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Abstract Evolutionary adaptations of temporo-parietal cortex are considered to be a critical

specialization of the human brain. Cortical adaptations, however, can affect different aspects of

brain architecture, including local expansion of the cortical sheet or changes in connectivity

between cortical areas. We distinguish different types of changes in brain architecture using a

computational neuroanatomy approach. We investigate the extent to which between-species

alignment, based on cortical myelin, can predict changes in connectivity patterns across macaque,

chimpanzee, and human. We show that expansion and relocation of brain areas can predict

terminations of several white matter tracts in temporo-parietal cortex, including the middle and

superior longitudinal fasciculus, but not the arcuate fasciculus. This demonstrates that the arcuate

fasciculus underwent additional evolutionary modifications affecting the temporal lobe connectivity

pattern. This approach can flexibly be extended to include other features of cortical organization

and other species, allowing direct tests of comparative hypotheses of brain organization.

Introduction
The temporal lobe is a morphological adaptation of the brain that is unique to primates (Bryant and

Preuss, 2018). Its origins likely include expansion of higher-order visual areas to accompany the pri-

mate reliance on vision (Allman, 1982). Temporal association cortex contains areas devoted to

higher-level visual processing and social information processing (Rushworth et al., 2013;

Sallet et al., 2011) that, in turn, rely strongly on visual information in primates (Perrett et al., 1992).

The expanded temporal cortex in apes and humans contains several multimodal areas and areas

associated with semantics and language (Dronkers et al., 2004; Hickok and Poeppel, 2007;
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Price, 2000). As such, understanding the evolution of temporal cortex across the primate order is a

vital step to understanding primate behavioral adaptations.

Two lines of evidence are often brought to bear on differences in temporal lobe organization

across humans and other primates. The first line emphasizes selective local expansions of temporal

cortex and subsequent relocation of areas. Morphologically, great apes possess an extra sulcus in

the temporal cortex, suggesting at the very least expansion of this part of cortex. Mars et al. (2013)

reported a region in the middle part of the superior temporal sulcus of the macaque that shares ana-

tomical features of the human temporo-parietal junction area located at the caudal end of the tem-

poral cortex, suggesting a major relocation of this area. In a similar vein, Patel et al. (2019) suggest

that expansion of the temporo-parietal junction and superior temporal sulcus gave rise to a modified

ventral visual processing stream to support increased social abilities in humans. The second line of

evidence emphasizes changes in the connectivity of the temporal lobe. Rilling et al. (2008) first sug-

gested dramatic expansion of the arcuate fasciculus temporal cortex projections in the human, but

more recent studies also emphasize increased projections of the middle longitudinal and inferior

fronto-occipital fasciculi and their role in language-related processes in the human (Catani and Bam-

bini, 2014; Makris et al., 2013; Makris and Pandya, 2009; Saur et al., 2008).

These different schools place different emphasis on what happened to temporal cortex across dif-

ferent primate lineages. Their results, however, should be interpreted in relation to one another as

species differences in brain organization can come in many forms that can interact in unpredictable

ways (Krubitzer and Kaas, 2005; Mars et al., 2018a; Mars et al., 2017). Dissociating such different

types of species differences is challenging (Figure 1A,B). For instance, given an ancestral or refer-

ence state, local expansions of the cortical sheet can lead to the relocation of homologous areas

between two species. As a case in point, human MT+ complex is located much more ventrally in

eLife digest How did language evolve? Since the human lineage diverged from that of the

other great apes millions of years ago, changes in the brain have given rise to behaviors that are

unique to humans, such as language. Some of these changes involved alterations in the size and

relative positions of brain areas, while others required changes in the connections between those

regions. But did these changes occur independently, or can the changes observed in one actually

explain the changes we see in the other?

One way to answer this question is to use neuroimaging to compare the brains of related species,

using different techniques to examine different aspects of brain structure. Imaging a fatty substance

called myelin, for example, can produce maps showing the size and position of brain areas.

Measuring how easily water molecules diffuse through brain tissue, by contrast, provides information

about connections between areas.

Eichert et al. performed both types of imaging in macaques and healthy human volunteers, and

compared the results to existing data from chimpanzees. Computer simulations were used to

manipulate the myelin-based images so that equivalent brain areas in each species occupied the

same positions. In most cases, the distortions – or ’warping’ – needed to superimpose brain regions

on top of one another also predicted the differences between species in the connections between

those regions. This suggests that movement of brain regions over the course of evolution explain

the differences previously observed in brain connectivity.

But there was one notable exception, namely a bundle of fibers with a key role in language called

the arcuate fasciculus. This structure follows a slightly different route through the brain in humans

compared to chimpanzees and macaques. Eichert et al. show that this difference cannot be

explained solely by changes in the positions of brain regions. Instead, the arcuate fasciculus

underwent additional changes in its course, which may have contributed to the evolution of

language.

The framework developed by Eichert et al. can be used to study evolution in many different

species. Interspecies comparisons can provide clues to how brain structure and activity relate to

each other and to behavior, and this knowledge could ultimately help to understand and treat brain

disorders.

Eichert et al. eLife 2020;9:e53232. DOI: https://doi.org/10.7554/eLife.53232 2 of 30

Research article Neuroscience

https://doi.org/10.7554/eLife.53232


posterior temporal cortex than its macaque homolog (Huk et al., 2002). Such cortical relocations

also affect the location of connections of these areas, but this situation is distinct from the scenario

in which a tract extends into new cortical territory.

These two scenarios are illustrated in Figure 1B. The red area in the top panel has expanded,

leading to a relocation of the blue area with respect to the purple and yellow area. The connections

of the areas do not change in this scenario, resulting in a relocation of the connections of the blue

area. In the bottom panel, a yellow area’s tract terminations have invaded the neighboring purple

territory, but this change is independent from cortical expansion. Thus, in both cases connections

are located in a different place from those in the reference state, but the causes are different.

In this study we investigate to which extent species differences in temporal lobe organization are

due to cortical relocation and tract extension. To be able to do this, we propose a framework to test

among different forms of cortical reorganization by registering brains together into a single shared

coordinate system (Figure 1C,D). Such an approach allows us to place different brains into a com-

mon space based on one feature and then compare the results to registration based on another fea-

ture. This ‘common space’ concept proved feasible in a previous study testing whether the

extension of the human arcuate fasciculus (AF) compared with the macaque AF could be accounted

for by differential cortical expansion between the two brains (Eichert et al., 2019). In the present

study, we generalize this approach to develop a cross-species registration based on a multimodal

surface matching algorithm (MSM, Robinson et al., 2018; Robinson et al., 2013; Robinson et al.,

2014) to derive a cortical registration between different species.

We based our registration framework on whole brain neuroimaging data of macaque, chimpan-

zee and human brains. Neuroimaging allows one to acquire high-resolution data from the same

brains using different modalities within a short time. The digital nature of the data allows easy

manipulation, making it ideal for the present purposes (Le et al., 1985; Grannell and Mansfield,

1975; Lauterbur, 1973; Le Bihan et al., 1986; Thiebaut de Schotten et al., 2019). As primary

modality we use surface maps derived from the cortical ribbon of T1- and T2-weighted scans, which

have been shown to correlate well with cortical myelinization and which are available for all three

species (Glasser et al., 2014; Glasser and Van Essen, 2011). Such ‘myelin maps’ can be used to

Figure 1. Cortical specializations. (A) Cortical brain organization can be described using different modalities such

as brain areas defined by myelin content (top left) or the pattern of brain connections (top right). (B) Anatomical

changes can affect both modalities differentially. Top and bottom panels show different evolutionary scenarios. (C)

Alignment of homologous brain areas derived from myelin maps can model cortical expansion across species,

here shown for human and chimpanzee. (D) Applying the cross-species registration field to surface tract maps

allows us to distinguish evolutionary scenarios. Here shown are toy example maps of one tract that extended due

to areal expansion alone (top panel) and one tract that additionally extended into new brain areas (bottom panel).

