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Abstract Bardet-Biedl syndrome (BBS) is a currently incurable ciliopathy caused by the failure to

correctly establish or maintain cilia-dependent signaling pathways. Eight proteins associated with

BBS assemble into the BBSome, a key regulator of the ciliary membrane proteome. We report the

electron cryomicroscopy (cryo-EM) structures of the native bovine BBSome in inactive and active

states at 3.1 and 3.5 Å resolution, respectively. In the active state, the BBSome is bound to an Arf-

family GTPase (ARL6/BBS3) that recruits the BBSome to ciliary membranes. ARL6 recognizes a

composite binding site formed by BBS1 and BBS7 that is occluded in the inactive state. Activation

requires an unexpected swiveling of the b-propeller domain of BBS1, the subunit most frequently

implicated in substrate recognition, which widens a central cavity of the BBSome. Structural

mapping of disease-causing mutations suggests that pathogenesis results from folding defects and

the disruption of autoinhibition and activation.

Introduction
Most eukaryotic cells have a solitary primary cilium capable of sensing both internal and external

stimuli (Singla and Reiter, 2006). To achieve sensitivity, cilia segregate and concentrate components

of signal transduction pathways (Pala et al., 2017). The prototypical example of this concentrating

effect is the crowding of rhodopsin within the elaborately modified ciliary membranes of retinal pho-

toreceptor neurons (Sung and Chuang, 2010). Furthermore, the transport of signaling proteins in

and out of the cilium allows spatial control of signal transduction, as seen in the anti-correlated

movement of Patched and Smoothened during Hedgehog signaling (Rohatgi et al., 2007).

The establishment of signaling pathways within cilia relies on three processes: trafficking of pro-

teins to cilia from the cytoplasm, selective passage through a diffusion barrier known as the transi-

tion zone at the base of the cilium (Reiter et al., 2012), and a cilium-specific internal transport

mechanism known as intraflagellar transport (IFT) (Kozminski et al., 1993). The BBSome (an octa-

meric complex of BBS1, BBS2, BBS4, BBS5, BBS7, BBS8, BBS9, and BBS18 [Jin et al., 2010;

Loktev et al., 2008]) was initially implicated in the import of transmembrane proteins into the cilium

as it directly binds cytosolic ciliary targeting sequences of transmembrane proteins (Berbari et al.,

2008a; Jin et al., 2010), it is enriched at the transition zone (Blacque et al., 2004; Dean et al.,

2016), and migrates bidirectionally during IFT with the IFT-A and IFT-B complexes (Lechtreck et al.,

2009; Liew et al., 2014; Ou et al., 2005; Williams et al., 2014). Furthermore, ciliary G-protein cou-

pled receptors (GPCRs) including rhodopsin (Abd-El-Barr et al., 2007; Nishimura et al., 2004),

somatostatin receptor 3 (SSTR3) (Berbari et al., 2008b) and neuropeptide Y receptor (Loktev and

Jackson, 2013) were mislocalized in mice lacking BBSome subunits. Trafficking of non-GPCRs,

including the polycystic kidney disease ion channel polycystin-1, was also affected (Su et al., 2014).

However, other transmembrane proteins accumulate in BBSome-deficient cilia (Domire et al., 2011;
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Lechtreck et al., 2013) including those not normally destined for cilia (Datta et al., 2015). This led

to a model in which the BBSome promotes retrieval and export of specific transmembrane proteins

from the cilium (Nachury, 2018) and the IFT-A complex promotes entry (Mukhopadhyay et al.,

2010) (Hirano et al., 2017). Studies have implicated the BBSome in the exit of phospholipase D

(Lechtreck et al., 2013) and SSTR3 and Smoothened (Ye et al., 2018) from the cilium. Thus, the

BBSome is a key regulator of the composition of transmembrane proteins in the ciliary membrane,

and is thought to be evolutionarily related to other transmembrane protein trafficking complexes

including clathrin coats and the COPI and COPII coatomers (Jin et al., 2010; van Dam et al., 2013).

Mutations in BBSome subunits are associated with Bardet-Biedl syndrome (BBS), a ciliopathy char-

acterized by obesity, neurocognitive impairment, postaxial polydactyly, renal anomalies, and retinal

dystrophy (Green et al., 1989). The disruption of the spatial organization of cilia-dependent signal-

ing pathways may underpin many of these diverse phenotypes, including retinal degeneration

(Zhang et al., 2013) and obesity (Guo and Rahmouni, 2011).

