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Abstract The pervasive occurrence of sexual dimorphism demonstrates different adaptive

strategies of males and females. While different reproductive strategies of the two sexes are well-

characterized, very little is known about differential functional requirements of males and females

in their natural habitats. Here, we study the impact environmental change on the selection

response in both sexes. Exposing replicated Drosophila populations to a novel temperature

regime, we demonstrate sex-specific changes in gene expression, metabolic and behavioral

phenotypes in less than 100 generations. This indicates not only different functional requirements

of both sexes in the new environment but also rapid sex-specific adaptation. Supported by

computer simulations we propose that altered sex-biased gene regulation from standing genetic

variation, rather than new mutations, is the driver of rapid sex-specific adaptation. Our discovery of

environmentally driven divergent functional requirements of males and females has important

implications-possibly even for gender aware medical treatments.

Introduction
The ubiquity of sexual dimorphism in dioecious organisms reflects the discordant selection pressure

driven by divergent reproductive roles of males and females (Chapman, 2006). For instance, males

typically evolve to increase their mating frequency and success of fertilization, while females benefit

from better resource allocation to their offspring (Brengdahl et al., 2018; Civetta and Clark, 2000;

Friberg and Arnqvist, 2003). Often, such differential requirements of males and females results in

sexual conflict, preventing males and females to reach sex-specific trait optima (Bonduriansky and

Chenoweth, 2009; Lande, 1980; Mank, 2017a; Rice, 1992). Based on the widespread sexual

dimorphism, several models for the evolution of sexual dimorphism from a largely shared genome

have been proposed (Barson et al., 2015; Day and Bonduriansky, 2004; Mank, 2017b; Parsch and

Ellegren, 2013; Pennell and Morrow, 2013; Rice, 1984; Telonis-Scott et al., 2009). One implicit

assumption of these studies is that stable sex-specific fitness landscapes are persisting over long

evolutionary time scales. However, ecological changes, such as environmental fluctuations, occur at

high rates (Reznick and Ghalambor, 2001). If such environmental factors affect the sex-specific fit-

ness landscapes, sudden ecological changes may impose selection for novel/altered sexual dimor-

phism in a population (Camus et al., 2019).

To date, limited attention has been given to the evolutionary dynamics of sex differences in

response to changing environments. The clinal variation of sexual dimorphism for a small number of

phenotypes (Blanckenhorn et al., 2006; Chenoweth et al., 2008) and gene expression (Allen et al.,

2017; Hutter et al., 2008) in Drosophila suggests that sex-specific adaptation in response to envi-

ronmental heterogeneity is not uncommon. When the requirements of males and females differ in

an environment-specific manner, the adaptive response is contingent on the availability of
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segregating variants with sex-specific or sex-biased effects. Without the corresponding variants, sex-

specific adaptation requires new mutations, resulting in slow evolutionary responses. Here, we use

experimental evolution for direct experimental evidence that sex-specific adaptation can be trig-

gered by a rapid environmental shift within a few generations.

Results and discussion

Distinct phenotypic changes of females and males in a novel
environment
We explored the phenotypic evolution of males and females by studying gene expression because

many of these molecular phenotypes can be scored with a high precision at moderate costs. Further-

more, in contrast to high-level phenotypes, which are typically selected on a priori criteria, the analy-

sis of gene expression is unbiased. We measured gene expression of 10 replicate populations which

evolved independently for more than 100 generations in a simple and well-controlled high-tempera-

ture selection regime (Barghi et al., 2019). In each sex, we screened for genes with parallel changes

in expression across the replicated evolved populations compared to their same-sex ancestors. After

accounting for allometric changes during evolution (see Materials and methods), we identified 2366

and 4151 genes (25% and 44% of all expressed genes, N = 9,457) showing evolutionary responses in

males and females respectively (FDR < 0.05; Supplementary file 1 and Figure 1—figure supple-

ment 1). The evolution in gene expression was vastly different between the sexes, resulting in almost

uncorrelated gene expression changes (Figure 1a). Only 760 genes (14%; 469 up-regulated and 291

down-regulated) evolved concordantly in both sexes. 1295 genes (24%) changed expression specifi-

cally in males (657 up-regulated and 638 down-regulated) and 3080 genes (57%) evolved in females

only (1877 up-regulated and 1203 down-regulated). Interestingly, 311 genes (6%) displayed diver-

gent responses to selection in the two sexes (Figure 1b). The discordant gene expression evolution

of males and females indicates different functional requirements in the novel environment.

