc18a3, colq-like), interneurons (cnrip1, slc17a7), and dopaminergic neurons (pkd2l1,

pkd1l2, slc32a1) (Figure 4B). The ‘vulnerable motor neurons’ term refers to vulnerability of specific

neurons to degeneration in ALS (Kline et al., 2017). Representative genes for each cell type were

identified by using differential expression analysis between cell clusters. Second, we found that cell

type identities could be clearly assigned to these clusters at 24 hr after injury (Figure 4C). Unlike the

connective tissues in the axolotl limb, which lose cell heterogeneity of gene expression after injury
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Figure 4. scRNA-Seq of uninjured and 24hpa tails reveals a transcriptional shift to differentiated neuronal types at 24hpa. (A) UMAP projection of

integrated uninjured and 24hpa neural lineage cells. seven distinct clusters were identified. (B) Dot plot of genes identified as differentially expressed

between cell clusters. The top three genes exclusively expressed in each of the seven clusters are shown. Color of circle denotes average gene

expression across one cluster and size of circle represents percent of cells in each cluster expressing each gene. (C) UMAP projection of neural cells

Figure 4 continued on next page

Kakebeen et al. eLife 2020;9:e52648. DOI: https://doi.org/10.7554/eLife.52648 9 of 31

Research article Developmental Biology Stem Cells and Regenerative Medicine

https://doi.org/10.7554/eLife.52648


(Gerber et al., 2018), neural cells in the 24hpa Xenopus spinal cord maintain heterogeneous gene

expression.

We next used our scRNA-Seq data to interrogate the hypothesis that neural lineages put an early

priority on differentiation rather than proliferation. To address this question and to identify which

neuronal types, if any, are being produced, we asked how the relative quantities of cell populations

change following injury. To this end, we identified what percent of the total neural population is

made up of each cluster under each condition. If neural lineages prioritize differentiation early in

regeneration, we would expect to see a decline in proliferating progenitor cells and an increase in

one or more differentiated neuronal types. Indeed, at 24hpa, we observe a decrease in the percent

of NPCs and differentiating neurons with respect to the uninjured cells (Figure 4D–G). In agreement

with our GO analysis of 24hpa ATAC-Seq data, we see an expansion in differentiated neuronal clus-

ters including interneurons, vulnerable motor neurons, and motor neurons (leptin+) at 24hpa. Over-

all, NSCs are reduced from 38% to 25%, differentiating neurons are reduced from 20% to 10%, and

differentiated neurons increase from 42% to 65%. As previously described, we noted that motor

neurons (leptin+) are virtually absent in the uninjured tail but are abundant at 24hpa (Aztekin et al.,

2019).

These transitions in cell type composition are consistent with the hypothesis that neuronal differ-

entiation, especially to specific motor neuron types, is prioritized early in regeneration, with a decline

in the relative abundance of proliferative cells.

Our hypothesis is that neuronal differentiation is prioritized early in regeneration while prolifera-

tion is decreased. To further test this hypothesis, we asked if we could see a shift in the transcrip-

tomically defined cell cycle state accompanying the change in cell type representation. To this end

we used the Seurat cell cycle phase predictor to predict the cell cycle phase of each cell in the neural

lineage. In both the uninjured tail and at 24hpa, the NPCs are primarily predicted to be in S and

G2M phases, the differentiating neurons are a mix of G2M and G1 phase, and the subtypes of differ-

entiated neurons are primarily made up of G1 phase (Figure 4H/I). The uninjured tail neural lineage

has 30% cells predicted in S phase, 16% cells predicted in G2M phase, and 54% cells predicted in

G1 phase (Figure 5H/J). This distribution shifts markedly at the 24hpa timepoint, where the S phase

falls to 17%, G2M falls to 7% and G1 increases to 76% (Figure 4I/K). Thus, at the 24hpa timepoint,

there is a relative increase in the proportion of cells predicted to be in G1 phase and decrease in

cells in G2/M/S phases. This correlates with the relative increase in differentiated neurons and

decrease in spinal cord progenitors and differentiating cells and supports the hypothesis that NPCs

are undergoing differentiation.

We validated expression of several differentiated neuronal genes by in situ hybridization (ISH).

We examined l1cam, uchl1, nsg1 and ass1 as candidate neuronal differentiation markers. All these

genes are strongly expressed in one or more differentiated neuronal populations but are lowly

expressed or absent in NPCs and non-neural cell types by scRNA-SEQ (Figure 5A–C,G–I,M–O,S–U).

When examined by ISH all four genes are most strongly and distinctly expressed in the neural

ampulla at 24hpa (Figure 5E,K,Q,W). As a further test of the hypothesis that proliferation is not pri-

oritized until 72hpa, we used phospho-histone H3 (PH3) staining to quantify mitotic cells in optical

longitudinal sections of the spinal cord that overlap with the pax6 domain, finding that proliferative

cells are significantly more abundant at 72hpa relative to 24hpa (Figure 5Y-AA). These findings fur-

ther supported our model that differentiation is prioritized at 24hpa, and proliferation at 72hpa.

Figure 4 continued

colored by timepoint in the uninjured tails and 24hpa tails. UMAP projections of cell clusters split by timepoint to (D) uninjured and (E) 24hpa. (F–G)

Sunburst diagrams showing (inside) the percentage of neural cells that are broadly stem cells, differentiating cells, or differentiated neurons and

(outside) percentage of neural cells in each of the seven cell clusters called. Colors on outside of the sunburst chart correlate to cluster colors in (A/B).

(H–I) UMAP projections of neural clusters colored by predicted cell cycle phase in the (H) uninjured tail and (I) 24hpa tail. (J–K) Sunburst diagrams

showing the percentage of all neural cells predicted to be in each cell cycle phase (inside) and the percentage of each cell cluster predicted to be in

each cell cycle phase (outside). (J) represents the distribution in the uninjured tail and (K) represents the distribution in the 24hpa tail. Colors on outside

of the sunburst chart correlate to cluster colors in (A/B).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. scRNA-Seq analysis of all cells sequenced in uninjured and 24hpa tails.
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Figure 5. Markers of neuronal differentiation are increased at 24hpa and proliferation increases at 72hpa. UMAP plots of expression in the neural

restricted subset of scRNA-Seq for (A) l1cam, (G) uchl1, (M) nsg1, and (s) ass1. UMAP plots of expression in the superset scRNA-Seq dataset for (B)

l1cam, (H) uchl1, (N) nsg1, and (T) ass1. Note that the topology of neural cell clusters is slightly different when subset and reclustered to give high

neural cluster resolution (A,G,M,S) than when neural cells are analyzed together with all other cell types (E,K, Q, W), but the same cells and expression

Figure 5 continued on next page
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Gene regulatory network prediction reveals Pbx3 and Meis1 as
candidate regulators of neuronal regeneration
To better understand the factors governing NPCs fate decisions, our next goal was to identify tran-

scription factors that could be directing fate transitions. We therefore integrated our ATAC-Seq

data, scRNA-Seq data, and used bulk RNA-Seq data to predict gene regulatory networks occurring

over regenerative time. We used HOMER to identify transcription factor (TF) binding sites in differ-

entially accessible peaks associated with called GO terms (Figure 3A–C; Heinz et al., 2010). We

then used our previously published bulk-RNA-Seq data (Chang et al., 2017) to confirm each

HOMER-identified transcription factor and its targets were expressed at the timepoint of interest.

Next we restricted our analysis to differentially accessible regions of the chromatin where TF binding

sites were accompanied by differential gene expression in the single-cell RNA-Seq. Differential gene

expression was performed between the uninjured and 24hpa timepoints in scRNA-Seq following

parameters detailed in Materials and methods. These stringent criteria revealed two regulatory cir-

cuits spanning from 6hpa to 72hpa. One circuit predicts Meis1 as a regulatory factor that binds

motifs near runx2 and etv1 at 24hpa, and Etv1 as a regulatory factor that binds motifs near pbx3 at

24hpa (Figure 6A). Each of these four transcription factors also has numerous neuronal differentia-

tion genes among its predicted targets. In our scRNA-Seq dataset, etv1, meis1, pbx3, and runx2 are

all expressed in the neural cells and are therefore reasonable candidates to regulate neural cell fate

transitions. Of these, pbx3 was the most restricted to the neural lineage (Figure 4—figure supple-

ment 1E,G), and was found in several neuronal cell types. Pbx3 and Meis1 are homeodomain tran-

scription factors thought to coregulate targets in B-cell leukemia and proximal-distal patterning of

the regenerating axolotl limb (Li et al., 2016; Mercader et al., 2005). In Xenopus, Meis1 is well-

studied for its roles in neural crest and posterior neural fate specification, working together with

Pbx1 (Kelly et al., 2006; Maeda et al., 2001; Maeda et al., 2002; Salzberg et al., 1999). Neither

pbx3 nor meis1 have been described in neural regeneration, and so we decided to probe the func-

tion of these genes in neural development and regeneration in Xenopus.