The recruitment of the BBSome to ciliary membranes (where it binds transmembrane protein sub-

strates) is mediated by a highly specific interaction with ARL6 (also known as BBS3) (Jin et al.,

2010). ARL6 is a cilium-specific (Fan et al., 2004) member of the Arf family of small GTPases, which

have amphipathic N-terminal helices that associate with membranes in a GTP-dependent manner

(Gillingham and Munro, 2007). ARL6 directly regulates the entry of the BBSome into cilia, as shown

by an 8-fold reduction in BBSome-positive cilia following siRNA-mediated knockdown of endoge-

nous ARL6 (Jin et al., 2010). The interaction between the BBSome and ARL6:GTP has been mapped

to the N-terminal b-propeller domain of BBS1 (BBS1bprop), and a crystal structure of this complex

using recombinant proteins from Chlamydomonas reinhardtii has shown that ARL6 binds blades 1

and 7 of BBS1bprop (Mourão et al., 2014).

Structural information for the BBSome has recently become available in the form of negative-stain

reconstructions of recombinant subcomplexes (Klink et al., 2017; Ludlam et al., 2019) and a mid-

resolution (4.9 Å) cryo-EM reconstruction of the complete native bovine BBSome (Chou et al.,

2019). The latter study revealed the overall architecture of the BBSome with chemical crosslinking

and cutting-edge integrated modeling approaches used to place individual subunits. One of the sur-

prising revelations of this structure was that the BBSome was in a closed conformation incompatible

with the BBS1bprop:ARL6:GTP crystal structure (Mourão et al., 2014), suggesting a conformational

change, representing an activation mechanism, must occur for the BBSome to bind ARL6. However,

in the absence of high-resolution structures, unanswered questions remain about the exact atomic

structure of the BBSome and its relationship to vesicle coat complexes, the mechanism of activation

by ARL6, and the role of disease mutations in BBS.

Here, we use single-particle cryo-EM to determine structures of the native bovine BBSome com-

plex with and without ARL6 at 3.5 Å and 3.1 Å resolution, respectively. These structures allow unam-

biguous subunit assignment and atomic models to be built for each of the eight BBSome subunits.

The structures reveal the mechanism of ARL6-mediated activation and provide new insights into the

pathogenesis of BBS-causing mutations and the evolutionary relationship between the BBSome and

other transmembrane protein trafficking complexes.

Results
Native BBSome complexes were isolated directly from bovine retinal tissue using recombinant,

FLAG-tagged ARL6:GTP as bait (Jin et al., 2010). Since the BBSome interacts with only the GTP-

bound form of ARL6, we used a dominant negative version of ARL6 that is deficient in GTPase activ-

ity. BBSome complexes and ARL6 were eluted from the affinity column and then purified by size-

exclusion chromatography. During this step, the native BBSome complexes were recovered in differ-

ent fractions from ARL6:GTP, indicating dissociation of ARL6 from the BBSome. BBSome complexes

lacking ARL6 were further purified by ion exchange chromatography to yield homogenous samples

suitable for structural analyses (Figure 1—figure supplement 1a). Immediately prior to vitrifying

grids for cryo-EM, the BBSome samples were mixed with a 2 � molar excess of recombinant ARL6:

GTP in the pursuit of reconstituting the BBSome:ARL6:GTP complex.

Three-dimensional classification of the cryo-EM data (Figure 1—figure supplement 1b–d)

revealed that BBSome complexes with and without ARL6 were captured. The BBSome alone was

resolved to 3.1 Å resolution and the BBSome:ARL6:GTP complex to 3.5 Å resolution (Figure 1—
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figure supplement 1e and Table 1). We also isolated BBSome complexes that lack BBS5 or BBS7

(Figure 1—figure supplement 1d). These rare subcomplexes (2–4% of the total dataset) may reflect

native intermediates, or dissociation of the complex during purification or vitrification. Compared to

the previous mid-resolution structure (Chou et al., 2019), our higher-resolution data allows atomic

models to be built with sidechain accuracy including for previously unbuilt domains of BBS2 and

BBS7. The higher-resolution data also revealed that the N-terminal b-propeller domains of BBS2

(BBS2bprop) and BBS7 (BBS7bprop) and the pleckstrin homology domains of BBS5 had been misplaced

at lower resolution.