Red: human tract map; dark blue: chimpanzee tract map; light blue: transformed chimpanzee tract map.
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identify homologous areas across brains and species, such as primary sensory and motor cortex,

which is high in myelin, and association cortex, which is low in myelin (Glasser et al., 2014;

Large et al., 2016). As second modality, we use diffusion MRI tractography to reconstruct long

range white matter fibers of the temporal and parietal lobes to establish its connections

(Bryant et al., 2019; Mars et al., 2018c).

Given data from these two modalities, we developed an approach to reveal different types of cor-

tical reorganization. We argue this approach is particularly suitable to study the temporal lobe, as it

has well described myelin markers and cortical connections (Glasser et al., 2014; Large et al.,

2016; Mars et al., 2013; Ruschel et al., 2014). First, we register the cortical surfaces of the different

species to one another based on myelin maps (Figure 1C). This cortical alignment uses the distinc-

tion of primary and higher order areas in myelin maps as anchor points across all three species.

Next, we apply this registration to overlay homologous parts of the cortex and to calculate the

underlying distortions of the cortical sheet. This registration field effectively models areal expansion

or contraction underlying cortical relocation of homologous areas. We then apply this registration to

the cortical projection maps of temporal and inferior parietal lobe white matter tracts to assess how

well the myelin-based registration can predict changes in tract projection patterns across species

(Figure 1D). A good prediction, i.e. a high overlap of the tract maps, indicates that cortical expan-

sion and relocation of targets zones alone can predict tact projections (Figure 1D, top), a poor pre-

diction indicates that the tract is reaching new cortical territory (Figure 1D, bottom).

Here, we distinguish different scenarios of cortical evolution for a set of temporal and parietal

white matter tracts. By applying a cross-species registration we can infer if only cortical relocation

was affecting a tract’s connectivity profile or if a tract is reaching into new cortical territory. A deeper

understanding of species differences in brain reorganization is essential for our understanding how

evolutionary specializations of the temporal lobe underlie uniquely human cognitive functions.

Results
We set out to investigate different types of cortical reorganization affecting the temporal lobe across

macaque, chimpanzee, and human brains. First, we investigated cortical relocation of brain areas by

registering myelin maps of the cortical surface to one another and derived the local distortions

required. Second, we used the resulting mesh deformations to transform maps of cortical projec-

tions of major white matter tracts that terminate in temporal and inferior parietal lobe. This allowed

us to assess how well the myelin registration predicts actual projection maps across species or

whether it cannot capture them, providing an index of tract extensions in the human brain.

Myelin registration
We developed a surface registration between species based on myelin maps using multimodal sur-

face matching (MSM, Robinson et al., 2018). Figure 2 shows the final results of chimpanzee-to-

human, macaque-to-chimpanzee, and macaque-to-human brain registrations. The cross-species reg-

istration aligns the myelin maps well, with the predicted human maps showing most of the distinctive

features of the actual human myelin map (Figure 2, top row). Posterior areas such as V1 are well

aligned, with the highest myelin evident on the medial part of the occipital cortex, having relocated

quite substantially from a more lateral orientation in the macaque. The prominent myelin hot spot in

the location of the MT+ complex is also noticeable. Areas where the myelin maps showed fewer dis-

tinctive features to guide the registration, such as in the prefrontal cortex, showed some differentia-

tion between the predicted and actual human maps. Spatial correlation maps of the human myelin

maps and the predicted myelin maps as well as the deformation fields underlying the registrations

are provided in Appendix 2—figure 1.

Tract maps
We constructed the cortical projection maps of the following tracts in all three species: Middle longi-

tudinal fasciculus (MDLF), inferior longitudinal fasciculus (ILF), the third branch of the superior longi-

tudinal fasciculus (SLF3), the inferior fronto-occipital fasciculus (IFO), and the arcuate fasciculus (AF)

(Figure 3A,C,E). The human and macaque tract maps resemble those obtained in previous studies

(Mars et al., 2018c; Schmahmann and Pandya, 2009) and the chimpanzee SLF3 and AF are similar
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to previous reports (Hecht et al., 2015; Rilling et al., 2008). The other chimpanzee tracts are

reported here for the first time, apart from a previous exploratory study (Mars et al., 2019).

We applied the myelin-based surface registration to assess whether the cortical relocation dem-

onstrated in the myelin registration above fully explains the changes in tracts. Figure 3 shows actual

Figure 2. Myelin registration. Species average myelin maps (left panel) and myelin maps resampled across

species after applying the MSM-derived registration.

Figure 3. Actual and predicted tract maps. The intensity in the tract maps reflects the probability of a tract’s

termination on the cortical surface as derived from tractography. Actual tract maps of macaque (A), chimpanzee

(C) and human (E). B and D show the tract maps in human space, predicted by the myelin-based registration for

macaque and chimpanzee.
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and predicted tract maps. For visual assessment, a thresholded overlay of actual human and pre-

dicted tract maps is shown in Figure 4A. As described above, we focus on a description of tem-

poro-parietal cortex given the multiple competing theories of its reorganization in different primate

lineages.

We assessed the success of the myelin registration in predicting the tract projections in a number

of ways. First, weighted correlation maps provide a visualization of the local quality of the prediction

(Figure 4B,C). A high value means that the myelin registration alone is sufficient to predict a tract’s

projection in this part of the brain. A low correlation value indicates that reorganization of a tract’s

connectivity pattern took place in addition to cortical relocation modelled by the myelin registration.

Second, the Dice coefficient of similarity provides a more general measure of similarity between the

predicted and actual tract maps, where a Dice coefficient of ‘1’ indicates perfect overlap and thus

no tract extension into areas other than would be predicted by cortical relocation assessed using the

myelin map registration. Finally, we calculated a ‘tract extension ratio’ that indicates how much of

the actual human tract projections extends into parts of the surface not predicted, where a value

of >1 indicates a tract extension into novel territory. Both the Dice coefficients and tract extension

ratios were computed for thresholded tract maps defined by the human tract map covering 40% of

the brain’s surface, but the resulting pattern of values is robust across a range of thresholds (see

Appendix 3—figure 2).

In general, it can be observed that the myelin-based registration can predict the tract maps well

in both hemispheres, with the notable exception of AF and to a lesser extent ILF and SLF3 (Figure 4).

AF in particular shows the lowest Dice coefficient and the highest extension ratio (Figure 5A,B), indi-

cating that this tract’s differential projections in the human brain are not merely due to relocation of

areas. The maps for macaque and chimpanzee are overall predicted to a similar degree, as can be

seen in the overlay and correlation maps, with the exception of AF (Figure 4). The effect for AF is

captured in the Dice coefficients and tract extension measures (Figure 5A,B).

Figure 4. Cross-species comparison results. (A) Thresholded actual human tract maps (red) and tract maps

predicted by the myelin-based registration for chimpanzee (blue) and macaque (green) (thresholds (t): MDLF:

t = 0.7, ILF: t = 0.7, SLF3: t = 0.85, IFO: t = 0.75, AF: t = 0.75). (B), (C) Weighted correlation maps of actual human

map and predicted chimpanzee and macaque map.
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A two-way statistical analysis was performed in both hemispheres to assess the effect of species

and tract on the extension ratios. In the left hemisphere, there was no significant main effect of spe-

cies (F(1, 179)=1.38, p=0.47), but a highly significant main effect of tract (F(4, 792)=565.00, p<0.001)

and a highly significant interaction effect of species and tract (F(4, 792)=207.73, p<0.001). In the

right hemisphere, we found a significant main effect of species (F(1, 179)=16.76, p<0.001) as well as

a highly significant effect of tract (F(4, 792)=261.94, p<0.001) and a highly significant interaction

effect (F(4, 792)=225.70, p<0.001). We will discuss the various tracts in more detail below.

The myelin-based registration results in good prediction for tract projections in the temporo-pari-

etal cortex. The actual human tract terminations of MDLF span the superior temporal gyrus and

reach the inferior parietal cortex (Figure 4A). In the macaque and chimpanzee, the actual MDLF ter-

minates in superior temporal gyrus but reaches only to a small part of the inferior parietal cortex.