To determine the diverged functional requirements of males and females in the new environment,

we tested for enrichment of gene ontology (GO) terms and tissue-specific expression (Figure 1c and

d, Supplementary files 2 and 3). We found a striking pattern of enrichment that suggested sex-spe-

cific evolution of fatty acid metabolism in both the GO term and tissue-specific enrichment analyses.

eLife digest Male and female animals of the same species sometimes differ in appearance and

sexual behavior, a phenomenon known as sexual dimorphism. Both sexes share most of the same

genes, but differences can emerge because of the way these are read by cells to create proteins – a

process called gene expression. For instance, certain genes can be more expressed in males than in

females, and vice-versa.

Most studies into the emergence of sexual dimorphism have taken place in stable environments

with few changes in climate or other factors. Therefore, the potential impact of environmental

changes on sexual dimorphism has been largely overlooked.

Here, Hsu et al. used genetic and computational approaches to investigate whether male and

female fruit flies adapt differently to a new, hotter environment over several generations. The

experiment showed that, after only 100 generations, the way that 60% of all genes were expressed

evolved in a different direction in the two sexes. This led to differences in how the males and

females made and broke down fat molecules, and in how their neurons operated. These expression

changes also translated in differences for high-level biological processes. For instance, animals in the

new settings ended up behaving differently, with the males at the end of the experiment spending

more time chasing females than the ancestral flies.

These findings demonstrate that male and female fruit flies adapt many biological processes

(including metabolism and behaviors) differently to cope with changes in their environment, and that

many different genes support these sex-specific adaptations. Ultimately, the work by Hsu et al. may

inform medical strategies that take into account interactions between the patient’s sex and their

environment.

Hsu et al. eLife 2020;9:e53237. DOI: https://doi.org/10.7554/eLife.53237 2 of 16

Research article Evolutionary Biology Genetics and Genomics

https://doi.org/10.7554/eLife.53237


Figure 1. Sex-specific gene expression evolution adapting to a high temperature. (a) Evolution of gene

expression in females (x axis) and males (y axis). The evolutionary changes of all expressed genes are shown on

log2 scale. Genes showing different patterns of evolution are highlighted in different colors. (b) The majority of the

genes with significant expression changes is sex-specific. Venn diagram showing the number of genes with

significantly different gene expression patterns (DE: Differential Expression; M.up/F.up: males/females evolved

higher gene expression, M.down/F.down: males/females evolved lower gene expression). (c) Genes with evolved

expression changes in males and females are involved in nearly mutually exclusive sets of biological processes.

Venn diagram of sets of GO (Gene ontology: biological processes) terms enriched by the genes changing their

expression for each direction in each sex (i.e. four sets of candidate genes: up/down-regulation in males/females).

For instance, there are only three biological processes repeatedly found among the 90 and 53 processes involving

up-regulated genes in males and females respectively. (d) The tissue enrichment of genes significantly evolving for

either direction in males and females (Br-brain, Hd-head, Cr-crop, Mg-midgut, Hg-hindgut, Tb-malpighian tubule,

Tg-thoracoabdominal ganglion, Cs-carcass, Sg-salivary gland, Fb-fat body, Ey-eye and Hr-heart). Each cell

represents the result of a Fisher’s exact test. The colors and numbers denote the magnitude of odds ratio and

statistical significance (FDR < 0.05) is indicated with *. Consistent with GO enrichment results, gene expression

evolution in males and females may occur in different tissues.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Parallel responses of adaptive genes across replicates.

Figure supplement 2. Evolution of sexual dimorphism.
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Genes highly expressed in fat body tissue were over-represented among the 1280 genes with upre-

gulation in males, but over-represented among the 1648 genes with downregulation in females

(FET, FDR < 0.01 in both tests, Figure 1d and Supplementary file 3). GO enrichment analysis of

genes with male-specific upregulation further highlighted biological processes like ‘lipid metabolic

process’, ‘acyl-CoA biosynthetic process’, ‘fatty acid elongation’ and ‘triglyceride catabolic process’

(Supplementary file 2). Similar GO categories were enriched among the 154 antagonistically evolv-

ing genes that were upregulated in males but downregulated in females (Supplementary file 2).

Interestingly, two apparently counteracting processes, fatty acid synthesis and degradation, were

Figure 2. Sex-specific phenotypic evolution. (a and c) Genes involved in fatty acid metabolism and

monoaminergic neural signaling evolve in response to high temperature. The evolutionary changes in males (blue

bar) and females (red bar) are shown on log2 scale. Statistical significance (FDR < 0.05) is indicated with *. For both

set of genes, the evolution is largely sex-specific or even sexually discordant. (b) Level of triglycerides, the main

constituent of body fat data from Barghi et al. (2019). Evolved females have significantly lower fat content than

the ancestral ones. No significant difference is found in males. Two-way ANOVA and Tuckey’s HSD test. (d)

Ovarian dormancy incidence at 10˚C in ancestral and evolved females. Evolved females have a lower dormancy

incidence than ancestral ones (Wilcoxon’s test, W = 1.5, p=0.028). (e) Time males chasing females. Evolved males

spent significantly more time chasing females (Wilcoxon’s test, W = 1323.5, p<0.001).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Ovarian dormancy incidence at 12˚C.