We assessed target regions and differential accessibility for Pbx3 and Meis1 in the ATAC-Seq

data, and gene expression in the scRNA-Seq data. Considered across all regenerative timepoints,

Pbx3 and Meis1 have both independent and overlapping targets. A large fraction (26/61) of Pbx3

targets are shared with Meis1 (Figure 6B). Meis1’s target peaks are preferentially increased in acces-

sibility at 24hpa, while Pbx3’s are overall increased at 72hpa. Both transcription factors have numer-

ous neuronal differentiation factors among their targets (Figure 6C,D). When we examined

expression of meis1 and pbx3 in our scRNA-Seq data, we found that transcripts for both factors

were detected in multiple differentiated neuronal types, initially at low levels and in a small propor-

tion of cells (Figure 6E, and white portions of left pie charts in F). Following injury, at 24hpa, expres-

sion of meis1 increased to 30% of all neural cells (Figure 6F, upper right), driven by increases in

interneurons (IN), dopaminergic neuron (DN), and especially motor neuron (MN) clusters (Figure 6E,

top). At 24hpa expression of pbx3 increased to 11% of all neural cells (Figure 6F bottom right),

driven by a strong increase in motor neuron expression (Figure 6E, bottom). Both factors are there-

fore expressed in cell types likely to be completing differentiation at 24hpa, most notably the motor

neurons.

Previously, spatial expression patterns for meis1 have only been reported up to stage 29

(Maeda et al., 2002) and expression patterns for pbx3 have not been reported in Xenopus. There-

fore, we used in situ hybridization to characterize their expression in the tadpole. At stage 41, both

Figure 5 continued

data are included in both cases. Dot plots representing average expression of (C) l1cam, (I) uchl1, (O) nsg1, and (U) ass1 per cluster and timepoint. In

situ hybridization at 0hpa, 24hpa, and 72hpa for (D–F) l1cam, (J–L) uchl1, (P–R) nsg1, and (V–X) ass1. (Y–Z’) Representative images of 24hpa (Y/Y’) and

72hpa (Z/Z’) regenerated tails from a pax6:GFP transgenic tadpole stained for DAPI (cyan) and mitotic cells with phospho-histone3 (magenta). The white

arrows indicate regeneration plane. (Y’) and (Z’) are enlarged images of the boxed areas in (Y) and (Z). (AA) Boxplot representing the number of cells

per regenerated spinal cord area (mm2) at 24hpa and 72hpa. Statistics represent t-test performed between the two timepoints. Abbreviations: Neural

Progenitor Cell (NPC), Differentiating Neuron (Diff), Interneuron (IN), Vulnerable Motor Neuron (VMN), Dopaminergic Neuron (DN), Motor Neuron

Leptin+ (MNL), Motor Neuron (MN)).

The online version of this article includes the following source data for figure 5:

Source data 1. PH3 Cell Count and Regenerated Spinal Cord Area.
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Figure 6. Gene regulatory network prediction identifies Meis1 and Pbx3 as key regulators of neural regeneration. (A) Predicted gene regulatory

networks across regenerative time were derived from integrative analysis between ATAC-Seq and RNA-Seq data (See analysis in

Materials and methods). Meis1 and Pbx3 emerged as candidate regulators of regeneration. (B) Venn diagram showing the number of Meis1 and Pbx3

target regions found in differentially accessible regions of the chromatin. The overlap represents regions where both Meis1 and Pbx3 binding motifs

Figure 6 continued on next page
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meis1 and pbx3 are expressed in the uninjured brain and spinal cord (Figure 6G–J). In the posterior

tail, expression of both factors is weak and diffuse immediately following injury (Figure 6K,L). How-

ever, by 24hpa, expression of both factors increases in the spinal cord (Figure 6M,N). By 72hpa,

expression persists more weakly in the spinal cord. These analyses therefore indicate that pbx3 and

meis1 are expressed in the spinal cord, increase in neuronal subtypes at 24hpa, and contribute to

increased promoter accessibility at their target genes at 24hpa (particularly for Meis1) and 72hpa

(particularly for Pbx3), some of which are likely co-regulated by both factors.

Meis1 and Pbx3 are necessary for successful spinal cord and tail
regeneration
We next asked whether Meis1 and Pbx3 are independently required for regeneration. To do so, we

first injected morpholinos blocking translation of either meis1 or pbx3 into the dorsally fated blasto-

meres of 4 cell stage embryos to knockdown expression in the neural lineage (Figure 7—figure sup-

plement 1B). Knockdown of either Meis1 or Pbx3 resulted in a similar phenotype in stage 41

tadpoles that included small or missing eyes, a shorter anteroposterior body axis and reduced pig-

ment cell population (Figure 7—figure supplement 1C,D). We followed up on these phenotypes by

repeating the injections with a second set of morpholinos against Pbx3 and Meis1. The second set

of morpholinos phenocopy the original morpholino injections (Figure 7—figure supplement 1E,F).

As a further confirmation, we designed and injected CRISPR guide RNAs targeting each of these

genes together with Cas9 protein at the 4 cell stage, and were able to phenocopy the morpholino

effects with this strategy as well (Figure 7—figure supplement 1G–J). When we stained stage 41

morphants with anti-neurofilament antibody, we found that their spinal cord and intersomitic axons

were mispatterned, suggesting Meis1 and Pbx3 are necessary for proper development of the ner-

vous system (Figure 7—figure supplement 2B–F). To bypass the early embryonic effects of Meis1

and Pbx3 knockdown, we designed the same MO sequences as tissue-permeable vivo-MOs. We

injected either Pbx3 or Meis1 vivo-MO into the embryonic tail vein at the late tailbud stage (NF 35),

and reared these embryos to stage 41 (Figure 7A). Neither vivo-MO caused gross morphological

defects when delivered this way, but both vivo-MOs resulted in reduced axons in the spinal cord as

assayed by neurofilament stains at stage 41 (Figure 7C,D), relative to control tadpoles injected with

tracer only (Figure 7B).

To specifically assay the effect of Meis1 or Pbx3 knockdown on regeneration, we injected either

Meis1 or Pbx3 vivo-MOs at stage 35 as described above, reared these embryos to stage 41 and

amputated tails. At 72hpa, both Pbx3 and Meis1 knockdown tadpoles have reduced and disorga-

nized neurofilament staining relative to tracer-injected controls (Figure 7F,G, compare with E). We

quantified the length of the regenerated tail in control and knockdown tadpoles at 72hpa, and found

that both Meis1 and Pbx3 knockdown tadpoles have significantly shorter regenerated tails and spi-

nal cords relative to tracer-injected control tadpoles (Figure 7K). Spinal cord area (measured in con-

focal optical longitudinal sections) is also significantly reduced in both morphants at 72hpa

(Figure 7L), although the density of PH3 positive nuclei is not significantly changed relative to con-

trols (Figure 7H–J,M). Embryos injected with either Meis1 or Pbx3 MOs at the 4 cell stage also

caused neurofilament defects during regeneration, as well as shortened regenerated tails and spinal

cords (Figure 7—figure supplement 2G-AA), although, we cannot rule out that some aspects of

these phenotypes may be attributable to embryonic growth and patterning defects in the starting

tail tissue. We conclude that Meis1 and Pbx3 are not only required for proper neural development

but also for proper regeneration of the tail and spinal cord.

Figure 6 continued

were found. (C, D) Heatmaps showing accessibility of 20 differentially accessible regions of the chromatin identified with binding sites for (C) Meis1 or

(D) Pbx3. (E) Average gene expression of meis1 and pbx3 in each neural cell cluster in the scRNA-Seq data in the uninjured and 24hpa timepoints.