When applying the myelin-based registration, macaque and chimpanzee MDLF are both predicted

to reach a comparable portion of the human temporal lobe and parts of both angular and supramar-

ginal gyri of the inferior parietal lobe (Makris et al., 2013). This overlap is captured in the weighted

correlation maps, which have high values in the temporal lobe (Figure 4B,C). The Dice coefficients

for the chimpanzee and macaque MDLF are high and the extension ratio is close to one indicating

no tract extension in addition to cortical expansion (Figure 5A,B).

A similar observation can be made for the posterior terminations of SLF3 and IFO. The myelin-

based registration can predict the parietal cortical projections to a large degree. The predicted cor-

tical terminations of the tract show a strong overlap with the actual human tract terminations. In line

Figure 5. Quantification of cross-species comparisons. Dice coefficients of overlap (A) and tract extension ratios

(B) computed from actual thresholded human tract maps and tract maps predicted by the other species. Shown

are mean and standard deviation derived from all pairs of human (n = 20) and macaque or chimpanzee (n = 5)

subjects in left (LH) and right (RH) hemisphere. (C) Connectivity fingerprints at two vertices in inferior parietal and

in temporal lobe derived from the intensity values of an extended set of tract maps. Shown are mean and

standard deviation (human: n = 20, chimpanzee and macaque: n = 5).

The online version of this article includes the following source data for figure 5:

Source data 1. Numerical data underlying the connectivity fingerprint shown in Figure 5C.
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with the overlay maps and the weighted correlation maps, the Dice coefficients are relatively high.

Taken together, this suggests that expansion and relocation of brain areas are largely sufficient to

model the posterior cortical terminations of SLF3 and IFO, while extension of the tract’s connectivity

pattern plays a minor role in explaining the species differences.

Predicted ILF terminations show that the expected occipito-temporal connection can be mod-

elled well (Catani and Thiebaut de Schotten, 2008). The extension ratio for ILF is elevated indicat-

ing that there is some remaining tract extension that has not been modelled by cortical relocation.

This is also reflected in the tract overlay (Figure 4A), which shows that human ILF has more extended

posterior projections than predicted by the myelin registration. Thus, although the overall architec-

ture of the tracts is well predicted, this tract seems to have extended into new cortical territory in

the human lineage.

The clearest case of a tract extension in the human brain was presented by AF. Human AF

reaches anteriorly to inferior and dorsal frontal areas. The posterior projections of human AF reach

into middle and inferior temporal cortex. The chimpanzee posterior terminations are in inferior parie-

tal lobe and superior temporal cortex and in the macaque, the temporal projections reach superior

temporal areas. For AF, the myelin-based registration does not provide a good prediction of the

tract map across species, especially for the macaque. The correlation map for the chimpanzee shows

low correlation along the temporal lobe and for the macaque, correlation values in temporal lobe

are extremely low. AF has the lowest Dice coefficient and the extension ratio is high, especially in

the macaque, which is in line with overlay and correlation maps. The ‘failure’ of the myelin registra-

tion in the temporal lobe indicates that extension and relocation of cortical areas is not sufficient to

explain the posterior tract projections of AF, but that the tract extended into new cortical territory in

the temporal lobe.

Connectivity fingerprints
To further characterize the effects in the predicted tract maps, we obtained connectivity fingerprints

at two representative vertices on the left brain surface: One in inferior parietal lobe, where most

tracts are predicted well and one in the middle temporal gyrus, where we observed strong species

differences, in particular for AF. The connectivity fingerprints were derived based on the intensity

values in the actual and predicted tract maps using an extended set of seven tracts to give a more

detailed picture (see Appendix 3—figure 1). Figure 5C demonstrates that in the inferior parietal

lobe, the connectivity fingerprint of actual human and predicted chimpanzee and macaque tract

maps are highly similar, except for a small increase in the intensity of ILF indicating tract extension

as discussed above. This indicates that the myelin-derived registration can predict this area’s connec-

tivity profile well, despite the local expansion of the cortical sheet. For the temporal vertex, however,

there is a strong mismatch regarding the connectivity profile, in particular regarding the intensities

for AF. This indicates that the connectional fingerprint of this temporal area is different in the human

than would be predicted purely based on cortical relocation. Thus, the connectivity fingerprints of

the two representative areas match the pattern of species differences that emerged from the results

above.

Discussion
The goal of this study was to study brain specializations of the temporal lobe across multiple primate

species in the context of two forms of cortical reorganization: cortical relocation due to local expan-

sions and extensions of tracts into new cortical territory (Figure 1). For this reason, we developed a

cross-species surface registration method based on cortical myelin content, which gives us an index

of how cortical areas have relocated during evolution. In a subsequent step, we tested if cortical

relocation can predict the connectivity patterns of a set of tracts across species. We showed that cor-

tical expansion and resulting relocation of brain areas alone provide a good prediction of several

tracts’ terminations in posterior temporal and parietal cortex. In the case of AF in particular, we

showed that an additional change in brain architecture was extension of the tract into new cortical

areas independent of cortical expansion and resulting relocation.

As pointed out in the introduction, different lines of evidence on temporal reorganization across

primate species have emphasized either the expansion and subsequent relocation of brain areas or

changes in temporal lobe connectivity. Both approaches are valuable and we here demonstrate that
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both are applicable to different parts of the temporal lobe. Previous work has suggested expansion

and relocation of areas in posterior temporal cortex and adjacent parietal cortex (Mars et al., 2013;

Patel et al., 2019), which is consistent with the ventral location of MT+ complex in humans com-

pared to other primates. Similar reorganizations have been suggested by Haak et al. (2018), who

proposed modifications of visual-temporal pathways in the human. These major relocations were

captured by our myelin registration and demonstrated to predict certain features of white matter

tracts, such as the posterior projections of MDLF.

The aim of our research is not to find the ‘best’ species registration, but to shed light on brain

evolution by studying where registrations based on different modalities disagree. Many aspects of

brain architecture can be modified during the course evolution and each individual aspect would

provide us with a unique registration. The present study represents only one example of how cortical

specializations can be studied by comparing cross-species registrations of different modalities. Test-

ing the effect of a myelin registration on connectivity is not meant to imply pre-eminence of myelin

over connectivity. In fact, the reversed approach, i.e. to derive a registration based on individual

tract maps and then test their differential effect on transformed myelin maps, would be highly infor-

mative. We chose myelin here as the primary feature, because we wanted to test the specific

hypothesis that some tracts expanded while others simply followed relocation of areas across the

cortex. Thus, we used a measure that could index the relocation (myelin) and test it on our measure

of interest (the tracts).

Separate from cortical relocation, changes in connectivity between humans and other species

have been described for a variety of association tracts, including the temporal projections of AF into

middle temporal gyrus (Eichert et al., 2019; Rilling et al., 2008), the frontal projections of SLF3

(Hecht et al., 2015), and expansion of the ventral route consisting of MDLF and IFO (Forkel et al.,

2014; Makris et al., 2013; Makris et al., 2009). Both of these latter tracts have been suggested to

play a role in language functions in the human brain (Catani and Bambini, 2014; Hagoort, 2016;

Makris et al., 2009; Makris and Pandya, 2009; Saur et al., 2008).

In the case of MDLF, the human tract projections can be predicted well by the cortical relocation

model. This indicates that the pattern of cortical terminations changed according to the general

expansion and relocation of brain areas, without additional extension into new regions of the brain.

For other tracts reaching to temporo-parietal areas, such as ILF, IFO and SLF3, the posterior tract

projections can also be modelled well, despite the large distortions of target areas within the cortical

sheet. These tracts seem to follow the evolutionary scenario described in the upper row in

Figure 1B,D, where a tract’s extension in the human brain can be explained by relocation of areas

along the cortical sheet. This does not necessarily mean that the tracts have not been recruited for

new functions, but the type of change is different from that of tracts such as AF.

AF showed the lowest consistency across species when applying the myelin-based registration.