Figure supplement 2. Time male flies attempting to copulate.
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both upregulated in males (Figure 2a) whereas in females, only genes involved in fatty acid synthesis

were significantly downregulated (Figure 2a). A link between these changes in gene expression and

a higher-level phenotype is suggested by the observation that these laboratory populations experi-

enced a significant decrease of fat content only in females but not in males (Barghi et al., 2019;

Figure 2b).

In addition, sex-specific responses to selection in gene expression were also related to neuronal

signaling. The evolution of dopamine signaling during temperature adaptation has previously been

reported in male flies of the same population (Jakšić et al., 2019). The 1086 genes that evolved

decreased expression in males were enriched in brain and ganglion tissues (FET, FDR < 0.001 in

both tests; Figure 1d and Supplementary file 1) whereas there was no enrichment in these tissues

for females. Likewise, gene expression of dopaminergic processes (e.g.: Ddc, DAT and Dop1R2)

evolved downregulation in males but did not evolve in females (Figure 2c). In contrast, only females

evolved increased expression of genes involved in octopamine biosynthesis and signaling (e.g.:

Tdc1, Tdc2 and Octa2R) (Figure 2c).

The sex-specific modulation of transcriptional activity in different neuronal circuits may trigger

changes in sex-specific fitness-related behaviors such as male courtship and female oviposition. In

support of this hypothesis, the GO terms ‘copulation’ and ‘male courtship behavior’ were enriched

among the 154 antagonistic genes up-regulated in males, as was ‘oviposition’ among the 1877

genes with female-specific up-regulation (Supplementary file 2). The increased fecundity of evolved

females (Barghi et al., 2019) fits the expectations for increased octopamine synthesis (Cole et al.,

2005; Monastirioti, 2003). Female fecundity is, however, a complex trait which may be affected by

many factors other than increased octopamine level. We tested therefore another octopamine-

related phenotype that was not selected in the experiment, ovarian dormancy in response to cold

temperatures (Andreatta et al., 2018). Confirming the increased octopamine level in the evolved

females, dormancy incidence was lower at two different dormancy-inducing temperatures (10˚C and

12˚C) (Figure 2d and Figure 2—figure supplement 1). Further, we also observed changes in male-

specific behavior after 100 generations of adaptation; evolved males spent more time chasing

females and made more copulation attempts than ancestral ones (Figure 2e and Figure 2—figure

supplement 2).

The sexually discordant evolution of several phenotypes, including gene expression, metabolism

and behavior, provides evidence that sex-specific adaptive processes occurred in experimental pop-

ulations exposed to a novel temperature regime. This raises the important question of how poten-

tially conflicting selection pressures on the shared genome have been decoupled during 100

generations of evolution.

Rapid sex-specific adaptation can be driven by altered sex-biased gene
regulation
Sexually dimorphic gene expression is abundant in Drosophila (Parsch and Ellegren, 2013) and 95%

of the genes in the ancestral population of this study are also sex-biased (Supplementary file 1).

This implies the decoupling of selection on the gene expression in males and females (Mank, 2017a)

as well as the presence of a sex-biased regulatory architecture of the transcriptome (Mank, 2017b;

Parsch and Ellegren, 2013; Pennell and Morrow, 2013) in the ancestral population. Transcription

factors (TF) with sex bias in expression or splicing are the key factor underlying this sex-biased regu-

latory architecture (Mank, 2017a). It has been hypothesized that relatively fast sex-specific

responses to discordant selection may be driven by fixation of novel mutations resulting in sex-

biased gene expression (Stewart et al., 2010; van Doorn, 2009). However, we observe sex-specific

expression changes across replicates after only 100 generations, in which case de novo mutations in

individual replicates are unlikely to be the driver (Burke et al., 2010). Rather, selection on standing

genetic variation in existing sex-specific genetic architecture seems the most likely mechanism allow-

ing replicated populations to approach different functional requirements of the two sexes in the new

environment over such a short timescale (Figure 3).