Overall architecture of the BBSome
In the absence of ARL6, the eight subunits of the BBSome are arranged in two lobes that we call the

head and the body (referred to as the top and base lobes by Chou and colleagues [Chou et al.,

2019]) (Figure 1). The head is formed by an asymmetric heterodimer of BBS2 and BBS7, with the

other six subunits forming the body. The head and body are connected by a helical neck formed

from two abutting coiled coils, one from BBS2 and the other from BBS9. BBS1bprop occupies a spe-

cial position in the BBSome, cradled loosely between BBS7 in the head and BBS4 in the body. The

division of the BBSome into head and body lobes with BBS1bprop considered separately is based on

both the physical architecture and differences in dynamics. Relative to the body, the head is more

flexible and less well resolved, while BBS1bprop shows additional flexibility independent of the head

Table 1. Cryo-EM data collection, refinement and validation statistics.

BBSome
(EMD-21144)
(PDB 6VBU)

BBSome:ARL6:GTP
(EMD-21145)
(PDB 6VBV)

Data collection and processing

Magnification 81,000 81,000

Voltage (kV) 300 300

Electron exposure (e–/Å2) 56 56

Defocus range (mm) �1.1 to �2.4 �1.1 to �2.4

Pixel size (Å) 1.06 1.06

Symmetry imposed C1 C1

Final particle images (no.) 152,942 75,201

Map resolution (Å)
FSC threshold

3.1
0.143

3.5
0.143

Refinement

Resolution limit set in refinement (Å) 3.1 3.5

Map sharpening B factor (Å2) �45.9 �43.6

Model composition
Non-hydrogen atoms
Protein residues
Ligands

30,209
3820
2 Ca2+

31,676
4000
2 Ca2+; 1 GTP

B factors (Å2)
Protein
Ligand

60.8
74.0

53.9
82.3

R.m.s. deviations
Bond lengths (Å)
Bond angles (˚)

0.005
0.68

0.004
0.71

Validation
MolProbity score
Clashscore
Poor rotamers (%)

2.02
12.0
0.2

2.07
12.7
0.7

Ramachandran plot
Favored (%)
Allowed (%)
Disallowed (%)

93.5
6.5
0.0

92.7
7.2
0.1
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movement (Figure 1—figure supplement 1g). To visualize the interlobe movement and generate

high quality maps for model building, we used multibody refinement. The results show that the head

adopts an ensemble of conformations with no single trajectory dominating (Video 1).

Within the body, BBS9 interacts with all other subunits of the BBSome. The extensive interconnec-

tivity may explain why the BBSome needs three dedicated chaperonin-like BBS proteins (BBS6,

BBS10, and BBS12) and CCT/TRiC family chaperonins to assemble (Seo et al., 2010).

Figure 1. Structure of the mammalian BBSome. (a) Two views of the cryo-EM structure of the bovine BBSome

(postprocessed map contoured at a threshold of 0.015 and colored by subunit). (b) Atomic models of the eight

subunits of the BBSome in the same orientations as the map in panel a. The BBSome can be conceptually divided

into head and body lobes (indicated with dashed lines) with the b-propeller domain of BBS1 sandwiched between.

A helical neck formed from abutting coiled coils from BBS2 and BBS9 connects the head and body of the

BBSome.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Cryo-EM data processing.

Figure supplement 2. Data quality.
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BBS1, BBS2, BBS7 and BBS9 are
structural homologs
BBS2, BBS7, and BBS9 all share the same five-

domain architecture with an N-terminal b-propel-

ler (bprop) followed by a heterodimerization a-

helix (hx), an immunoglobulin-like GAE domain

(GAE), a mixed a/b plaform (pf), and an a-helical

coiled-coil (CC) (Figure 2a). BBS1 is a shorter

homolog that lacks the last two domains. The

conserved domain architectures of BBS1, BBS2,

BBS7 and BBS9 suggest a common evolutionary

origin. Together these four structurally homolo-

gous proteins are responsible for two-thirds of

the molecular mass of the BBSome (Table 2),

including all of the head.