Dice ratio and extension ratio reflect the increased tract termination especially into the temporal

lobes, which can be observed in the tract maps. This points to further evolutionary adaptations that

specifically affected the connectivity pattern of AF independent of cortical relocation, the scenario

described in the bottom figure in Figure 1B,D. Our result is consistent with previous accounts in the

literature (Ardesch et al., 2019; Eichert et al., 2019; Rilling et al., 2008), but the approach

described here enabled us to formally test this hypothesis in the wider context of cortical reorganiza-

tion across three primate species and to quantify the species differences. Importantly, extension of a

tract into new cortical territories alters the unique connectivity fingerprint of the innervated areas,

which profoundly changes the computational capabilities that area supports (Mars et al., 2018b).

Being able to dissociate different modifications of brain architecture can inform us about how tem-

poral lobe specializations link to uniquely human higher cognition (Qi et al., 2019; Roelofs, 2014;

Schomers et al., 2017).

Apart from modifications of AF, we also noted some minor extensions of ILF into temporo-parie-

tal cortex. ILF’s extension in the human brain is consistent with reports that that showed a split of

this tract into multiple subtracts due to the expansion of parts of the temporal cortex, including the

fusiform gyrus (Latini et al., 2017; Roumazeilles et al., 2019). This extensions could be related to

the increase of cortical territory related to processing social information, such as social networks and

faces (Noonan et al., 2018; Sallet et al., 2011). Previously, it has been shown that parietal SLF3 pro-

jections are most prominent in the human brain, which has been linked to our unique capacity of

social learning (Hecht et al., 2013). We show that species differences in the posterior projections of
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SLF3 can be mostly explained by local expansion of the posterior temporal and parietal cortex. Simi-

larly, we show that cortical expansion can model the terminations of MDLF, a tract, which has been

linked to visuospatial and integrative audiovisual function (Makris et al., 2013). Our results thus sug-

gest that SLF3 and MDLF didn’t undergo additional evolutionary modifications that affected their

posterior terminations.

The MSM framework we adopted is ideally suited to work with multimodal descriptors of the

cerebral cortex. It has become a vital tool for human surface registration (Abdollahi et al., 2014;

Garcia et al., 2018; Glasser et al., 2016) and here we demonstrated its utility for cross-species

research. With the presented surface matching method, we showed that a registration based on

T1w/T2w MRI data can match critical landmarks across species. We have referred to these maps as

‘myelin maps’ in accordance with other studies in the literature (Glasser et al., 2014; Large et al.,

2016) but it should be noted that this is a heuristic. T1w/T2w maps are sensitive to other features

than myelin and other sequences are sensitive to aspects of cortical myelin (Lutti et al., 2014). The

crucial point is that the maps we employed here are similar across species, allowing us to compare

like with like (Glasser et al., 2014). Projecting data of different modalities to a surface representa-

tion is a useful tool for comparative neuroscience. It allows us to visualize the different modalities

within the same cortical sheet and to compare topologies on this 2D surface, which opens a wide

array of mathematical tools. A similar approach has been taken to investigate the relationship

between gene expression and myelin content of the cortex (Burt et al., 2018) and gradients of

change across multiple modalities of brain organization (Blazquez Freches et al., 2020;

Huntenburg et al., 2018).

The presented approach can be flexibly modified to include a variety of cortical features, which

can be compared across species. Myelin does not provide high contrast in the large human frontal

cortex and, as such, it is difficult to provide a good registration in frontal areas. Furthermore, the

effects we report can only be reliably interpreted within the spatial resolution of brain areas. More

fine scale species differences and homology assignments are not possible with the data shown here.

However, the current method can be generalized to any modality of cortical organization, so future

studies can incorporate modalities that have greater contrast in this part of the brain such as neurite

orientation dispersion and density imaging (NODDI) measures (Zhang et al., 2012) and resting state

fMRI networks (Vincent et al., 2007).

In sum, here we present a framework for analyzing structural reorganization of the temporo-parie-

tal cortex across different primate brains. We dissociated cortical relocation of areas due to local

expansion and modifications of white matter tract connectivity. Future work will expand this

approach not only to different modalities, but also to a much wider range of species, which is now

becoming increasingly possible due to the availability of multi-species datasets (Heuer et al., 2019;

Milham et al., 2018). This provides a crucial step towards the understanding of phylogenetic diver-

sity across the primate brain.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Software,
algorithm

FSL http://fsl.fmrib.ox.ac.uk/fsl/ RRID:SCR_002823

Software,
algorithm

FreeSurfer http://surfer.nmr.
mgh.harvard.edu/

RRID:SCR_001847

Software,
algorithm

MSM https://fsl.fmrib.ox.ac.
uk/fsl/fslwiki/MSM

RRID:SCR_002823 MSM is available as part of FSL.
Code for MSM using
higher-order smoothness
constrains is available
online at
https://www.doc.ic.ac.uk/~
ecr05/MSM_HOCR_v2/

Software,
algorithm

Connectome Workbench http://www.nitrc.org/
projects/workbench

RRID:SCR_008750
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Human data and pre-processing
Human data were acquired in 20 subjects (12 females, 18–40 years) on a 3T Siemens Prisma scanner

with a 32-channel head coil. The study was approved by the Central University (of Oxford) Research

Ethics Committee (CUREC, R55787/RE001) in accordance with the regulatory standards of the Code

of Ethics of the World Medical Association (Declaration of Helsinki). All participants gave informed

consent to their participation and were monetarily compensated for their participation.

High-resolution structural images were acquired using a (MPRAGE) T1w sequence ( TR = 1900

ms; TE = 3.97 ms; flip angle = 8˚; 192 mm FoV; voxel size 1 mm isotropic) and (SPC) T2w sequence

(TR = 3200 ms; TE = 451 ms; 256 mm FoV; voxel size 1 mm isotropic; Grappa factor = 2). Diffusion-

weighted (DW) MRI data were acquired in the same subjects using a sequence from the UK Biobank

Project (Miller et al., 2016). In brief, we used a monopolar Stejskal-Tanner diffusion encoding

scheme (Stejskal and Tanner, 1965). Sampling in q-space included two shells at b = 1000 and 2000

s/mm2 (voxel size 2 mm, MB = 3). For each shell, 50 distinct diffusion-encoding directions were

acquired (covering 100 distinct directions over the two b-values). Five b = 0 images were obtained

together with additional three b = 0 images with the phase-encoding direction reversed.

T1w and T2w scans were pre-processed using the HCP-pipeline (Glasser et al., 2013) cloned

from the ‘OxfordStructural’ - fork (https://github.com/lennartverhagen/Pipelines). The processing

pipeline includes automatic anatomical surface reconstruction using FreeSurfer and provides meas-

ures of sulcal depth and surface maps of cortical myelin content (Fischl, 2012; Jenkinson et al.,

2012). The mean image of the T1w scans was divided by the mean image of the T2w scans to create

a T1w/T2w image. The bias corrected T1w/T2w-ratio was mapped onto the mid-thickness surface

using Connectome Workbench command-line tools. We refer to this surface map as T1w/T2w ‘mye-

lin map’ (Glasser et al., 2014; Glasser and Van Essen, 2011). In order to create a human average

myelin map, the subject’s individual myelin maps were aligned using MSM. The myelin alignment

was initialized using alignment based on maps of sulcal depth (a table with parameters is provided

in Supplementary file 1). To create the species average maps, we used an implementation of MSM

that optimizes based on a first-order (pairwise) cost function to penalize against distortions, given

that no excessive distortions were expected. Human volume data were registered to the Montreal

Neurological Institute standard space (MNI152) and surface data was transformed to a surface tem-

plate space (fs_LR).