Candidate TFs supporting this hypothesis would regulate both genes with sex-biased expression

(criterion 1) and genes with a significant evolution of sex bias in expression (criterion 2). Furthermore,

the sex bias of these TFs must have evolved in a direction compatible with the changes of their tar-

get genes (criterion 3). Of 656 annotated TFs expressed in our populations, 300 TFs evolved a

change in sex-biased expression (i.e. either evolve a new sex bias or the ancestral sex bias changes);
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Figure 3. A simple model for rapid evolution of sex-specific adaptation. Regulatory variation segregating at a

transcription factor is selected for a more pronounced difference in gene expression between sexes. This also

causes more pronounced expression differences in a downstream gene satisfying the altered requirements of the

two sexes in the new environment. (A) Regulatory cascade of a transcription factor (TF) controlled by sex-specific

isoforms of Dsx. Two alleles with different binding affinity (B > b) with DsxM but not with DsxF are regulating

downstream genes affecting fitness (FG). (B) Frequency of the allele increasing sex bias (B allele) at three different

stages: in the native (natural) environment, in the new hot environment at the start of the experiment, in the new

hot environment at the end of the experiment. (C) Fitness landscape at the three different stages. (D) Expression

Figure 3 continued on next page
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210 and 80 evolved either in females or males, respectively, and 10 changed in opposite direction in

the two sexes (Supplementary file 4). Based on cis-regulatory element enrichment, we identified 69

TFs which regulate genes with sex-biased expression and a total of 198 TFs that target genes with

sex bias evolving in opposite direction (Supplementary file 5). In the end, 19 TFs satisfied all our

three criteria for the most likely candidates targeted by the discordant selection in the two sexes

(Supplementary file 6). Despite genomic time series data being available for these populations

(Barghi et al., 2019), extensive linkage structure in the populations preclude an unambiguous identi-

fication of selected TF alleles. Future functional studies will show which of these candidate TFs are

accomplishing the decoupling of male and female requirements and which molecular processes con-

tribute to adaptation of the two sexes in a novel temperature regime. Nevertheless, we caution that

the evolution of gene expression is most likely polygenic, with several-or even many loci contributing

to the evolution of sex bias. In this case, both genomic responses and functional tests may be com-

plicated due to the expected small effects of individual loci.

Using computer simulations, we further corroborated the hypothesis that sex-specific adaptation

can be achieved rapidly in the presence of segregating regulatory variants which alter the sex bias of

a trait. Based on the haplotype information of the founder lines initiating the experiment

(Barghi et al., 2019), we simulated traits (expression value) each controlled by 50 additive loci (TFs)

of which 0, 1, 2, 5, 10 or 20 are sex-specific (effect size = 0 in one sex)/sex-biased (2-fold difference

in effect size). The simulated populations were exposed to a selection regime where males and

females of the same population have different fitness optima for the focal trait and we monitored

the phenotypic change in each sex during 100 generations. 100 simulations were performed under

each scenario. Without sex bias in the effect size (rmf = 1), neither males nor females could respond

to the discordant selection (Figure 4). With 40% of the loci contributing to the trait being sex-spe-

cific (rmf = 0.49 ± 0.2) or sex-biased (rmf = 0.87 ± 0.05), both males and females can evolve toward

the opposing optima (Figure 4 and Figure 4—figure supplement 1). Nevertheless, sex-specific or

sex-biased expression is not required for many contributing loci. Already two sex-specific

(rmf = 0.94 ± 0.08) loci significantly decouple the response of the two sexes (Figure 4b) under oppos-

ing selection pressures.

Maintenance of genetic variation with sex-biased effects
As discussed above, the rapid sex-specific responses, which are highly parallel across replicates, in

combination with the gain and loss of sexual dimorphism (Figure 1—figure supplement 2) highlight

the importance of standing genetic variation in sex-biased regulatory architecture. This raises the

interesting question of how genetic variation with sex-biased effects is maintained. Assuming a sim-

ple genetic basis and a stable fitness landscape with pronounced differences between the two sexes,

alleles with dimorphic expression are expected to become fixed. We propose two, not mutually

exclusive hypotheses to explain the discrepancy to our observation. First, the fitness landscape of

some sex-specific phenotypes could vary in response to environmental fluctuation. In this case,

alleles controlling the sex difference of a trait could be segregating and maintained in a population.

As natural Drosophila populations regularly encounter seasonal temperature fluctuations, candidate

alleles regulating sex-specific temperature adaptation can be maintained at sufficiently high frequen-

cies to facilitate rapid responses. The impact of seasonal variation on oscillating allele frequency

changes has been recently described experimentally and theoretically (Bergland et al., 2014;

Wittmann et al., 2017). The second hypothesis assumes a polygenic basis. We note that unambigu-

ous sex-limited modifiers (e.g. male and female isoforms of doublesex ; Kopp et al., 2000) do not

preclude polygenic adaptation — these sex-limited modifiers may regulate many down-stream regu-

lators that respond to the environmental change. Thus, already minor frequency shifts of these

down-stream regulators could mediate the observed evolution of sex-specific gene expression

changes. Importantly, under polygenic adaptation segregating variation is maintained for rather

long time-scales (Barton and Keightley, 2002; Gillespie, 1984; Gillespie and Turelli, 1989).