The b-propeller domains of the four homolo-

gous BBS subunits are closely related members

of the seven-bladed WD40 repeat family

(Figure 2b). Each b-propeller has a ‘velcro’ clo-

sure with the N-terminal b1-strand serving as the

outermost strand for the last blade (Figure 2c).

Only BBS1bprop contains a large structured insertion, with a helical region between residues 110 and

195 (Figure 2d). This insertion is one of the few regions of the BBSome for which we cannot build an

accurate atomic model. Although the function of this insertion is unclear, if forms multiple chemical

crosslinks with the disordered N-terminus of BBS4 (Chou et al., 2019), and has been suggested to

bind PCM-1 at centriolar satellites during BBSome assembly (Chou et al., 2019; Kim et al., 2004).

BBS2bprop is unique among the BBSome b-propeller domains, as contains two Dx[D/N]xDG-like

calcium-binding loops (Rigden et al., 2011); the first in blade 4 and the second in blade 6. A calcium

cation can be seen bound to both loops, coordinated by a network of acidic sidechains and the

mainchain of the conserved glycine (Figure 2e). A mutation (D170N) in the first of these loops is

associated with BBS (Patel et al., 2016), suggesting that calcium binding by BBS2 is required for the

proper functioning of the BBSome.

The b-propeller domains of BBS1, 2, 7 and 9 are followed by an a-helix and an immunoglobulin-

like b-sandwich (Figure 3a–c and Figure 3—figure supplement 1a). This b-sandwich structurally

resembles GAE domains, which are found in two different types of clathrin adaptors; the adaptin

subunits of clathrin adaptor protein (AP) complexes (Owen et al., 1999; Traub et al., 1999) and the

monomeric GGA family of clathrin adaptor proteins (Dell’Angelica et al., 2000). However, the GAE

domains of the BBSome and clathrin adaptors differ in both topology � the b4 strand participates in

different b-sheets (Figure 3—figure supplement 1b–c) � and function. Whereas the GAE domains

of clathrin adaptors recruit accessory proteins to clathrin by binding hydrophobic motifs within the

cytosolic tails of transmembrane proteins (Brett et al., 2002; Miller et al., 2003), the BBSome GAE

domains are involved in heterodimerization. BBS2GAE dimerizes with BBS7GAE in the head

(Figure 3b), and BBS1GAE dimerizes with BBS9GAE in the body (Figure 3c). The dimerization inter-

face occludes the peptide-binding site of the clathrin adaptor GAE domains (Brett et al., 2002;

Jürgens et al., 2013; Miller et al., 2003) (Figure 3d). The BBSome GAE domains also show low

sequence and structural similarity with one another. For example, both BBS7GAE and BBS9GAE have

a strand insertion between the b3 and b4 strands, but this additional strand contributes to different

b-sheets in the two subunits (Figure 3—figure supplement 1b). These structural differences likely

prevent incorrect pairing between BBSome subunits during assembly. The a-helix that precedes the

GAE domain is part of the dimerization interface and forms a short coiled-coil with the correspond-

ing a-helix of its partner subunit (Figure 3a–c).

In BBS2, BBS7 and BBS9, the GAE domain is followed by a domain which consists of a single b-

sheet and two a-helices (Figure 3—figure supplement 1d). This domain resembles the platform

domain that follows the GAE domain in the a-adaptin subunit of the clathrin AP-2 complex

(Owen et al., 1999; Traub et al., 1999) but lacks the N-terminal a-helix and has an additional

Video 1. Dynamics of the BBSome:ARL6:GTP complex

represented by the first three principal motions from

multibody refinement. Two orthogonal views are shown

for each motion.

https://elifesciences.org/articles/53322#video1

Singh et al. eLife 2020;9:e53322. DOI: https://doi.org/10.7554/eLife.53322 5 of 22

Research article Structural Biology and Molecular Biophysics

https://elifesciences.org/articles/53322#video1
https://doi.org/10.7554/eLife.53322


Figure 2. b-propeller domains of the BBSome. (a) Domain organization of BBS1, BBS2, BBS7, and BBS9. (b) The bovine BBSome contains four

homologous b-propeller domains. The positions of the calcium cations that bind BBS2bprop are marked with a star. (c) BBS9bprop rainbow colored from

N to C-terminus. The N-terminal b1-strand serves as a ‘velcro’ closure for blade 7. The individual blades are numbered. (d) BBS1bprop contains a helical

insertion that likely interacts with the N-terminus of BBS4. (e) Calcium-binding loops of BBS2bprop. Residue D170 is mutated in Bardet-Biedl syndrome

(Patel et al., 2016).