Chimpanzee data and pre-processing
In vivo chimpanzee structural MRI and DW-MRI data were obtained from the National Chimpanzee

Brain Resource (www.chimpanzeebrain.org). Data were acquired at the Yerkes National Primate

Research Center (YNPRC) at Emory University through separate studies covered by animal research

protocols approved by YNPRC and the Emory University Institutional Animal Care and Use Commit-

tee (approval no. YER-2001206). Both structural MRI and DWI-MRI data were collected on a Siemens

3T Trio Scanner (Siemens Medical System, Malvern, PA, USA). These chimpanzee MRI scans were

obtained from a data archive of scans obtained prior to the 2015 implementation of U.S. Fish and

Wildlife Service and National Institutes of Health regulations governing research with chimpanzees.

All the scans reported in this publication were completed by the end of 2012.

T1w/T2w myelin maps were obtained from a group of 29 adult chimpanzees (all female), scanned

at 0.8 mm isotropic resolution (Donahue et al., 2018; Glasser et al., 2014; Glasser et al., 2012).

T1w and T2w scans were processed using a modified version of the HCP-pipeline (Glasser et al.,

2013). DW-MRI data were obtained in a subset of five individuals. Acquisition and pre-processing

was previously described (Li et al., 2013; Chen et al., 2013; Mars et al., 2019). Two DW images

(TR = 5900 ms; TE = 86 ms; 41 slices; 1.8 mm isotropic resolution) were acquired using a single-shot

spin-echo echo planar sequence for each of 60 diffusion directions (b = 1000 s/mm2), each with one

of the possible left–right phase-encoding directions and four repeats, allowing for correction of sus-

ceptibility-related distortion. For each repeat of diffusion-weighted images, five images without dif-

fusion weighting (b = 0 s/mm2) were also acquired with matching imaging parameters.

Chimpanzee volume and surface data were registered to a standard space template based on 29

chimpanzee scans acquired at the YNPRC (Donahue et al., 2018). A species average myelin map

from the 29 chimpanzees was derived using MSM as described for the human.
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Macaque data and pre-processing
Ex vivo DW-MRI data were obtained from four rhesus macaques (one female, age at death: range

4–14 years) using a 7T magnet with Agilent Directive (Agilent Technologies, Santa Clara, CA, USA).

Data acquisition and DW-MRI pre-processing have been previously described in detail

(Eichert et al., 2019; Folloni et al., 2019). Data were acquired using a 2D diffusion-weighted spin

echo multi slice protocol with single line readout (DW-SEMS; TE = 25 ms; TR = 10 s; matrix size: 128

� 128; resolution 0.6 mm; number of slices: 128; slice thickness: 0.6 mm). Nine non-diffusion-

weighted (b = 0 s/mm2) and 131 diffusion-weighted (b = 4000 s/mm2) volumes were acquired with

diffusion encoding directions evenly distributed over the whole sphere, except in one monkey were

seven non-diffusion-weighted images and 128 diffusion directions were collected. This protocol and

similar ones have previously shown to be sufficient for comparison with in vivo human data (see for

example: D’Arceuil et al., 2007; Dyrby et al., 2011; Eichert et al., 2019; Mars et al., 2016).

Additionally, ex vivo data from one male macaque were obtained (de Crespigny et al., 2005)

and pre-processed as described previously (Jbabdi et al., 2013). Relevant imaging parameters for

DW-MRI data were: 4.7T Oxford magnet equipped with BGA 12 gradients; 3D segmented spin-

echo EPI 430 mm isotropic resolution, eight shots, TE = 33 ms, TR = 350 ms, 120 isotropically dis-

tributed diffusion directions, b = 8000 s/mm2. Despite the different scanning parameters, data qual-

ity was appropriate to allow pooling of the ex vivo data sets. In vivo data from the same macaque

subjects was not available.

To obtain macaque T1w/T2w myelin maps, in vivo T1w and T2w scans data were obtained from a

previous study on five separate rhesus macaques (four females, age range 3.4 years - 11.75 years).

Data acquisition and pre-processing of the macaque data have been described previously

(Bridge et al., 2019; Large et al., 2016). Procedures of the in vivo macaque data acquisition were

carried out in accordance with Home Office (UK) Regulations and European Union guidelines (EU

directive 86/609/EEC; EU Directive 2010/63/EU).

Macaque surface reconstruction and average myelin maps were derived as described for the

human. Macaque volume and surface data were registered to a standard space, which is based on

data from 19 macaques acquired at YNPRC (Donahue et al., 2018; Donahue et al., 2016).

Myelin-based surface registration
Our aim was to derive a cross-species registration to model expansion and relocation of cortical

brain areas. Therefore, we performed registration based on average surface myelin maps in the

three species using MSM with higher-order smoothness constraints (Ishikawa, 2014;

Robinson et al., 2018). We derived a transformation of the cortical surface so that homologous

myelin landmarks across species matched. The general processing steps were as follows, but a more

detailed description of the methodology and an explanatory figure are provided in Appendix 1.

We obtained a ‘chimpanzee-to-human’ and a ‘macaque-to-chimp’ registration. A ‘macaque-to-

human’ registration was derived as a concatenation of both registration stages to minimize the

between-species distortions needed. As input for the registration we used the species average mye-

lin maps and we performed the registration for both hemispheres separately.

In general, the registration was derived using two stages. The first stage was based on three

regions-of-interest (ROIs) to handle the gross distortions that are involved in matching myelin land-

marks across species. Two ROIs captured the highly myelinated precentral motor cortex (MC) and

MT+ complex and a third ROI covered the medial wall (MW). We used MSM to obtain a registration

so that the ROIs are roughly matched across species. In the second stage, the ROI-based registration

was used as initialization for the subsequent alignment of the whole-hemisphere myelin maps. To

derive a macaque-to-human registration, we resampled the average macaque myelin map to chim-

panzee space using the MSM-derived macaque-to-chimpanzee registration. Then we aligned the

resampled macaque map in chimpanzee space with that of the human and used the chimpanzee-to-

human registration as initialization.

The quality of the registration performance was assessed by computing a local spatial correlation

between the human myelin map and the result of the chimpanzee and macaque registration. Fur-

thermore, we visualized the deformations underlying the registration in form of a surface distortion

map. The methods and results for these two analyses are provided in Appendix 2. .
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Tractography
Human and chimpanzee DW-MRI data were pre-processed using tools from FDT (FMRIB’s Diffusion

Toolbox, part of FSL 5.0 [Smith et al., 2004]). We applied the TOPUP distortion correction tool fol-

lowed by eddy-current distortion and motion correction (Andersson et al., 2003; Andersson and

Sotiropoulos, 2016) as implemented in FSL. Macaque ex vivo DW-MRI data were processed using

tools from FSL as implemented in an in-house MR Comparative Anatomy Toolbox (Mr Cat, www.

neuroecologylab.org).

Pre-processed DW-MRI images were processed by fitting diffusion tensors (FSL’s DTIFIT

[Behrens et al., 2003]) and by fitting a model of local fiber orientations including crossing fibers

(FSL’s BedpostX; Behrens et al., 2007; Jbabdi et al., 2012). Up to three fiber orientations per voxel

were allowed. Tractography was performed using FSL’s probtrackx2. Registration warp-fields

between each subject’s native space and standard space were created using FSL’s FNIRT

(Andersson et al., 2007).

We performed tractography of the following tracts: Middle longitudinal fasciculus (MDLF), inferior

longitudinal fasciculus (ILF), the third branch of the superior longitudinal fasciculus (SLF3), the inferior

fronto-occipital fasciculus (IFO), and the arcuate fasciculus (AF). Placement of seed, waypoint, and

exclusion masks was based on previous studies, in order to reconstruct known pathways for these

tracts in all three species (human and macaque: de Groot et al., 2013; Mars et al., 2018c, protocols

for AF: Eichert et al. (2019); chimpanzee: Bryant et al. (2018). Masks were drawn in standard space

and warped to native subject diffusion MRI space for probabilistic tractography. The resulting tracto-

grams were normalized by dividing each voxel’s value by the total number of streamlines that suc-

cessfully traced the required route (‘waytotal’). To decrease computational load for further

processing all tractograms were down-sampled (human: 2 mm, chimpanzee: 1.5 mm, macaque: 1

mm). In addition, tractography and surface-based analysis was performed for cortico-spinal tract

(CST) and vertical occipital fasciculus (VOF). Results for all tracts are reported in Appendix 3—figure

1.