Figure 3 continued

of TF and FG in males and females at the different stages. After 100 generations, the frequency increase of the

allele increasing sex-biased expression of the TF results in a resolved intra-locus conflict.

Hsu et al. eLife 2020;9:e53237. DOI: https://doi.org/10.7554/eLife.53237 7 of 16

Research article Evolutionary Biology Genetics and Genomics

https://doi.org/10.7554/eLife.53237


Indirect support for this hypothesis comes from the observation that no significant SNPs explaining

the sex difference for multiple human traits can be identified (Randall et al., 2013). Under this sce-

nario, rapid evolution of the sex difference may be achieved by the heterogeneous genotypic

changes across replicated populations (Barghi et al., 2019).

Conclusion and outlooks
This study demonstrates the power of experimental evolution to study sex-specific adaptation after

an environmental shift. A substantial fraction of the transcriptome and related high-level phenotypes

rapidly developed discordant changes in the two sexes upon exposure to a new environment. We

propose that variation segregating in the ancestral population has facilitated the evolution of sex-

biased gene expression, which in turn provides the basis for the sex-specific adaptation evidenced

by the broad range of phenotypes evolving in different directions in males and females.

While we provided robust evidence for sex-specific adaptation, it is important to keep in mind

that the identification of the selected traits in both sexes is an extremely challenging task. While

60% of genes changed expression in a sex-specific manner, it is unlikely that each of them is inde-

pendently selected. We can anticipate many ways how the sex specific phenotypic changes have

been achieved, ranging from allometric changes during adaptation to selection acting on cis-regula-

tory variation of highly pleiotropic transcription factors. Further characterization of the adaptive

changes needs to distinguish between two goals. One goal, which is pursued in many studies, is the

identification of the gene(s) that experienced a frequency change of a favored variant as contribution

to the adaptive phenotype. The other goal is the identification of the selected phenotype. Given the

pleiotropic effects of many genes and the polygenicity of most adaptive phenotypes (Barghi et al.,

2019; Pritchard et al., 2010), it is apparent that the characterization of individual selected alleles

has clear limitations in reaching the later goal. In fact, the justification of studies aiming to character-

ize adaptive allelic variants has been challenged (Rockman, 2012). More rewarding would be the

Figure 4. Rapid decoupling of the phenotypic response to sexually discordant trait optima by a few sex-specific

loci. (a) The phenotypic response of a trait controlled by 50 loci after 100 generations of sexually discordant

selection. Different numbers of sex-specific loci in each sex are shown. For each scenario, 100 independent

computer simulations were performed. The normalized phenotypic change is calculated as the ratio between

phenotypic change and phenotypic variance of the ancestral population. (b) Fraction of simulations for which the

focal trait increases in males but decreases in females. The statistical significance denoted by an asterisk is based

on one-sample proportion test comparing to the control simulation without any sex-specific locus. Bonferroni’s

correction is applied. Already two sex-specific loci in each sex significantly decouples the phenotypic responses to

the discordant selection. With increasing numbers of sex-specific loci, the difference between the sex-specific

phenotypic responses becomes more pronounced.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Sex-specific responses to discordant selection via sex-biased loci.
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characterization of the adaptive trait, which is selected in a sex-specific manner. Our enrichment

analysis and characterization of high-level phenotypes aimed towards this direction, but we cannot

distinguish between correlated phenotypic changes and the actual selected phenotypes.

While most of this report focused on the rapid evolution of sex-specific adaptation, the driving

forces behind this have not been discussed to the same extent, largely because they will require fur-

ther functional characterization. Nevertheless, in line with sex-dependent dietary effects on fitness

(Camus et al., 2019), the fact that males and females have vastly different functional requirements

after being exposed to a novel environment has far reaching consequences-well beyond Drosophila.

We anticipate that our results will have profound influence on biomedical research and medical

treatments which need to account for the overwhelming differences of the two sexes in particular

with respect to new environmental stressors, reaching from diet to climatic conditions.

Materials and methods

Experimental evolution
The set-up of the experimental evolution populations is described in Barghi et al. (2019). In brief,

10 replicated outbred populations were constituted from 202 isofemale lines derived from a natural

Drosophila simulans population collected in Tallahassee, Florida, USA in 2010. Replicated popula-

tions have been independently adapting to a laboratory environment at 18/28˚C with 12 hr dark/12

hr light photoperiod for more than 160 generations with a census population size of 1000–1250

adults per population per generation.