Table 2. Proteins present in the BBSome or BBSome:ARL6:GTP complexes.

Protein NCBI accession Protein length (residues) Molecular mass (kDa) Total built residues (BBSome)
Total built residues (BBSome:
ARL6:GTP)

BBS1 XP_010819476.1 668 72.9 486 486

BBS2 NP_001033249.1 721 79.8 659 659

BBS4 NP_001069424.1 519 58.2 386 391

BBS5 NP_001094602 341 38.8 300 300

BBS7 NP_001178275.2 715 80.4 698 706

BBS8 XP_024853996 501 56.6 475 475

BBS9 NP_001179782 887 99.1 764 764

BBS18 XP_003587939.1 69 8.1 52 52

ARL6 NP_001069250.1 186 21.1 - 167
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C-terminal b-strand (Figure 3—figure supplement 1e–f). Like the GAE and platform domains of a-

adaptin, the GAE and platform domains of the BBSome subunits make extensive, hydrophobic con-

tacts with one another (with an interface of 520–610 Å2). The relative orientation between the GAE

and pf domains of BBS9 mirrors those of a-adaptin (Owen et al., 1999; Traub et al., 1999) and the

modules are closely superimposable (Figure 3e). However, the same domains in BBS2 and BBS7

adopt different orientations relative to one another (Figure 3e, inset), which prevents the modules

being readily superimposable with a-adaptin. Like the GAE domain, the platform domain of a-adap-

tin is capable of binding substrate peptides through a hydrophobic pocket (Brett et al., 2002). In

the BBSome, these platform domains are solvent accessible, but are yet to be implicated in sub-

strate recognition.

In all three subunits, the platform domain is followed by a helical C-terminal region containing a

coiled-coil. The coiled-coils of BBS2 and BBS9 come together to form the neck of the BBSome

(Figure 1b). The coiled-coil of BBS7 is unpaired but contacts the midpoint of the neck (Figure 3a).

Figure 3. BBS1, BBS2, BBS7 and BBS9 are homologous proteins with similarities to the clathrin adaptor proteins. (a) Location of BBS1, BBS2, BBS7, and

BBS9 in the BBSome, colored except for their b-propeller domains. GAE heterodimers shown in panels c and d are boxed. In the rotated view all non-

colored subunits are removed for clarity. (b) Heterodimerization of BBS2 and BBS7 involves the hx-GAE module. (c) Heterodimerization of BBS1 and

BBS9. (d) Superposition of BBS9GAE with the GAE domain of AP-1 clathrin adaptor subunit g-like 2 reveals that the heterodimerization interface with

BBS1GAE would occlude the substrate binding pocket. (e) The GAE-pf module of BBS2, BBS7 and BBS9 resembles the equivalent module of the AP-2

clathrin adaptor a2-adaptin. While BBS9GAE-pf superposes closely with a2-adaptin, the GAE and pf domains of BBS2 and BBS7 (inset) adopt different

orientations relative to one another.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Topology of the BBSome GAE and platform (pf) domains.
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Domain organization of the body
BBS4, BBS5, BBS8 and BBS18 make up the remaining third of the molecular mass of the BBSome.

BBS4 and BBS8 are related proteins with tetratricopeptide repeats (TPRs) that fold into a-solenoids

(Figure 4). BBS8 occupies a central region of the body whereas BBS4 runs along the side

(Figure 4b). The two subunits are physically connected with the C-terminus of BBS8 binding perpen-

dicular to the midsection of BBS4 (Figure 4c). Whereas BBS4 forms a conventional uninterrupted a-

solenoid, BBS8 has an insertion between the third and fourth a-helices of its a-solenoid (residues

48–158). This insertion consists of two short a-helices and long loops that fold together into a com-

pact domain (Figure 4b–c). The density for this region is considerably weaker than for the neighbor-

ing environment, suggesting it is flexible or capable of unfolding. TPR-containing proteins typically

bind a specific linear peptide within the concave surface of the a-solenoid (Zeytuni and Zarivach,

2012). In the case of the BBS4 and BBS8, the linear peptide is BBS18, the smallest BBSome subunit

(Figure 4c). By stretching between BBS4 and BBS8, BBS18 appears to stabilize their association. In

absence of BBS18, BBS4 fails to incorporate into the BBSome (Loktev et al., 2008).