Surface tract maps
To assess which part of the cortical grey matter might be reached by the tracts, we derived the sur-

face representation of each individual tractogram using a matrix multiplication method described in

Mars et al. (2018b); Appendix 1—figure 1B(2). We calculated whole-hemisphere vertex-wise con-

nectivity matrices, tracking from the 20k-vertices mid-thickness surface to all voxels in the brain.

These matrices were computed for both hemispheres and each subject individually in the three spe-

cies. In the macaque we used the five subject’s average mid-thickness in standard space as input for

the computation instead of individual surfaces.

To rebalance the weights in the tracts to be more homogenous, connectivity values were

weighted by the distance between vertex and voxel. A distance matrix across all vertices of the mid-

thickness surface and all brain voxels was computed using MATLAB’s pdist2-function resulting in a

matrix of the same size as the connectivity matrix. Each element in the connectivity matrix was then

divided by the corresponding value in the vertex-to-voxel distance matrix. To decrease data storage

load (approximately 10 GB per matrix) the weighted connectivity matrices of the five subjects were

averaged for each hemisphere and species.

To visualize a tract’s surface representation, we multiplied the averaged connectivity matrix with

a tract’s tractogram (‘fdt_paths’). We refer to the tract surface representation here as ‘tract map’.

The approach described above decreases gyral bias in the resulting tract map notably when com-

pared to surface-based tractography or surface projections of the tractogram. However, the method

introduced spurious effects on the medial wall and insular cortex, which are generally not well cap-

tured in the tract map. Given that both areas are not of interest in this study, they were masked out

for further analysis. Tract maps were derived for each subject and both hemisphere separately. Indi-

vidual surface maps were smoothed on the mid-thickness surface (human: 4 mm kernel (sigma for

the gaussian kernel function), smoothing on individual surface; chimpanzee: 3 mm kernel, smoothing

on average surface; macaque: 2 mm kernel, smoothing on average surface), logNorm-transformed

and averaged across subjects.
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Predicted tract maps
Next, we tested if our myelin-based registration can be used to predict the tract maps across spe-

cies. We resampled individual chimpanzee and macaque tract maps to human space using the

macaque-to-human and the chimpanzee-to-human registration (Appendix 1—figure 1B(3)). Inten-

sity values in actual and predicted tract maps ranged from 0 to 1. We averaged all predicted tract

maps and displayed the average map onto a human average surface (Q1-Q6_R440). For visual

inspection we also assessed and showed thresholded tract maps. Thresholds were chosen different

for each tract, ranging from 0.6 to 0.85, so that the most characteristic termination is visible.

To visualize and quantify the prediction of macaque and chimpanzee tracts in human space, we

derived weighted whole-hemisphere local correlation maps of the human map and the map pre-

dicted by macaque or chimpanzee. The local correlation map was computed using a sliding window

around every vertex on the sphere (diameter 10 cm for all three species) using MATLAB’s corrcoef-

function ( Mathworks, Natick, MA). We used a search kernel of 40˚ that corresponds to a circular

search window with a radius of approximately 7 cm. The correlation map was modified to up-weight

the brain areas where the tract is represented on the surface. A weighting mask was derived by mul-

tiplication of the intensities in the actual human tract map and the other species’ predicted map.

The values for the weighted correlation map are thus high in parts of the brain where both actual

human and predicted tract show a termination, and where the spatial patterns of intensity values

correlate. Weighted correlation maps were derived for each pair of 20 human subjects and five sub-

jects of the other species. As result figure we display the averaged correlation map onto the human

average surface.

In order to quantify how well a tract is predicted, we computed Dice coefficients of similarity

(Dice, 1945), which quantifies the amount of overlap of the tract maps. The metric was derived for

each pair of 20 human subjects and five subjects of the other species. The Dice coefficient was com-

puted for the binarized and thresholded actual human tract map and the map predicted by the other

species. The threshold was chosen for each tract individually so that 40% of surface vertices were

covered by the human tract map. The same threshold was applied to the macaque and chimpanzee

map.

As a quantification of tract extension, we computed the ratio of the number of vertices covered

by the thresholded human tract map and the number of vertices covered by both the human and

the other tract map. To confirm that the pattern of values is robust, both Dice coefficients and tract

extension ratios were computed for a range of percentages of surface coverage and data for a cov-

erage of 20%, 30% and 50% is provided in Appendix 3—figure 2.

The differences in tract extension ratios at a surface coverage of 40% were assessed in a non-

parametric permutation test implemented in PALM (Winkler et al., 2014) using 5000 permutations.

We constructed a mixed-effects model matrix using R software (R Development Core Team, 2015

Core p-values were corrected for family-wise error over multiple contrasts.

We performed additional control analyses to assess if the observed effects of tract expansion corre-

late with potential sources of confounds arising from our connectivity measures and the myelin-driven

registration. The methodology and results of these control analyses are reported in Appendix 4.

Connectivity fingerprints
We characterized the effect of cortical expansion on brain connectivity using the concept of connec-

tivity fingerprints (Passingham et al., 2002). In brain areas where cortical expansion can explain the

human connectivity pattern, actual and predicted tract maps will have similar intensity values. In

brain areas where the connectivity profile was further modified due to tract extensions, the intensity

values of actual and predicted tract maps will show a discrepancy. By computing the intensity values

of multiple tract maps in a brain area, we can derive a characteristic profile of values that can be

understood as connectivity fingerprint of this area. In brain areas, where tract extension happened in

addition to cortical expansion, we expect to observe a difference between actual human connectivity

profile and the predicted connectivity profile. We manually selected two representative vertices and

derived their actual and predicted connectivity profile: One vertex in the inferior parietal lobe, where

we expect the intensity values of actual and predicted tract maps to be similar and one in the middle

temporal gyrus, where we expect to find differences in actual and predicted tract maps. The whole
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set of tracts investigated (CST, MDLF, VOF, IFO, ILF, SLF3 and AF) was included to give a more

detailed estimate of the connectivity fingerprint.

Code availability statement
Availability of software used in the present study is provided in the Key Resources Table. Processing

code is openly available from the Wellcome Centre for Integrative Neuroimaging’s GitLab at

https://git.fmrib.ox.ac.uk/neichert/project_MSM (Eichert, 2020; copy archived at https://github.

com/elifesciences-publications/project_msm).

Data availability overview

Data set
Reference for
original data paper Availability

Human in-vivo diffusion
MRI data and myelin maps

present study Anonymised raw data is openly available
for download via OpenNeuro.
Accession code: ds002634 (version 1.0.1), project_larynx
(https://openneuro.org/datasets/ds002634)

Chimpanzee in-vivo
diffusion MRI data

(Chen et al., 2013) Available from the National Chimpanzee
Brain Resource (http://www.chimpanzeebrain.org/).
Data from the following subjects were used:
Bo, Cheetah, Lulu, Wenka, Foxy.

Chimpanzee in-vivo
myelin maps

(Glasser et al., 2014) Raw data available from the National
Chimpanzee Brain Resource
(http://www.chimpanzeebrain.org/).
Data from all 29 subjects were used.