(Abbreviations: Neural Progenitor Cell (NPC), Differentiating Neuron(DiffN), Interneuron (IN), Vulnerable Motor Neuron (VMN), Dopaminergic Neuron

(DN), Motor Neuron Leptin+ (MNL), Motor Neuron (MN)). (F) Sunburst diagram showing the percentage of neural cells that are either positive or

negative for meis1 or pbx3 gene expression (inside) and the percentage of each neural cluster positive or negative for the genes (outside). (G–P) In situ

hybridizations for meis1 and pbx3 in transverse sections of the head (G, H) and tail (I, J) at stage 41. In situ hybridizations for meis1 and pbx3 at (K, L)

0hpa, (M, N) 24hpa, and (O, P) 72hpa.
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Figure 7. Pbx3 and Meis1 are independently required for successful regeneration of neural tissues and tails in response to injury. (A) Injection scheme

for administering vivo-morpholino. Stage 35 tadpoles were injected with a tracer or vivo-morpholinos (VMO) targeting meis1 or pbx3 and allowed to

grow 24 hr to stage 41. Stage 41 tadpoles were amputated and 24hpa regenerates were collected. (B–D) Stage 41, whole-mount tadpoles shown in

brightfield and immunostained against neurofilament. The box in the middle image corresponds to the enlarged image below. These images are

Figure 7 continued on next page
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Discussion

Neural lineage-specific analysis of regeneration identifies new
regulatory factors and target genes
The full regeneration of a lost structure requires integrated gene regulatory decisions by multiple

cell types. These have been documented through genome-wide transcriptomic analyses of the entire

regenerating structure, such as the Xenopus tail (Chang et al., 2017; Love et al., 2011), spinal cord

(Lee-Liu et al., 2014), or axolotl limb (Dwaraka et al., 2019). However, in bulk analyses it remains

uncertain which cell types are up- or down-regulating particular genes, and increased expression in

one cell type may be canceled out by decreases in another. These concerns are equally problematic

in bulk-tissue analysis of gene regulatory dynamics (through methods such as ChIP-Seq or ATAC-

Seq). In some cases, this problem can be addressed by explanting the tissue of interest

(Chung et al., 2014), but for rare cell types or morphologically complex structures this is not a tena-

ble solution. Here we present a major advance for vertebrate regeneration by using flow-cytometry

and scRNA-Seq to coordinately study chromatin accessibility and gene expression in neural progeni-

tors during regeneration, a critical cell type for spinal cord regeneration (Fei et al., 2014;

Gaete et al., 2012; Muñoz et al., 2015). By isolating neural progenitors, we are able to identify a

unique chromatin landscape for these cells, including regulatory peaks that cannot be detected in

bulk tissue analysis.

It is important to note the potential limitations of our analysis as well. While our FACS approach

utilizing the pax6:GFP transgenic line captures a broad domain of neural progenitor cells, we recog-

nize that not every NPC may have been captured. For example, there may be some Sox2+ NPCs

that are pax6-, and these cells may contribute to regeneration in a distinct way that we did not cap-

ture. In particular, our confocal sections (Figure 1) suggest that the pax6:GFP+ domain captures a

large window of progenitors along the dorsoventral axis but does not capture the dorsal most Sox2

+ NPCs. Future analyses using other NPC reporters, as well as domain-specific reporters for region-

specific subtypes of both neural progenitors and differentiated neurons, would be necessary to fully

round out the picture of what transcriptional priorities are shared among progenitor subtypes and

which are region-specific. We may have also captured cells that were pax6+ and Sox2-. Specifically,

we may have captured some cells that were recently pax6+ neural progenitors, and are now differ-

entiating but retain GFP protein. This hypothesis would be well informed by birthdating neurons in

the transgenic line to visualize if newborn neurons retain reporter GFP; however, for this set of

experiments we acknowledge this potential caveat. Finally, while we find that Sox2 and pax6:GFP

colocalize closely over much of their respective domains at stage 41, the very small size and delicacy

of the regeneration bud at 24hpa precluded verification that these two markers continue to colocal-

ize in the same way during the early stages of regeneration as the neural ampulla forms. Therefore

while we expect that the spatial domains of these markers continue to overlap, and our scRNA-SEQ

confirms that NPCs continue to express both of these markers, there may be subtleties to their spa-

tial dynamics that reveal principles of NPC organization in regeneration that we did not capture.

Our study identified both novel candidate markers of specific neural lineages, and potential regu-

latory circuits directing regenerative decisions. Many of the genes we identified as differentially

Figure 7 continued

shown for (B) tracer injected, (C) Meis1 VMO injected, and (D) Pbx3 VMO injected tadpoles. (E–J) 24hpa and 72hpa regenerates were collected and

stained for neurofilament (E–G) or PH3 (H–J). Top photos are in DIC and bottom photos are immunostained as indicated. White arrows indicate

amputation plane. These images were collected for (E, H) tracer, (F, I) Meis1 VMO, and (G, J) Pbx3 VMO. (K) Regenerated tail and spinal cord lengths

were measured and reported in boxplots. (L) Boxplot representing regenerated spinal cord area. (M) Boxplot representing PH3 cells per regenerated

spinal cord area. Statistics represent a two-tailed t-test to determine significance between conditions. (ns = not significant, *<0.05, **<0.005,

***<0.0005, ****<0.00005).

The online version of this article includes the following source data and figure supplement(s) for figure 7:

Source data 1. Regenerated Tail Length Data for Vivo-Morphants.

Source data 2. PH3 Cell Count and Regnerated Spinal Cord Area for Vivo-Morphants.

Figure supplement 1. Embryonic Meis1 and Pbx3 morphants are characterized by small heads and missing or small eyes.

Figure supplement 2. Meis1 and Pbx3 are independently necessary for successful regeneration of the axial tissue and neuronal patterning.

Figure supplement 2—source data 1. Regenerated Tail Length Data for Embryonic Morphants.
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expressed and with differentially accessible promoters were not previously detected in bulk RNA-

Seq or microarray analyses (Chang et al., 2017; Love et al., 2011). Of these, pbx3 stands out as a

gene with expression that is well-restricted to the neural lineage, becomes further restricted to dif-

ferentiated neurons following injury, has a differentially accessible promoter itself, and has a target

motif upstream of multiple differentially-expressed neuronal genes. Nevertheless, pbx3 was not

detected as differentially expressed in previous analyses of regeneration, likely because of the low

overall expression levels of pbx3, and because expression changes are lineage-specific. Only by

combining motif prediction from ATAC-Seq and the high-resolution expression data from scRNA-

Seq did we bring this transcription factor to the top of our candidate list. Similarly, meis1, which is

well-known as a regulator of neural and neural crest development (Erickson et al., 2010;

Kelly et al., 2006; Machon et al., 2015; Mojsin and Stevanovic, 2010; Rataj-Baniowska et al.,

2015; Stedman et al., 2009; Yamada et al., 2013), has not previously been detected in differential

expression analyses during Xenopus regeneration. This may be because meis1 is more broadly

expressed, and bulk RNA-Seq was unable to capture the heterogeneity of expression changes meis1

undergoes across multiple cell types.

Evidence for a temporal uncoupling of differentiation and proliferation
in the regenerating neural lineage
We find that pax6+ neural progenitors place an early priority on neuronal differentiation, and specifi-

cally on formation of interneurons and motor neuron subtypes by 24hpa, shown as a model in

Figure 8A–C. This is supported by the widespread accessibility enrichment of neuronal differentia-

tion genes specifically at 24hpa, by the decline in relative proportion of neural progenitors and tran-

sitioning neurons in favor of motor neurons and interneurons, and by a reduction in the number of

cells in S/G2/M phases of the cell cycle.

Our finding that pax6+ progenitors prioritize differentiation before proliferation in regeneration

represents an intriguing counterpoint to embryonic development, in which regional-specific prolifer-

ative neural progenitors can only later make the decision to undergo neurogenesis and exit the cell

cycle (Hardwick et al., 2015). Transcriptional analysis of proliferating blastemal cells as well as

recent pre-publication work in later-stage tadpoles of Xenopus laevis suggests the same model may

also hold true in that species (Pelzer et al., 2020; Tsujioka et al., 2015).