BBS5, the remaining subunit, is located at the periphery of the body in extensive contact with the

edge of BBS9bprop (Figure 5a). BBS5 contains tandem pleckstrin homology (PH) domains (BBS5N-PH

and BBS5C-PH) and an extended C-terminus that forms additional interactions with BBS9. Each PH

domain consists of two curved antiparallel b-sheets forming a hydrophobic gorge capped by an

amphiphilic a-helix. Despite just 25% sequence identity, the two domains share remarkable struc-

tural similarity with a root-mean-square deviation (r.m.s.d.) of 1.0 Å (Figure 5b). Many PH domains

interact with the negatively charged headgroups of phosphoinositides through an electropositive

binding pocket at the apex of the domain (Ferguson et al., 2000). As recombinant full-length BBS5

and BBS5N-PH have been shown to interact with phosphatidic acid and phosphoinositides in lipid-

protein overlay assays (Nachury et al., 2007), we examined whether the BBS5 PH domains had

retained this pocket (Figure 5c). We also considered the noncanonical phosphoinositide binding site

of the PH-family GLUE domains from ESCRT complexes (Teo et al., 2006), which are structurally

Figure 4. BBS18 spans the a-solenoids of BBS4 and BBS8. (a) Domain organization of BBS4, BBS8 and BBS18.

BBS18 is 69 residues long and does not form a globular domain. BBS8 has an insertion (ins.) between

tetratricopeptide repeats 2 and 3. (b) Location of BBS4, BBS8 and BBS18 in the BBSome. (c) Two views of the

BBS4-BBS8-BBS18 subcomplex. BBS8 binds perpendicular to BBS4. The insertion in BBS8 forms a globular domain

made from long loops and short a-helices. BBS18 binds the concave surfaces of the BBS8 and the N-terminal half

of BBS4.
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similar to the BBS5 PH domains (Figure 5d). For both potential binding sites, the phosphoinositide

binding sites are not conserved in either BBS5N-PH or BBS5C-PH. Furthermore, both pockets of

BBS5N-PH and the conventional pocket of BBS5C-PH are occluded by elements from BBS9

(Figure 5c). The GLUE-specific phosphoinositide binding site of BBS5C-PH is open to solvent, but

lacks the basic residues required to bind phosphoinositides. We therefore conclude that if BBS5

does bind phosphoinositides in vivo, it is either through an unknown interface or after a conforma-

tional change that exposes the phosphoinositide binding sites.

ARL6-mediated activation of the BBSome
The BBSome is recruited to ciliary membranes by membrane-associated, GTP-bound ARL6

(Jin et al., 2010). A crystal structure has shown that ARL6:GTP interacts with blades 1 and 7 of the

BBS1bprop (Mourão et al., 2014). However, this binding site is occluded in the BBSome structure, as

blade 7 of BBS1 forms a continuous eight-stranded b-sheet with the corresponding blade of the

adjacent BBS2bprop (Figure 6a). The occlusion of the ARL6 binding site and the general flexibility of

the head had led to suggestions that the head must open to allow ARL6 to bind (Chou et al., 2019).