Macaque ex-vivo
diffusion MRI data
(4 macaques)

(Folloni et al., 2019) Source data available from the PRIMatE
Data Exchange (PRIME-DE) resource
(http://fcon_1000.projects.nitrc.org/indi/indiPRIME.html4).
Dataset: University of Oxford WIN Macaque PM

Macaque in-vivo
myelin maps

(Bridge et al., 2019;
Large et al., 2016)

Data of four monkeys freely available at:
https://gin.g-node.org/hbridge_oxford/brainwithoutv1.
Data of the fifth monkey available upon request.
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Appendix 1

Myelin-based surface registration
We implemented a cross-species registration based on surface myelin maps using multimodal

surface matching (MSM, Robinson et al., 2018; Appendix 1—figure 1A). MSM is a cortical

surface registration algorithm, which works by projecting sheet-like models of the cortical

surface to spheres; then aligning these by driving deformation of an input (or moving) mesh

until features on the surface (i.e. myelin map intensities) increase in similarity with those

represented on a fixed (or reference) mesh. We used a version of MSM that uses higher-order

smoothness constraints and strain-based regularization for the regularization mode. MSM can

work with multidimensional feature maps and use cross correlation across features to drive a

registration. Multiple registration steps can be combined by using the output of a previous

registration as initialization

Appendix 1—figure 1. Related to Methods. (A) MSM registration between chimpanzee and

human myelin maps. (1) average species myelin maps. (2) myelin maps displayed on common

sphere. (3) ROI for MT+ complex drawn on native surface. (4) MT+ ROI displayed on common

sphere. (5) chimpanzee MT+ ROI (blue) registered to human (red) using MSM. (6) Set of three

ROIs (MC, MT+, MW). (7) Effect of MT+ ROI-derived initialization on the set of ROIs (only MW

and MC visible). (8) Registration of chimpanzee set of ROIs to human ROIs using MSM. (9)

Effect of ROI-derived registration on whole hemisphere chimpanzee myelin map. (10)

Registration of whole brain myelin maps initialized by set of ROIs using MSM. (B) Tract surface

analysis. (1) Tractography result for an example tract (CST). (2) Tract map obtained by matrix

multiplication. (3) The myelin-derived cross-species registration (A(10)) is applied to transform

the actual chimpanzee tract map to human space. (4) Having both tract maps in the same

space allows a direct species comparison and quantification of the differences (5).

The main inputs of MSM were the average species myelin maps (Appendix 1—figure 1A

(1)). All surface and metric files were resampled to a regular 20k-vertices mesh (radius of the

sphere: 10 cm). For all species, the same sphere was used for resampling, so that the vertices

had correspondence across species (Appendix 1—figure 1A(2)).

Given the substantial distortions that are required to match myelin landmarks across

species, we initialized the myelin registration using a region-of-interest-(ROI)-driven

registration. Three binary ROIs were manually drawn in Connectome Workbench’s wb_view

onto each species’ myelin map (Appendix 1—figure 1A(3)). The value inside the ROI was 1

and outside 0. Two ROIs captured the highly myelinated precentral motor cortex (MC) and MT

+ complex and a third ROI covered the medial wall (MW).

The first initialization step aligned a single ROI for MT+ complex between species to

facilitate alignment of the remaining two ROIs (Appendix 1—figure 1A(5)). Next, the three
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ROIs were combined in a multidimensional file, i.e. in a metric file that contained three data-

arrays, or columns (Appendix 1—figure 1A(6)). MSM alignment of these sets of ROIs was

initialized by the MT+ ROI registration (Appendix 1—figure 1A(7)). Initialization was

performed using the ‘–trans=X.sphere.reg.surf.gii’-setting in the MSM-command. In the

following step, the whole-hemisphere myelin maps were aligned by using the three-ROI

registration step as initialization (Appendix 1—figure 1A(10)).

To derive a macaque-to-human registration, we resampled the macaque myelin map to

chimpanzee space using the MSM-derived macaque-to-chimpanzee registration. Then we

registered the resampled macaque map to the human map while using the chimpanzee-to-

human registration as initialization. This approach allowed refinement of the macaque-to-

human mapping rather than just applying the chimpanzee-to-human registration to the

resampled map. The surface registration was derived for both hemispheres separately with

mirrored versions of the ROIs. For registration steps involving ROIs, the registration sphere

derived from the left hemisphere was flipped to the right hemisphere. For the steps using

myelin maps, we derived the registration separately for both hemispheres. Configuration

parameters for all MSM-steps were determined empirically and were kept constant for the two

hemispheres (a table with all parameters is provided in Supplementary file 2).
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Appendix 2

Spatial correlation of myelin maps
The quality of the registration performance was visualized by computing a local spatial

correlation between the human myelin map and the result of the chimpanzee and macaque

registration. The correlation was computed using a sliding window around every vertex on the

sphere using MATLAB’s corrcoef-function ( Mathworks, Natick, MA). We used a search kernel

of 40˚ that corresponds to a circular search window with a radius of approximately 7 cm.

The vast majority of the cortical myelin maps correlates well after applying the registration

(Appendix 2—figure 1A). The correlation map shows that inferior frontal parts of the cortex

and anterior temporal lobe remain most dissimilar. Despite the good alignment of critical

posterior landmarks, such as V1 and MT+ complex, the correlation in posterior parietal areas

is lower than in more central areas indicating some residual dissimilarity in the registered

myelin maps.

Appendix 2—figure 1. Related to Figure 2. Myelin correlation and mesh distortion. (A) Local

correlation of myelin maps after applying the MSM-derived registration. (B) Relative distortion

of the mesh underlying the registrations. The values indicate a relative expansion (>1) or

contraction (<1) of the mesh.

Expansion maps
To visualize the shifts underlying the three cross-species registrations, we derived a map of

surface distortions. We computed the areal distortion between original and distorted mesh, as

implemented in ‘wb_command -surface-distortion’. Here, distortions for each mesh face are

estimated as log2(A1/A0), where A0 is the area of the original mesh face and A1 is the area of a

deformed mesh face. The values per vertex are calculated as a weighted average, where

weights are calculated from the relative size of the vertices adjoining mesh faces. We are

representing distortions between original and distorted sphere thus the numerical values of

the distortion map indicate relative expansion or contraction.

These expansions are underlying the shifts that lead to relocation of cortical areas. A

value >1 indicates a relative increase of the underlying mesh triangles and a value <1 indicates

a relative decrease in size. Note that the overall increase in brain size across species is not

accounted for in this calculation so that some areas show a distortion value smaller than 1.

The macaque-to-chimpanzee distortion map demonstrates that the largest expansion

happened in frontal areas (Appendix 2—figure 1B). Other areas that show expansion are

parietal cortex, posterior temporal and dorsal medial areas. The largest expansion from

chimpanzee to human happened in superior temporal and prefrontal cortex, but the

distortions are overall smaller and less extended than from macaque to chimpanzee. The
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macaque-to-human distortion map shows a similar pattern than chimpanzee-to-human, but

indicates a stronger distortion in frontal areas.
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Appendix 3

Tract maps
In addition to studying tracts in temporo-parietal cortex, we also assessed if the terminations

of two further white matter tracts can be predicted by the myelin-based registration. We

tracked cortico-spinal tract (CST) and vertical occipital fasciculus (VOF), which both terminate

in areas of the cortex that are characteristically high in myelin (Dum and Strick, 1991;

Glasser et al., 2014; Schmahmann and Pandya, 2009; Takemura et al., 2017). We included

these tracts to demonstrate that the registration captures major relocations of highly

myelinated areas across the whole cortex. Our proposed framework is thus not restricted to

studying temporal lobe architecture, but it can be applied to comparative questions across the

whole brain.

In the case of CST, the actual tract projections in the three species show terminations in

pre-and post-central gyrus (Appendix 3—figure 1A,C,E). For the chimpanzee and macaque,

these terminations span a relatively large portion of the frontal cortex, while in the human the

anterior part of the frontal lobe does not show any tract terminations. The frontal difference in

the three actual tract maps is related to the relative increase in human prefrontal cortex, which

is low in myelin content. After applying the myelin-based registration to the macaque and

chimpanzee tract maps of CST, the predicted terminations in human space show strong

overlap with the actual human tract map. The myelin-based registration thus can model the

effect of an increased prefrontal cortex on CST tract terminations. This overlap is captured in

the weighted correlation maps, which have a high value in areas surrounding the central gyrus.

The Dice coefficients for chimpanzee and macaque CST are relatively high. The extension ratio

is close to one in the left hemisphere and slightly elevated for the macaque right hemisphere.