The cell cycle exit and differentiation of some of the existing pool of neural progenitors and dif-

ferentiating neurons at 24hpa results in a decline in these cell types and an increase in motor and

interneurons. Not all progenitor cells exit the cell cycle however, and a residual population remains,

from which we propose that additional progenitors are made by proliferation after 24hpa, in agree-

ment with the emphasis placed on progenitor proliferation seen by ATAC-Seq at 72hpa and mitotic

analysis by PH3 (Figure 8D). We expect that the organized formation and outgrowth of neuronal

structures remains important from 24 to 72hpa, as axons visibly elongate, and that pbx3 and meis1

are important regulators of these processes based on their target gene accessibility profiles

(Figure 8E/F). Our model agrees with numerous findings that there is little proliferation after tail

amputation prior to 48hpa (Contreras et al., 2009; Gaete et al., 2012; Love et al., 2011;

Pelzer et al., 2020; Tsujioka et al., 2015) and with bulk RNA-Seq analysis showing a transcriptional

upregulation of axonogenesis and other neuronal differentiation genes (Chang et al., 2017). Our

analysis suggests that early changes in neural cell identity and distribution, as well as the genes driv-

ing them, may represent an important early phase of regeneration that precede proliferation. In

other regenerative vertebrates, specifically the anole lizards and geckos, spinal cord regeneration is

incomplete; it includes formation of new axons along an ependymal cell tube, but does not include

proliferation of progenitor cells to make a complete spinal cord (Duffy et al., 1990;

Tokuyama et al., 2018; Wang et al., 2012). An interesting future direction would be to pursue

whether program supporting axonogenesis may therefore have persisted in amniote lineages, where

other features of complete spinal cord regeneration have been lost.

Neural cell types preserve their identities in the regenerating Xenopus
tail
The identities of specific neural cell types are readily assigned to the same clusters both before and

after tail transection in Xenopus. This agrees with recent single-cell transcriptomic analysis of the
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regenerating Xenopus laevis tail and spinal cord, in which the majority of cell types can be clearly

assigned at 1, 2 and 3 days after amputation (Aztekin et al., 2019; Pelzer et al., 2020). The pre-

dominant model for vertebrate regeneration remains the axolotl limb, in which the formation of a

morphologically undifferentiated mesenchymal blastema has been well characterized through mor-

phological, histological, transcriptional, and single-cell analysis (Currie et al., 2016; Gerber et al.,

2018; McCusker et al., 2015). In the axolotl limb, scRNA-Seq shows that different connective tissue

cell types lose their unique transcriptional identities early in regeneration and converge on a similar

signature, as the blastema forms (Gerber et al., 2018). While the early Xenopus tail regenerate has

Figure 8. Model for neural progenitor regeneration. (A) In normal development, neural progenitor cells make cell fate decisions to proliferate or

differentiate. From this study we predict from our ATAC-Seq and scRNA-Seq analysis that neural progenitors first prioritize (B) migration and tube

morphogenesis at 6hpa, followed by (C) neural differentiation at 24hpa, and then (D) turn on proliferation programs at 72hpa. (E) From integrative

analysis of these data sets, we identified meis1 and pbx3 as candidate regulators of NPC regeneration at 24hpa and 72hpa. Loss-of-function

experiments suggest Meis1 and Pbx3 are necessary for successful regeneration as well as proper axonal patterning. Magenta shaded spinal cord

represents NPCs in regenerated spinal cord. Magenta axons represent axons in the regenerated spinal cord and tail tissue.
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also been described as a blastema (Gargioli and Slack, 2004; Tsujioka et al., 2015), its parallels to

the axolotl blastema have been debated (Mochii et al., 2007), and our study confirms that diverse

cell types retain well-discriminated transcriptional signatures as regeneration proceeds. This sug-

gests that the molecular nature of the blastema may differ substantially between axolotls and Xeno-

pus. In other regenerative contexts such as bone regeneration of the zebrafish fin, the formation of a

blastema at the tip of each bony ray has been well documented (Knopf et al., 2011; Münch et al.,

2013; Sousa et al., 2011). Global transcriptional responses to injury can therefore vary among

regenerative vertebrate structures, which highlights the importance of multiple models for append-

age regeneration.

Pbx3 and Meis1 are required for axon organization and for tail
regeneration
We identify two transcription factors, Pbx3 and Meis1, as transcriptional regulators acting upstream

of neuronal differentiation genes during regeneration (Figure 8E). We show that these factors are

both expressed in the regenerating spinal cord, with increased expression in motor neuron subtypes

during regeneration. Loss of function of either factor results in disorganized neurofilament out-

growth with a failure of successful axial tissue regeneration. These factors are predicted to bind

upstream of several dozen differentially accessible neuronal differentiation factors and are thus well-

placed to drive the prioritization of neuronal differentiation we observe. Loss of either factor does

not result in a failure to form neurofilaments, but does result in grossly disrupted organization of

neurofilaments and reduced regeneration of the tail and spinal cord. Our data therefore suggests

these factors may be critical for the proper re-formation and organization of differentiated neuronal

structures. We note that even though the differentially accessible targets of Pbx3 are preferentially

found at 72hpa, when proliferation is increasing, many targets of Pbx3 are shared with Meis1, and

Pbx3 itself increases in expression in neuronal types by 24hpa. We therefore propose that Pbx3 and

Meis1 contribute to the ongoing differentiation of neuronal structures from 24hpa to 72hpa

(Figure 8F). Intriguingly, loss of either Pbx3 or Meis1 results in reduced tail regeneration overall.

This may be due to interactions between regenerating nerves or neuronal structures and other axial

structures, as regeneration of appendages has been shown to be nerve dependent in Xenopus and

other systems (Farkas and Monaghan, 2017).

Pbx3 and Meis1 may work independently or as part of a complex. Pbx3 and Meis1 are known to

heterodimerize and coregulate targets upstream of hoxa9 during leukemia progression (Li et al.,

2016; Machon et al., 2015). Meis1 also partners with the related protein Pbx1 in axolotl limb regen-

eration and neural development (French et al., 2007; Mercader et al., 2005; Mojsin and Steva-

novic, 2010). Although their targets are incompletely overlapping in our regeneration data, they are

co-expressed in several cell types, and so we do not rule out the possibility that they may also act as

a complex in the tadpole tail. Neither pbx3 nor meis1 have been studied in neural regeneration.

These two factors therefore represent exciting new candidates for regulating neuronal differentiation

in regeneration.

Conclusion
Taken as a whole, our study presents a coordinated analysis of chromatin accessibility and single cell

transcriptomics in the regenerating neural lineage. We show that neural progenitors temporally

uncouple their regulation of differentiation and proliferation, placing an earlier priority on differentia-

tion of motor neuron subtypes. This new model represents an intriguing contrast to embryonic

development. We computationally identify multiple candidate regulators of neural progenitor fate

decisions in a regenerative context, and specifically highlight pbx3 and meis1 as critical regulators of

neural development and regeneration.

Materials and methods
Key resources can be found in the key resource table, Supplementary file 2. All data generated and

analyzed in this paper can be found with the GEO accession GSE146837 (https://www.ncbi.nlm.nih.

gov/geo/query/acc.cgi?acc=GSE146837). Source files and analysis code can be found at https://

gitlab.com/akakebee/kakebeen-et-al-2020 (Kakebeen, 2020; copy archived at https://github.com/

elifesciences-publications/kakebeen-et-al-2020).
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X. tropicalis husbandry and use
Use of Xenopus tropicalis was carried out under the approval and oversight of the IACUC committee

at UW, an AALAC-accredited institution. Ovulation of adult X. tropicalis and generation of embryos

by natural matings were performed according to published methods (Khokha et al., 2002;

Sive et al., 2010). Fertilized eggs were de-jellied in 3% cysteine in 1/9x modified frog ringer’s solu-

tion (MR) for 10–15 min. Embryos were reared as described (Khokha et al., 2002. Staging was

assessed by the Nieuwkoop and Faber (1994) staging series. In this study we used both wild-type

frogs and frogs from the triple transgenic line Xtr.Tg(pax6:GFP;cryga:RFP;actc1:RFP)Papal

(Hartley et al., 2001; Hirsch et al., 2002; RRID:NXR_1.0021) reared and purchased from the

National Xenopus Resource (https://www.mbl.edu/xenopus/; RRID:SCR_013731). Pax6 transgenic

matings were performed by crossing a heterozygous transgenic frog to a wild-type frog. These mat-

ings yielded clutches with 50/50 wt/pax6:GFP+ populations.