RNA-Seq common garden experiment
The collection of samples for RNA-Seq and all other phenotypic assays, was preceded by two gener-

ations of common garden rearing. Two different RNA-Seq data sets were generated for this study:

The first one, in which highly replicated whole body samples were collected, represents the main

dataset that we used to contrast gene expression levels of females and males from ancestral and hot

evolved populations. The second one with gonads and carcass being analyzed separately was gener-

ated to correct for allometric differences between evolved and ancestral populations.

The first data set comes from a common garden experiment (CGE) performed after 103 genera-

tions of evolution in the hot environment and this CGE has been described in Barghi et al. (2019);

Hsu et al. (2019); Jakšić et al. (2019). We reconstituted five replicates of the ancestral population

from 184 founder isofemale lines by generating five pools with five mated females from each isofe-

male line. No significant allele frequency differences are expected between the reconstituted ances-

tral populations and the original ancestral populations initiating the experiment (Nouhaud et al.,

2016). Because we evaluated phenotypes on the population level, even deleterious mutations will

have a very limited impact, because they occur only in a single isofemale line, which represents a

very small fraction of the total population. For each of the 10 hot evolved replicates, we generated

three sub-replicates by multiple egg lays. The five ancestral replicates and all hot evolved sub-repli-

cates were reared in common garden for two generations with controlled low egg density (400

eggs/bottle) in the same temperature regime as during the evolution experiment. After two genera-

tions under CGE conditions, flies were collected from each replicate/sub-replicate a few hours after

eclosion and maintained on fresh food under the 18/28˚C temperature regime to allow for mating.

On the third day after eclosion, sexes were separated under CO2 anesthesia and allowed to recover

for two days. At the age of five days, 50 flies of each sex were snap frozen in liquid nitrogen at 2pm

and stored at �80˚C until RNA extraction. We sequenced the transcriptomes of 50 females and

males from each of the five ancestral replicates and from each of the 10 hot evolved replicates with

three sub-replicates each for males and two sub-replicates for females. The third sub-replicate of the

hot evolved female samples was frozen at a different age which prevented the joint analysis in the

context of this study (Hsu et al., 2019).

The second RNA-Seq data set was generated at generation 140 of the hot evolving populations

to correct for potential differences in the relative size of gonadal and carcass tissue between ances-

tral and evolved populations. CGE set-up and maintenance were repeated as described above, with-

out sub-replication of the hot evolved replicates: 50 whole body samples for females and males

were collected from five reconstituted ancestral and all 10 hot evolved replicates and snap-frozen at
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the age of five days at 2pm. Gonadal and carcass tissue was sampled from six reconstituted ances-

tral and six randomly chosen hot evolved replicates (replicates no. 1, 4, 5, 6, 8, 9). For each replicate,

50 female and 50 male flies were dissected in PBS at the age of 5 days and dissected gonadal tissues

and remaining carcasses were immediately preserved in Qiazol and stored at �80˚C.

RNA extraction and library preparation
Total RNA was extracted using the same procedure for all samples: homogenized in Qiazol with a

pestle. Total RNA was extracted from the homogenate using the Qiagen RNeasy Universal Plus Mini

kit (Qiagen, Hilden, Germany) with DNase treatment to remove traces of genomic DNA. Libraries

were prepared on the Neoprep Library Prep System (Illumina, San Diego, USA) starting from 100 ng

total RNA and following the manufacturer’s recommended protocol for the TruSeq stranded mRNA

Library Prep Kit for Neoprep. Neoprep runs were performed using software version 1.1.0.8 and pro-

tocol version 1.1.7.6 with default settings for 15 PCR cycles and an insert size of 200 bp. Libraries

were arranged in randomized order on library cards. To avoid batch effects, we used library cards

with the same lot number for all samples for which direct comparisons of expression levels were

planned (lot no. 20123465: CGE at generation 103, males, whole body, all ancestral and hot evolved

samples; lot no. 20173962: CGE at generation 103, females, whole body, all ancestral and hot

evolved samples; lot no. 20182049: CGE at generation 140, females and males, whole body and

gonadal tissue). 50 bp single-end reads were sequenced on an Illumina HiSeq 2500.