Appendix 3—figure 1. Related to Figure 3 and Figure 4. Actual and predicted tract maps and

species comparison for the complete set of tracts investigated. Actual tract maps of macaque

(A), chimpanzee (C) and human (E). B and (D) show the transformed tract maps in human

space, predicted by the myelin-based registration for macaque and chimpanzee. (F):

Thresholded actual human tract maps (red) and tract maps predicted by the myelin-based

registration for chimpanzee (blue) and macaque (green) (thresholds (t): CST: t = 0.6, MDLF:

t = 0.7, VOF: t = 0.6, IFO: t = 0.75, ILF: t = 0.7, SLF3: t = 0.85, AF: t = 0.75). (G), (H):

Weighted correlation maps of actual human map and predicted chimpanzee and macaque

map.
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Appendix 3—figure 2. Related to Figure 5. Dice coefficients and tract extension ratios for

different percentages of surface coverage. Shown are mean ± 95% confidence interval derived

from all pairs of human (n = 20) and macaque or chimpanzee (n = 5) subjects in left (LH) and

right (RH) hemisphere. The low dice coefficient and high extension ratio for AF in macaque

and – to a lesser degree – in chimpanzee, is present for all percentages of surface coverage.

The online version of this article includes the following source data is available for figure 2:

Appendix 3—figure 2—source data 1. Numerical data underlying the quantifications shown in

Figure 5A,B and in Appendix 3—figure 2.

The posterior terminations of VOF are also predicted well by the myelin-based registration.

The predicted cortical terminations of the tracts show a strong overlap with the actual human

tract terminations. The termination zones of VOF are found in occipital lobe in all three

species. Primary visual cortex has moved from the lateral surface in the macaque to the medial

surface in the human, which is modelled well in our myelin registration. When applying the

registration, macaque and chimpanzee VOF is predicted to reach posterior and medial parts

of the occipital lobe, overlapping well with the actual human tract map. Dice coefficients for

VOF are high in both species and the extension ratio close to 1. This result suggests that

expansion and relocation of brain areas is largely sufficient to model the posterior cortical

terminations of VOF, similar as for MDLF, IFO, ILF and SLF3.
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Appendix 4

Correlation of tract extension with potential confounds
Since our analyses are based on comparing connectivity maps across species, it is important to

show that the differences in connectivity profiles are not due to differences in our ability to

estimate those connections, but are instead genuine differences in connectivity. We have

identified three such sources of confounds: (i) biases in the cortical termination of connections

due to differences in gyrification, (ii) noise in the estimate of local fiber orientations due to

differences in DW-MRI acquisition, (iii) differences in the geometry of the white matter tracts

affecting the correct estimation of their trajectories.

i. Surface gyrification has been shown to influence tractography results, as streamlines are
typically more likely to be detected on the crown of a gyrus than along its banks when
tracking from deep white matter towards the cortex (Jbabdi and Johansen-Berg, 2011;
Reveley et al., 2015). We quantified the mean curvature in the surface area covered by the
thresholded tract map in all three species. Surface curvature maps were provided by the
HCP-pipeline. We then derived the species ratios of curvature for human vs. chimpanzee
and for human vs. macaque. We derived a tract-wise correlation between the tract exten-
sion ratios (as shown in Appendix 3—figure 2) and the curvature ratios.

ii. Another aspect that affects the performance of the tractography algorithm is the ability to
estimate crossing fibers in FSL’s bedpostX, which is influenced by differences in the DW-
MRI sequence (Maier-Hein et al., 2017). This can be quantified by looking at the width of
the posterior distribution of the orientation parameters, which in FSL is quantified by the
dispersion of the fiber orientations (dyads_dispersion). To test if differences in acquisition
parameters affected the dispersion in a way that biased our results, we performed a similar
analysis as described above for surface curvature. For each tract we masked the dyad dis-
persion vector images in the ROI covered by the volumetric tractogram thresholded at 30%
and computed the mean value across all three voxel-wise fiber orientations. We then
derived a pair-wise species ratio between human vs. chimpanzee (and vs. macaque) and
correlated this dispersion ratio with each tract’s extension ratio.

iii. The geometry of the tract itself can affect how well the algorithm can reconstruct the path-
way. For example, it may be that tracts going through a narrow funnel are more likely to
result in false positives/false negatives due to ambiguities between crossing and kissing
fibers (Basser et al., 2000; Jones, 2010; Seunarine and Alexander, 2013). We quantify
this aspect of the tracts’ geometry by estimating the (cosine transformed) angle between
crossing fibers in each voxel:

divergencei;j ¼ 1� cos dyadi; dyadj
� �� �

This divergence measure was averaged across the three pairs of dyads (where i; and j indicate
fiber direction) and then averaged within each tract’s volumetric extent.

In addition to the factors described above, which quantify our ability to estimate the

connectivity, we also evaluated if the quality of the myelin-driven registration biased the tract

extension ratios. A spatial map of registration error was derived based on the inverse of the

spatial correlation maps of actual human myelin and predicted myelin map (the maps shown in

Appendix 2—figure 1A), i.e. one minus the intensity in the spatial correlation map. In other

words, this measure indicated how badly the predicted myelin map based on surface

registration correlated with the actual myelin map. For each tract, we then computed the

mean of the error map in the area covered by the tract map and we then determined the

tract-wise ratio in registration error between species. For the arcuate fasciculus (AF), and the

middle longitudinal fasciculus (MDLF) we performed an additional vertex-wise analysis on the

relation of registration error and species difference. We calculated a correlation of the vertex-

wise value in the registration error map and the absolute difference in the intensity of actual

human and predicted tract maps. Finally, we assessed if spatial differences in the myelin signal
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affected the results. This was done by quantifying the mean myelin content in the area

covered by the tract maps similar as described above for surface curvature.

The tract-wise correlation analyses show that there is no linear relationship between any of

the potential confounds and tract extension (r < 0.2, ns) (Appendix 4—figure 1A). It can also

be observed, that AF predicted by the macaque, which has the strongest tract extension ratio,

is not an outlier within the distribution of tracts for any of the measures that we assessed. An

exception is the ‘complexity’ measure, where AF is found at the lower end of the distribution.

This indicates merely that AF differs in the complexity measure compared to the other tracts,

but this does not indicate that the effect in tract extension is driven by tract complexity. Other

tracts that have a high extension ratio (e.g. chimpanzee ILF in the right hemisphere) are found

at the other end of the distribution.

Appendix 4—figure 1. Related to Figure 5 and Appendix 3—figure 2. (A) Tract-wise

correlation of tract extension ratio and potentially confounding factors (n = 28). Labels for

tracts are not provided for readability, but can be inferred from Appendix 3—figure 2. For

details refer to the text. (B, C) Whole-brain vertex-wise correlation of absolute species

difference in actual and predicted tract map (B: AF; C: MDLF) and the registration error map

(i.e. one minus the myelin correlation map in Appendix 2—figure 1). Marginal histograms

show the distribution of vertices across 50 regular bins. The inset scale shows the number of

vertices within the bins of the joint distribution scatterplot (color mapping as in A), n = 20252

vertices, p<0.001 for all correlations in B and C.

In addition to the tract-wise analyses, we also performed a vertex-wise analysis on the

whole-brain tract map of AF (Appendix 4 – Figure 1B). A correlation between registration

error and absolute species difference in tract map intensities (actual human minus predicted)

shows that there is no linear relationship for both hemispheres and both species (r < 0.22,

p<0.001). For visual comparison, we plotted the 2D joint distribution of registration error and

species difference for AF, where we observed the strongest tract expansion, and for MDLF,

where we observed only small tract expansion (Appendix 4 – Figure 1B, C). The joint

distribution plots of the two tracts show a similar pattern, which demonstrates that species

differences in AF cannot be attributed to an unusual bias due to registration error.

In sum, these control measure show that our observed effects of tract extension cannot be

explained by potentially confounding factors, such as gyral bias and registration error.

Eichert et al. eLife 2020;9:e53232. DOI: https://doi.org/10.7554/eLife.53232 30 of 30

Research article Neuroscience

https://doi.org/10.7554/eLife.53232