Sectioning and imaging
For sectioning, tadpoles were fixed for 30 min in 10xMEMFA, 3.7% formaldehyde at room tempera-

ture. Tadpoles were then washed briefly in PBT and incubated in 4% sucrose in 1xPBS at 4C over-

night. Tadpoles were embedded in Tissue Tek O.C.T. (Sakura 4583) in 10mmx10mmx5mm molds

(Sakura 4565) and stored in the �80C until sectioning. Tadpoles were sectioned transversely at 14

mm with a cryostat (Leica). Sections that were not stained were baked onto slides on a heatblock and

imaged within 24 hr to capture endogenous pax6 reporter fluorescence. Images were acquired with

a Lecia SP8 and UPDATE camera.

X. tropicalis amputation assay
X. tropicalis were sorted for transgenic reporter fluorescence for regeneration assays. Tadpoles were

anesthetized with 0.05% ms-222 in 1/9x MR and tested for response to touching prior to amputation

surgery. Once fully anesthetized, a sterilized scalpel was used to amputate the posterior third of the

tail. Amputated tadpoles were removed from anesthetic media within 10 min of amputation into

new 1/9x MR. Tadpoles were left to regenerate at a density of no more than 3 tadpoles to 1 mL of

media.

Cell dissociation and fluorescent activated cell sorting (FACS)
Cell dissociation
At each timepoint, regenerating tadpoles were anesthetized until non-responsive to touch. A scalpel

was used to amputate to the regenerated tail tissue (most posterior point to ~500 mm anterior of

that point). Regenerated tail tips were collected and spun down at 1000xg. Media was taken off

and ~60 tails were resuspended in 200 uL of 0.035 mg/ml liberase in PBS (Roche 05401119001). Tails

were left to incubate for 20 min at room temperature. A p-200 was then used to pipet the tails up

and down gently and break up tail tissue. Once no visible chunks were apparent, cells were spun

down for 3 min at 1000xg. Supernatant was disposed and cells were washed with 180 uL of 1xPBS.

Cells were then spun once more for 1 min at 1000xg and supernatant disposed. Cells were resus-

pended in 200–300 uL of 1xPBS and filtered through a 70 mm cell filter (Fisher 22-363-548) into a

FACS tube. Cells were kept on ice until sorting.

FACS
Cell sorting and collecting were performed through on the BD FACS Aria III Cell Sorter (BD Bioscien-

ces). Wild-type samples were used as negative controls to set sorting gates to exclude any autofluor-

escence from our true GFP signal. Cells were sorted based on selection from three criteria. FSC x

SSC were used to select for cells based on size and granularity. From this population, cells were visu-

alized with the FSC-W x FSC-H dimensions to select for singlets and exclude doublets. The doublets

were then visualized in a histogram where GFP was the x-axis. For GFP gate setting, selection gates

were drawn for all area without cells in the wild-type tails. Here we assume that any GFP-signal is

autofluorescence and need be selected against. Positive control transgenic tadpoles were used to

test for GFP signal. Cells were passed through the sorter and collected through a 70 mm nozzle.

Cells were collected into 50 uL of 1xPBS. For pax6 samples, GFP+ and GFP- cells were collected
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into separate tubes and for all-tissue samples, GFP+ and GFP- cells were collected into the same

tube.

Quantitative RT-PCR
For RT-PCR, either GFP+ cells or GFP- cells were collected from the flow cytometer directly into

RNA lysis buffer. Between 2000–4000 cells were collected for each condition from uninjured tail tips.

Cells were then agitated at 42C for 45 min. RNA/DNA were extracted and purified from the lysed

cells by phenol:chloroform extraction with subsequent ethanol precipitation. Samples were then

DNAse treated to remove DNA. To make cDNA from the RNA, we used the Superscript III reverse

transcriptase kit (ThermoFisher 18080044). Amplifications were carried with iQ SYBR Green Super-

mix (BioRad 1708882) for 40 cycles of: 95C:10 s, 57C:30 s after initial 2minutest at 95C. Primers used

for gfp, pax6, actc1, tubb2 are provided Supplementary file 2.

ATAC-Seq library preparation
Within 30 min of cell sorting, cells were prepared for transposition. (See Supplementary file 1 for

details of cells sorted for each sample). Cells were spun down for 3 min at 1000xg and supernatant

was discarded. Cells were resuspended in 15 uL of TN5 reaction mix using the TN5 enzyme, buffer,

and water from the Nextera DNA Sample prep kit (Illumina 15028212). Cells were transposed for 1

hr at 37C. Post transposition, cells were removed from 37C and DNA was purified using the Qiagen

MinElute kit (Qiagen 28206). DNA was eluted in 10 uL of buffer EB. Purified DNA was then amplified

using the 2xNEB PCR Master Mix (NEB M0541L), a universal forward primer, and an indexed reverse

primer from the i7 Illumina series. Initial amplification as follows: 72C:5 min, 98C:30 s, then 5 cycles

of 98C:10 s, 63C:30 s, 72C:1 min. 5 uL of the initial PCR product was then used for a 15 ml side

qPCR reaction to determine how many more cycles to run to stop amplification prior to saturation.

The side reaction was carried out as follows: 98C:30 s, then 30 cycles of 98C:10 s, 63C:30 s, 72C:1

min. The number of cycles was determined by taking the range of the starting and ending CT values

and dividing that number by 4, then identifying how many cycles the sample had gone through at

the derived CT value. The initial PCR reactions were then run for the calculated number of extra

cycles and removed from the thermo cycler. Amplified samples were purified with the Qiagen MinE-

lute kit and eluted in 20 uL of buffer EB. 5 uL of purified PCR product were run out on a 5% acrylam-

ide gel in 1xTBE at 100V for ~45 min. Gels were stained with Ethidium Bromide and imaged on the

gel imager (BioRad). Samples with sufficient periodic bands, relating to length of DNA to wrap a

mono-, di-, tri- nucleosome, were then run out on a bioanalyzer. Library concentrations were taken

using the Qubit high sensitivity dsDNA assay. Libraries were pooled by normalizing library concen-

trations to the lowest concentration and adding equal volumes of libraries for a minimum of 5 ng of

each library.

Libraries were sequenced on the Illumina Next-Seq platform across three NextSeq 500 High Out-

put Kit v2.5 (150 cycles, Illumina CAT. 20024907). Libraries were sequenced with, paired end, 75 bp

reads at the Sound Genomics facility.

ATAC-Seq analysis pipeline
Trimming adaptors and alignment
Adapters were trimmed from reads and low-quality sequences (Phred < 33) were removed using

Trim Galore!. Reads were aligned to xtropicalis9.0 using Bowtie2 (option:–very-sensitive)

(Langmead and Salzberg, 2012; Langmead et al., 2019). Duplicate reads were marked using Pic-

ard ‘MarkDuplicates’ (http://broadinstitute.github.io/picard/). Duplicate reads were removed using

SAMtools. Bigwigs were generated using a custom script (https:// rpubs.com/achitsaz/98857) and

visualized in IGV.

Peak calling
Peaks were called using MACS2 (options:–nomodel–shif �100–extsize 200) (Zhang et al., 2008).

Consensus peak set used for differential accessibility were called on a merged bam of all ATAC-seq

files used in this experiment.

Kakebeen et al. eLife 2020;9:e52648. DOI: https://doi.org/10.7554/eLife.52648 21 of 31

Research article Developmental Biology Stem Cells and Regenerative Medicine

http://broadinstitute.github.io/picard/
http://rpubs.com/achitsaz/98857
https://doi.org/10.7554/eLife.52648


Peak annotation
Annotation and genomic feature enrichment analysis. Annotation of ATAC-seq peaks and genomic

annotation enrichment analysis were performed using GenomicRanges (Lawrence et al., 2013),

matching each peak to the nearest TSS using Xtropicalisv9.0.Named.primaryTrs.gff3 from Xenbase.