RNA-Seq data processing
All sequencing reads were trimmed with ReadTools (Version: 1.5.2) (Gómez-Sánchez and Schlöt-

terer, 2018) based on a quality score of 20, and mapped with GSNAP (Version: 2018-03-25; Param-

eters: -k 15 N 1 m 0.08) (Wu and Nacu, 2010) to Drosophila simulans reference genome

(Palmieri et al., 2015 Supplementary file 7). Exon-aligned reads were counted with Rsubread (Ver-

sion: 1.30.9) (Liao et al., 2013) based on the annotation (Palmieri et al., 2015) and the expression

level of each gene was quantified after normalizing the exon-aligned read counts by TMM method

implemented in edgeR (Version: 3.22.5) (Robinson et al., 2010). Only genes with more than 0.1

count per million base pairs in each sample of the main dataset (1st CGE) were retained for the anal-

ysis to avoid biased analyses.

Estimation and correction of the allometric difference
Using an independent CGE that consisted of dissected samples (2nd CGE, correcting dataset), we

corrected for potential differences in the relative size of gonadal and remaining carcass tissues in

ancestral and hot evolved populations for each gene.

For each gene, we formulated its average expression across whole-body samples (yWb; i) with the

average expression across gonad samples (yg; i) and carcass samples (yc; i) as:

yWb; i ¼ aiyg; i þ 1� aið Þyc; i, where a is the coefficient measuring the relative portion of gonadal

expression of a gene in whole body expression, ranging from 0 to 1 (Supplementary file 10). If a

gene is expressed at similar level in both gonadal and somatic tissues, it would not be affected by

differences in tissue scaling. We excluded these genes in the comparison of tissue-scaling and

applied no correction for them in the subsequent analysis. Leave-one-out cross validation was per-

formed to evaluate the accuracy and robustness of the method. The estimation of the scaling coeffi-

cients for each gene was robust (Supplementary file 8). In addition, the prediction was nearly

perfect (Supplementary file 9).

Comparing the distribution of gene-wise estimates of scaling coefficients, we found significant

difference between ancestral and evolved populations for both sexes (Kolmogorov-Smirnov test

D = 0.18 and 0.12 for females and males, respectively; p<0.001 in both tests; Supplementary file

11). This suggested that the gonad-carcass size ratio may have significantly changed during the

adaptation to the new environment. A proper correction is necessary for unbiased inference. Hence,

we normalized the tissue-scales of each ancestral sample to the scale of evolved samples. We recon-

structed pseudo whole-body samples using the expression data of dissected samples of the ances-

tral populations and scaling coefficients estimated from the evolved samples as:

y
pseudo
Wb; i ¼ ai

evo
yg; i þ 1� ai

evoð Þyc; i.
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Finally, the ratio of expression levels between the reconstructed pseudo whole-body samples and

the original ones (
y
pseudo

Wb; i

yWb; i
) for each gene were calculated as the correcting factors (gi). Gene-wise cor-

rection was applied to ancestral whole-body samples from the 1st CGE by multiplying the expression

value of each gene to corresponding gi. The corrected samples were used in all subsequent

analyses.

Differential expression (DE) analysis
After correction, we modeled the effects of sex and evolution on gene expression variation as:

Y ¼ groupþ ", where Y is the normalized expression values; group indicates the combination of evo-

lution and sex difference with four levels (ancestral females, ancestral males, evolved females and

evolved males) and " is the random error. Likelihood ratio tests implemented in edgeR were used to

perform differential expression analysis on three contrasts: (1) female evolution: evolved females vs.

ancestral females, (2) male evolution: evolved males vs. ancestral males and (3) sex bias: females vs.

males. Benjamini and Horchberg’s FDR correction (Benjamini and Hochberg, 1995) was applied

with the significance threshold of FDR < 0.05. Genes showing distinct evolutionary patterns were

classified based on criteria in (Supplementary file 2).

Enrichment analysis
Gene ontology (GO) enrichment was performed using the default ‘weight01’ algorithm implemented

in topGO (version 2.32.0) (Alexa et al., 2006). Genes highly expressed in each tissue were identified

based on the FlyAtlas expression dataset (Chintapalli et al., 2007) (required >2 fold higher expres-

sion in a certain tissue than whole-body, Supplementary file 3). Fisher’s exact test was applied for

the enrichment of tissue expression. Except for the GO enrichment analysis of which the method

already accounts for multiple testing (Alexa and Rahnenführer, 2018), Benjamini and Horchberg’s

FDR correction (Benjamini and Hochberg, 1995) was applied to account for multiple testing.

Cis-regulatory element enrichment analysis
Enrichment of cis-regulatory elements (CREs) 5 kb upstream and intronic sequences of the genes of

interest (Supplementary file 5) was identified with RcisTarget (version 1.0.2) (Aibar et al., 2017).