Differential accessibility analysis
Differential accessibility analysis in ATAC-seq peaks. Differential accessibility across ATAC-seq sam-

ple groups was determined as detailed in the edgeR users guide (Robinson et al., 2010). To define

the regions for differential accessibility analysis, peaks were called on a merged bam of all ATAC-

seq samples in this experiment. A matrix of counts for all samples was then generated using the ‘fea-

tureCounts’ in the Rsubread package (options: isPairedEnd = TRUE, maxFragLength = 2000). The

counts matrix was filtered to select rows having at least one count per million in n�one samples to

minimize the influence of variability at the threshold for sensitivity on the analysis.

Gene Ontology analysis
GO:BP analysis (gprofiler2)
Using differential accessibility flags, we identified all regions more accessible in the indicated con-

trast. The TSS annotation of these regions was used as input for gene ontology analysis. GO analysis

was carried out using the ‘gprofiler2’ R package (Raudvere et al., 2019). The command ‘gost’ was

used to call GO terms (options: query = DA peak list, organism=”hsapiens’, sources=”GO:BP’,

evcodes = TRUE).

Reduce Redudancy (ReviGO)
To reduce redundancy of GO terms, we used the online resource ReviGO (http://revigo.irb.hr/)

(Supek et al., 2011). We input GO IDs and p-values into ReviGO and used the following parameters

to run the analysis: allowed similarity = tiny(0.4), p-values, database with GO term sizes = Homo

sapiens, Semantic similarity measure = SimRel. We then saved the output. CSV file for further plot-

ting and analysis in R.

Single cell RNA-Seq library preparation
GFP+ cells from ~500 tails were collected for single cell analysis using the above methods but scaled

for 500 tails. After sorting, cells were immediately washed with 1xPBS and diluted to a concentration

of 1000 cells/ml based on the 10x Genomics guidelines. We aimed for capture of 10,000 cells using

the 10x Genomics Platform. Single-cell mRNA libraries were prepared using the single-cell 3’ solu-

tion V2 kit (10x Genomics). Quality control and quantification assays were performed using a Qubit

fluorometer (Thermo Fisher) and a D1000 Screentape Assay (Agilent). Libraries were sequences on

an Illumina NextSeq 500 using 75-cycle, high output kits (reads 1: 26 cycles, i7 Index: eight cycles,

read 2: 57 cycles). Each sample was sequenced to average read depth of 16 million total reads. This

resulted in an average read depth of ~15,000 reads/cell after read depth normalization.

Single cell RNA-Seq data processing
Cellular barcodes and mMis were determined using Cell Ranger 2.0.2 (10X Genomics) and cells were

filtered to include only high-quality cells. Cell ranger defaults for selecting cell-associated barcodes

versus barcodes associated with empty partitions were used.

UMAP visualization and clustering
Clustering and integration of all cells in uninjured tail and 24hpa
We used Seurat V3.0 for analysis of scRNA-Seq data (Butler et al., 2018; Butler et al., 2018). To

reduce dimensions and cluster cells for the uninjured and 24hpa data sets, we followed Seurat’s

‘Integrating stimulated vs. control PBMC datasets to learn cell-type specific responses’ vignette

(https://satijalab.org/seurat/v3.1/immune_alignment.html). We created Seurat objects from Cell-

Ranger processed data with the command ‘CreateSeuratObject’ (options: min.cells = 5). We then

removed cells that had less than 500 RNA features by subsetting data (options:

subset = nFeature_RNA >500). Cells were normalized (‘NormalizeData’) and variable features were
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found with ‘FindVariableFeatures’ (options: selection.method = ‘vst’). Integration anchors for the

two data sets were identified with ‘FindIntegrationAnchors’ (options: dims = 1:20) and the integra-

tion of the data sets was performed with ‘IntegrateData’ (options: dims = 1:20). The integrated data

set was then scaled (‘ScaleData’) and principle components were found with the command ‘RunPCA’

(options: npcs = 60). We then reduced dimensions using Uniform Manifold Approximation and Pro-

jection (UMAP). We did so by using ‘RunUMAP’ (options: npcs = 40). Next we clustered cells by first

finding nearest neighbors with ‘FindNeighbors’ (options: reduction=”pca’, dims = 40) and then call-

ing clusters with ‘FindClusters’ (options: resolution = 0.7).

Subsetting of neural cells in uninjured tail and 24hpa
We used neural marker genes (sox2, neurog1, neurod1, and elavl4) to determine which cell clusters

were neural cells. To subset the data set, we used ‘SubsetData’ (options: ident.use = c(1,4,5,13,15).

The subset data was scaled, and principle components were called. ‘RunUMAP’ and ‘FindNeighbors’

was run (options: reduction=”pca’, dims = 1:20). ‘FindClusters’ was then run to establish neural clus-

ters (options: resolution = 0.4).

Marker identification and differential expression analysis
Cluster markers
To identify genes that define each cluster, we used Seurat’s ‘FindMarkers’ command (options:

ident.1 = Cluster of interest, min.pct = 0.3, only.pos = TRUE, assay = ‘RNA’). This command was run

for all seven subset neural clusters.

Differential gene expression across timepoints
To identify genes that were differentially expressed between uninjured and 24hpa tail cells, the

Seurat function ‘FindMarkers’ was used. (options: ident.1 = Cluster of interest_uninjured,

ident.2 = Cluster of interest_24hpa, min.pct = 0.3, assay = ‘RNA’).

Cell cycle prediction analysis
Cell cycle prediction
To predict the cell cycle of cells sequenced in our scRNA-Seq, we followed the methods outlined in

the Seurat Vignette ‘Cell-Cycle Scoring and Regression’ (https://satijalab.org/seurat/v3.1/cell_cycle_

vignette.html). Genes defining ‘S’ phase and ‘G2M’ phase were called from a pre-loaded list of cell

cycle markers from Kowalczyk et al. (2015). These genes were then used in the Seurat command

‘CellCycleScoring’ to predict cell cycle phases (options: s.features = s.genes (from Seurat), g2m.fea-

tures=g2 m.genes(from Seurat), set.ident = TRUE).

Gene regulatory predictions
Motif Finding
We used the ‘findMotifsGenome.pl’ command to identify all known binding motifs from the Homer

motif library in differentially accessible peaks (Heinz et al., 2010). The motifs were then appended

to the ATAC-Seq differential accessibility table by matching peak names. This table gave us a called

peak, the TSS annotation of that peak, motifs called in the peak, and transcription factor binders of

the called motif.

Bulk RNA-Seq integration
TSS annotations were used to vet table for genes that are expressed at the given timepoint. To do

so, we subsetted the table for genes that were expressed in bulk RNA-Seq data from Chang et al.

(2017).

GRN prediction across regenerative time
Using a homemade script, we identified DA regions at 6hpa that had binding motifs in 24hpa DA

peaks. We then identified DA regions at 24hpa that had binding motifs in 72hpa DA peaks. To con-

nect the timepoints, we identified targets of TFs with motifs at 24hpa, then asked whether those tar-

gets had binding motifs at 72hpa. To narrow down potential GRNs to follow up on, we asked
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whether the genes were expressed in neural cells in the scRNA-Seq data in the uninjured at 24hpa

cells and whether they were differentially expressed.

Whole-Mount in situ hybridization
Embryos and larval tadpoles were fixed in 1xMEMFA, 3.7% Formaldehyde for 2–6 hr at room tem-

perature or overnight at 4C. X. tropicalis multibasket in situ hybridization protocols were followed as

described in Khokha et al. (2002). For plasmids used for in situ hybridization probes, see reagents

table). Whole mount in situ tadpoles were imaged on a Leica M205-FA with a D5C550 camera.

Morpholino microinjections
Morpholinos were ordered from Gene Tools. BLAST searches for both morpholinos for Meis1 and

Pbx3 using the X. tropicalis v9.1 genome identified just one target in the correct gene for each of

the 4 MOs, and no off target binding elsewhere in the genome.

Dorsal blastomere injections
Wild-type X. tropicalis embryos were staged to NF stage 3 (4 cell). Using a microinjector, the two

dorsally-fated blastomeres were both injected with 2 nL of morpholino mix. Morpholino mix con-

tained a morpholino against meis1 (MO1:8 ng or MO2:16 ng) or against pbx3 (MO1:10 ng or

MO2:10 ng) and a labeled dextran tracer (used at 2 mg/mL, ThermoFisher D1817). Embryos were

screened at stage 18 for bilateral red fluorescence in the nervous system tissues. Neurulas were

raised to stage 41 and used for regeneration assays. Morphant regenerates were collected at

24hpa, 48hpa, and 72hpa for measurement analysis.