We searched for enriched motifs using the latest motif ranking file of Drosophila species (‘dm6-5kb-

upstream-full-tx-11species.mc8nr.feather’, accessed on 2019-04-08) with parameters, nesThres-

hold = 3 and aucMaxRank = 1%. Transcription factors (TFs) annotated to bind on the enriched CREs

were considered as candidate master TFs regulating the genes of interest.

We performed cis-regulatory element enrichment analysis on female-biased, male-biased, female-

specifically up-regulated, down-regulated, male-specifically up-regulated, down-regulated, and two

sets of antagonistically evolving genes separately (Supplementary file 5).

Male reproductive activity assays
We measured the reproductive activity of five reconstituted ancestral populations and five randomly

selected hot evolved replicates at generation 140. After two generations reared in a common gar-

den condition (18/28˚C cycling), 10 five-day-old mated males and females from each population

were placed together in an agar-based arena (4% agar, 4% sugar) and filmed for 15 min at 20 FPS

(frame-per-second) at 28˚C using the FlyCapture2 system (PointGrey, Version 2.13.3.31). In total, 10

video each for reconstituted ancestral and evolved populations were filmed. The movement and

behavior of each fly was tracked using flytracker (Version 1.0.5) (Eyjolfsdottir et al., 2014). Videos

that failed the tracking process were not used for subsequent analysis. Janelia Automatic Animal

Behavior Annotator (JAABA, Version 0.6.0_2014a) was used to annotate and recognize the chasing

and attempted copulation behavior (Kabra et al., 2013). We imported the output files of JAABA

into R for data processing and statistical analysis. The time a male fly spent on chasing and copula-

tion attempt females was quantified. Wilcoxon’s rank sum test was applied to test the difference in

reproductive activity of male flies in evolved and ancestral populations.

Female reproductive dormancy assays
We screened three replicates of the reconstituted ancestral and 10 replicated evolved populations

for dormancy incidence at generation 167. Ancestral and evolved populations were kept at the same

Hsu et al. eLife 2020;9:e53237. DOI: https://doi.org/10.7554/eLife.53237 11 of 16

Research article Evolutionary Biology Genetics and Genomics

https://doi.org/10.7554/eLife.53237


temperature regime for four generations before freshly eclosed female flies were collected within

two hours post-eclosion and kept under dormancy-inducing conditions (10˚C and 12˚C, LD 10:14) for

three weeks before dissection. 90 flies from each population and temperature regime were dis-

sected and their oogenesis progression was examined. Each fly was classified as dormant or non-

dormant (Lirakis et al., 2018). Wilcoxon’s rank sum test was applied to test the difference in dor-

mancy level of female flies in evolved and ancestral populations.

Simulation
We performed forward simulations using qff function implemented in MimicrEE2 (v208)

(Vlachos and Kofler, 2018). Starting with 189 founder haplotypes (Barghi et al., 2019), in each sex,

we simulated a trait controlled by a varied number of loci (0, 1, 2, 5, 10, 20) conferring sex-specific

or sex-biased effects while the total number of contributing loci in each sex was constantly 50. For

each trait, we assumed an additive model (a~G 0:5; 2:5ð Þ) and relatively high heritability (h2 = 0.8). A

sex-specific locus confers additive effect on a trait in one sex but no effect in the other sex while a

sex-biased locus is assumed to contribute to the trait in both sexes but there is a 2-fold difference in

its additive effect between the two sexes. Sexually discordant selection, where the trait optimum is

shifted three units (i.e. on average, 1.9 phenotypic standard deviations) to the left and to the right

for males and females respectively, was imposed to the simulated traits for 100 generations assum-

ing balanced sex-ratio. In total, we performed 100 independent simulations for each of the six sce-

narios in this study. Then, we measured the normalized phenotypic responses to the selection as
Dp100�0

s
2

0

, where Dp100�0 is the mean phenotypic difference between F100 and F0 of the populations and

s
2

0
is the phenotypic variance when the experiment starts. We calculated the fractions of simulations

in which expected phenotypic responses in the two sexes (increase in males but decrease in females)

were observed. One-sample proportion test was performed to test for significant difference

between each scenario to the control group. Bonferroni’s correction was applied to account for mul-

tiple testing.
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overall abundance in the whole body. The distributions of the estimates differ significantly between

evolved and ancestral populations in both sexes (Kolmogorov-Smirnov test, D = 0.18 and 0.12 for

females and males, respectively; p<0.001 in both tests).

. Transparent reporting form
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plementary files or in the github repository of this study (https://github.com/ShengKaiHsu/Dsim_sex-

specific_adaptation; copy archived at https://github.com/elifesciences-publications/Dsim_sex-spe-

cific_adaptation).
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