Tail vein injections
Wild-type X. tropicalis embryos were staged to NF embryonic stage 35–36 (pre-hatching stage).

Tadpoles were anaesthetized with MS-222 and moved from culture dish to an agarose coated dish

in one drop. Surrounding media was removed. Using a microinjector, a pulled needle containing

VIVO-morpholino and labeled dextran tracer was inserted into the ventral tail vein in the posterior

tail and 3 � 2 nL injections were delivered (20 ng). Embryos were returned to fresh media and

screened for tracer fluorescence in the blood stream. Injected tadpoles were grown 24 hr to stage

41 and amputated. At 24hpa, tadpoles to be collected at 72hpa were re-injected into the tail vein as

before.

CRISPR-mediated mutation
sgRNA Design,Preparation, and Injection
sgRNAs were designed targeting meis1 and pbx3 using CRISPRSCAN (https://www.crisprscan.org/?

page=gene) (options: organism = ‘Frog-Xenopus tropicalis’, Gene = ‘pbx3’ or ‘meis1’, Cas9-NGG,

In Vitro T7 promoter). PCR was performed as described in Bhattacharya et al. (2015). SgRNA was

transcribed using T7 mMachine kit (Ambion). Guides were injected into 2 blastomeres of 4 cell

embryos with 1.5 ng Cas9 (Bhattacharya et al., 2015; Nakayama et al., 2013). All guides were

injected at a dose of 400 pg/embryo.

Immunohistochemistry
Whole-mount
X. tropicalis tadpoles were fixed for 20 min in 10xMEMFA, 3.7% formaldehyde at room temperature.

To preserve reporter fluorescence, tadpoles were kept dark upon fixing. Tadpoles were permeabi-

lized by washing 3 � 20 min in PBS + 0.01% Triton x-100 (PBT). Tadpoles were blocked for 1 hr at

room temperature in 10% CASblock (Invitrogen #00–8120) in PBT. Then tadpoles were incubated in

primary antibody (1:50 neurofilament associated antigen, DSHB 3A10; 1:1000 Anti-Histone H3 (tri

methly K9, Phospho S10), Abcam 14955) diluted in 100% CAS-block overnight at 4˚C. Tadpoles

were then washed 3 � 10 min at room temperature in PBT and reblocked for 30 min in 10% CAS-

block in PBT. Secondary antibody (goat anti-mouse 488, ThermoFisher A11001 or goat anti-mouse

555, ThermoFisher A21422) were diluted 1:500 in 100% CAS-block and incubated for 2 hr at room

temperature.
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Sections
Sections were baked onto slides on a heat block for 1 hr. Once slide had cooled, a hydrophobic bar-

rier was drawn around the sections with a PAP pen (cat) and left to dry. Once dry, sections were

washed with PBT 3 � 10 min. Sections were then blocked for 1 hr in 10% CASBlock followed by incu-

bation in primary antibody overnight at 4C (1:50 neurofilament associated antigen, DSHB 3A10;

1:100 anti-DCX, Cell Signaling Technology 4604S; 1:200 anti-Sox2, Cell Signaling Technology

2748S). The following day, primary antibody was removed and replaced with a brief wash in PBT.

Sections were blocked for 30 min followed by 2 hr incubation in secondary antibody at room tem-

perature (1:500 goat anti-mouse 555, ThermoFisher A21422; 1:500 goat anti-rabbit 594, Thermo-

Fisher Cat. A-21422).

For both whole-mount and sections, tadpoles were then washed 3 � 20 min in PBT. Tadpoles

were then incubated in 1:2000 DAPI (Sigma D9542) for 10 min before being washed with 1xPBS for

10 more minutes. Isolated tails were mounted on slides in ProLong Gold (ThermoFisher P36930).

Images were acquired with a Leica SP8 confocal microscope.

Regenerated tissue measurement and analysis
Measurement
To measure regenerated length of spinal cord and tail, regenerated tails were mounted on slides

and were imaged on the Images were acquired with a Lecia DM 5500 B microscope with the 10x or

20x objective. Using the Leica imaging software (LasX), measurements were taken from the amputa-

tion plane to the most posterior point of the axial tissues for tail length and amputation plane to

most posterior point of the spinal cord for spinal cord length. We used morphological features such

as disruption to somite chevron morphology to identify the amputation plane.

Analysis
We used the R package ggplot2 to plot boxplots of the regenerate measurement data. A single

regenerated tadpole was treated as one measurement. A two-tailed t-test was used to test how dif-

ferent the uninjected controls were from the morphants. Statistical analysis was performed using the

R package ggpubr.

PH3 cell quantification
24hpa and 72hpa regenerated tails stained with anti-PH3 and DAPI were imaged on a Leica DM

5500 B Microscope with a 20x objective. Z-Stacks were acquired encompassing the entire spinal

cord in focus, while excluding the most outer structures (i.e. epidermis) and max projected. In FIJI,

the regenerated spinal cord in was identified and outlined in the DAPI channel to create a region of

interest. The region of interest was transferred to the PH3 channel, and the area of the region was

taken. PH3+ cells were counted manually within the region of interest. Quantifications were reported

as PH3+ cells per spinal cord area. Significance was tested by using a two tailed t-test between con-

ditions in question. This test was performed with the R package ggpubr.
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The following datasets were generated:

Author(s) Year Dataset title Dataset URL
Database and
Identifier

Kakebeen A, Chit-
sazan A, Williams
M, Saunders L,
Wills A

2020 Chromatin accessibility dynamics
and single cell RNA-Seq reveal new
regulators of regeneration in neural
progenitors

http://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?
acc=GSE146830

NCBI Gene
Expression Omnibus,
GSE146830

Kakebeen A, Chit-
sazan A, Williams
M, Saunders L,
Wills A

2019 Chromatin accessibility dynamics
and single cell RNA-Seq reveal new
regulators of regeneration in neural
progenitors

http://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?
acc=GSE146836

NCBI Gene
Expression Omnibus,
GSE146836

Kakebeen A, Chit-
sazan A, Williams
M, Saunders L,
Wills A

2020 Chromatin accessibility dynamics
and single cell RNA-Seq reveal new
regulators of regeneration in neural
progenitors

https://www.ncbi.nlm.
nih.gov/geo/query/acc.
cgi?acc=GSE146837

NCBI Gene
Expression Omnibus,
GSE146837

The following previously published dataset was used:

Author(s) Year Dataset title Dataset URL
Database and
Identifier

Chang J, Baker J,
Wills A

2017 RNA-Seq of Xenopus tail
regeneration

https://www.ncbi.nlm.
nih.gov/geo/query/acc.
cgi?acc=GSE88975

NCBI Gene
Expression Omnibus,
GSE88975
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Gaete M, Muñoz R, Sánchez N, Tampe R, Moreno M, Contreras EG, Lee-Liu D, Larraı́n J. 2012. Spinal cord
regeneration in Xenopus tadpoles proceeds through activation of Sox2-positive cells. Neural Development 7:
13. DOI: https://doi.org/10.1186/1749-8104-7-13, PMID: 22537391

Gargioli C, Slack JM. 2004. Cell lineage tracing during Xenopus tail regeneration. Development 131:2669–2679.
DOI: https://doi.org/10.1242/dev.01155, PMID: 15148301

Gerber T, Murawala P, Knapp D, Masselink W, Schuez M, Hermann S, Gac-Santel M, Nowoshilow S, Kageyama J,
Khattak S, Currie JD, Camp JG, Tanaka EM, Treutlein B. 2018. Single-cell analysis uncovers convergence of cell
identities during axolotl limb regeneration. Science 362:eaaq0681. DOI: https://doi.org/10.1126/science.
aaq0681, PMID: 30262634

Hardwick LJ, Ali FR, Azzarelli R, Philpott A. 2015. Cell cycle regulation of proliferation versus differentiation in
the central nervous system. Cell and Tissue Research 359:187–200. DOI: https://doi.org/10.1007/s00441-014-
1895-8, PMID: 24859217

Hartley KO, Hardcastle Z, Friday RV, Amaya E, Papalopulu N. 2001. Transgenic Xenopus embryos reveal that
anterior neural development requires continued suppression of BMP signaling after gastrulation.
Developmental Biology 238:168–184. DOI: https://doi.org/10.1006/dbio.2001.0398, PMID: 11784002

Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H, Glass CK. 2010. Simple
combinations of lineage-determining transcription factors prime cis-regulatory elements required for
macrophage and B cell identities. Molecular Cell 38:576–589. DOI: https://doi.org/10.1016/j.molcel.2010.05.
004, PMID: 20513432

Hirsch N, Zimmerman LB, Gray J, Chae J, Curran KL, Fisher M, Ogino H, Grainger RM. 2002. Xenopus tropicalis
transgenic lines and their use in the study of embryonic induction. Developmental Dynamics 225:522–535.
DOI: https://doi.org/10.1002/dvdy.10188

Ho DM, Whitman M. 2008. TGF-b signaling is required for multiple processes during Xenopus tail regeneration.
Developmental Biology 315:203–216. DOI: https://doi.org/10.1016/j.ydbio.2007.12.031, PMID: 18234181

Horb M, Wlizla M, Abu-Daya A, McNamara S, Gajdasik D, Igawa T, Suzuki A, Ogino H, Noble A, Centre de
Ressource Biologique Xenope team in France. 2019. Xenopus resources: transgenic, inbred and mutant
animals, training opportunities, and Web-Based support. Frontiers in Physiology 10:00387. DOI: https://doi.
org/10.3389/fphys.2019.00387

Kakebeen AD. 2020. Kakebeen et al 2020 Data Analysis. GitLab. a6ef518b. https://gitlab.com/akakebee/
kakebeen-et-al-2020

Kakebeen AD, Wills AE. 2019. More than just a bandage: closing the gap between injury and appendage
regeneration. Frontiers in Physiology 10:81. DOI: https://doi.org/10.3389/fphys.2019.00081, PMID: 30800076

Kelly LE, Carrel TL, Herman GE, El-Hodiri HM. 2006. Pbx1 and Meis1 regulate activity of the Xenopus laevis Zic3
promoter through a highly conserved region. Biochemical and Biophysical Research Communications 344:
1031–1037. DOI: https://doi.org/10.1016/j.bbrc.2006.03.235, PMID: 16631621

Kakebeen et al. eLife 2020;9:e52648. DOI: https://doi.org/10.7554/eLife.52648 28 of 31

Research article Developmental Biology Stem Cells and Regenerative Medicine

https://doi.org/10.1016/j.devcel.2016.10.013
http://www.ncbi.nlm.nih.gov/pubmed/27840105
https://doi.org/10.1242/dev.173807
http://www.ncbi.nlm.nih.gov/pubmed/30846445
https://doi.org/10.1002/dvdy.23972
http://www.ncbi.nlm.nih.gov/pubmed/23559567
https://doi.org/10.1002/cne.902930205
http://www.ncbi.nlm.nih.gov/pubmed/19189712
https://doi.org/10.1016/j.ygeno.2018.07.017
http://www.ncbi.nlm.nih.gov/pubmed/30092345
https://doi.org/10.1186/1749-8104-5-22
http://www.ncbi.nlm.nih.gov/pubmed/20809932
https://doi.org/10.1016/S0092-8674(00)80323-2
http://www.ncbi.nlm.nih.gov/pubmed/9230312
https://doi.org/10.1080/23262133.2017.1302216
http://www.ncbi.nlm.nih.gov/pubmed/28459075
https://doi.org/10.1016/j.stemcr.2014.06.018
http://www.ncbi.nlm.nih.gov/pubmed/25241743
http://www.ncbi.nlm.nih.gov/pubmed/6983200
http://www.ncbi.nlm.nih.gov/pubmed/6983200
https://doi.org/10.1186/1471-213X-7-85
http://www.ncbi.nlm.nih.gov/pubmed/17634100
https://doi.org/10.1186/1749-8104-7-13
http://www.ncbi.nlm.nih.gov/pubmed/22537391
https://doi.org/10.1242/dev.01155
http://www.ncbi.nlm.nih.gov/pubmed/15148301
https://doi.org/10.1126/science.aaq0681
https://doi.org/10.1126/science.aaq0681
http://www.ncbi.nlm.nih.gov/pubmed/30262634
https://doi.org/10.1007/s00441-014-1895-8
https://doi.org/10.1007/s00441-014-1895-8
http://www.ncbi.nlm.nih.gov/pubmed/24859217
https://doi.org/10.1006/dbio.2001.0398
http://www.ncbi.nlm.nih.gov/pubmed/11784002
https://doi.org/10.1016/j.molcel.2010.05.004
https://doi.org/10.1016/j.molcel.2010.05.004
http://www.ncbi.nlm.nih.gov/pubmed/20513432
https://doi.org/10.1002/dvdy.10188
https://doi.org/10.1016/j.ydbio.2007.12.031
http://www.ncbi.nlm.nih.gov/pubmed/18234181
https://doi.org/10.3389/fphys.2019.00387
https://doi.org/10.3389/fphys.2019.00387
https://gitlab.com/akakebee/kakebeen-et-al-2020
https://gitlab.com/akakebee/kakebeen-et-al-2020
https://doi.org/10.3389/fphys.2019.00081
http://www.ncbi.nlm.nih.gov/pubmed/30800076
https://doi.org/10.1016/j.bbrc.2006.03.235
http://www.ncbi.nlm.nih.gov/pubmed/16631621
https://doi.org/10.7554/eLife.52648


Khazaei M, Ahuja CS, Rodgers CE, Chan P, Fehlings MG. 2019. Generation of definitive neural progenitor cells
from human pluripotent stem cells for transplantation into spinal cord injury. Methods in Molecular Biology
1919:25–41. DOI: https://doi.org/10.1007/978-1-4939-9007-8_3, PMID: 30656619

Khokha MK, Chung C, Bustamante EL, Gaw LW, Trott KA, Yeh J, Lim N, Lin JC, Taverner N, Amaya E,
Papalopulu N, Smith JC, Zorn AM, Harland RM, Grammer TC. 2002. Techniques and probes for the study of
Xenopus tropicalis development. Developmental Dynamics 225:499–510. DOI: https://doi.org/10.1002/dvdy.
10184, PMID: 12454926

Kline RA, Kaifer KA, Osman EY, Carella F, Tiberi A, Ross J, Pennetta G, Lorson CL, Murray LM. 2017.
Comparison of independent screens on differentially vulnerable motor neurons reveals alpha-synuclein as a
common modifier in motor neuron diseases. PLOS Genetics 13:e1006680. DOI: https://doi.org/10.1371/
journal.pgen.1006680, PMID: 28362802

Knopf F, Hammond C, Chekuru A, Kurth T, Hans S, Weber CW, Mahatma G, Fisher S, Brand M, Schulte-Merker
S, Weidinger G. 2011. Bone regenerates via dedifferentiation of osteoblasts in the zebrafish fin. Developmental
Cell 20:713–724. DOI: https://doi.org/10.1016/j.devcel.2011.04.014, PMID: 21571227

Kowalczyk MS, Tirosh I, Heckl D, Rao TN, Dixit A, Haas BJ, Schneider RK, Wagers AJ, Ebert BL, Regev A. 2015.
Single-cell RNA-seq reveals changes in cell cycle and differentiation programs upon aging of hematopoietic
stem cells. Genome Research 25:1860–1872. DOI: https://doi.org/10.1101/gr.192237.115, PMID: 26430063

Lai HC, Seal RP, Johnson JE. 2016. Making sense out of spinal cord somatosensory development. Development
143:3434–3448. DOI: https://doi.org/10.1242/dev.139592, PMID: 27702783

Langmead B, Wilks C, Antonescu V, Charles R. 2019. Scaling read aligners to hundreds of threads on general-
purpose processors. Bioinformatics 35:421–432. DOI: https://doi.org/10.1093/bioinformatics/bty648,
PMID: 30020410

Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with bowtie 2. Nature Methods 9:357–359.
DOI: https://doi.org/10.1038/nmeth.1923, PMID: 22388286
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