Figure 5. BBS5. (a) Position of BBS5 at the periphery of the BBSome body. BBS5 has tandem pleckstrin homology domains (BBS5N-PH and BBS5C-PH)

and an extended C-terminus (BBS5C-term). (b) BBS5N-PH and BBS5C-PH superpose with a root-mean-square deviation (r.m.s.d.) of 0.97 Å. (c) Potential

phosphoinositide binding sites were determined from crystal structures of pleckstrin homology domains in complex with inositol-(1,3,4,5)-

tetrakisphosphate (PDB: 1FAO) (Ferguson et al., 2000) or sulfate ions (PDB: 2CAY) (Teo et al., 2006). Three of the four potential binding sites in BBS5

are occluded by other BBSome subunits (blue arrows). The fourth (green arrow) is accessible but not conserved. (d) Superposition of BBS5C-PH with the

GLUE domain of Vps36, a component of the ESCRT-II complex (Teo et al., 2006). Vps36GLUE has a non-canonical phosphoinositide binding site

(identified based on the binding site of a sulfate ion).
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However, our 3.5 Å resolution structure of the BBSome:ARL6:GTP complex shows that the head

remains in a closed, downward conformation even in the presence of ARL6 (Figure 6b). Rather,

BBS1bprop swivels in its cradle between BBS4 and BBS7 to accommodate ARL6 (Figure 6c and Fig-

ure 6—figure supplement 1). This swiveling action involves a rotation of approximately 25˚ and a

movement of 13 Å away from BBS2bprop. The N-terminal half of BBS4 shows a small 2–3 Å displace-

ment to accommodate the movement of BBS1bprop. However, the hx and GAE domains of BBS1

remain static due to their attachment to BBS1bprop through a flexible linker. The swiveling of

BBS1bprop opens a central cavity in the BBSome with dimensions of 50 � 15 Å, wide enough to

accommodate a polypeptide chain. This cavity is flanked by the newly exposed edges of BBS1bprop,

BBS2b-prop and BBS7bprop as well as BBS4 and BBS8 in the body.

The interaction between ARL6:GTP and the BBSome-bound BBS1bprop is similar to that seen in

the crystal structure of the C. reinhardtii BBS1bprop:ARL6:GTP ternary complex (Mourão et al.,

2014). The first and last blades of BBS1bprop interact with the switch two loop and helices a3 (resi-

dues 75–78) and a4 (residues 98–108) of the GTP-bound ARL6. Density for GTP (Figure 1—figure

supplement 2c) and the ordered switch loops of ARL6 are clearly visible in our reconstruction. We

also see an additional interaction between ARL6 and the loop that connects BBS7bprop with BBS7hx

(residues 320–335) (Figure 6d). This linker is disordered in the BBSome-only structure but binds

along the b-edge of the central b-sheet of ARL6. The corresponding linker in BBS2 also comes close

to ARL6 (Figure 6d), although the density is insufficiently resolved to build a model of this interac-

tion. These contacts may stabilize the BBSome:ARL6 interaction and the downward position of the

head in the presence of ARL6.

Figure 6. Mechanism of BBSome activation by ARL6. (a) In the BBSome-only state, BBS1bprop and BBS2bprop bind

edge-to-edge with hydrogen bonding between their b1 strands generating a continuous eight-stranded b-sheet.

(b) Cryo-EM structure of the BBSome:ARL6:GTP complex (postprocessed map contoured at a threshold of 0.015

and colored by subunit). ARL6 interacts with BBS7bprop and BBS1bprop, which is in a rotated state compared to in

the BBSome-only structure (Figure 1). (c) Rotation of BBS1bprop in the ARL6-bound state breaks the interaction

with BBS2bprop and opens a central cavity in the BBSome. The region highlighted in panel d is boxed. (d) Details

of the interaction between ARL6:GTP, BBS2, and BBS7. A loop of BBS7 that is disordered in the BBSome-only

state forms a b-addition with the central b-sheet of ARL6. Regions of BBS2 and BBS7 that are not fully resolved in

the cryo-EM density are shown as dashed lines.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Rotation of BBS1bprop upon ARL6 binding.

Figure supplement 2. Model for the assembly of the BBSome at ciliary membranes.
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Structural mapping of BBS mutations
Taking advantage of our high-quality maps in which individual sidechains are well resolved, we

mapped known disease mutations in human BBSome subunits and ARL6 onto the structure of the

bovine BBSome:ARL6:GTP complex (Figure 7a). Pathogenic mutations were obtained from a

curated list of BBS-associated mutations (Chou et al., 2019) supplemented with ARL6 mutations

from the ClinVar database (Landrum et al., 2014) (Table 3). Only non-synonymous polymorphisms

annotated as pathogenic in either BBS or retinitis pigmentosa were considered. BBS1 and BBS2 are

the two most commonly mutated genes in BBS (Forsythe and Beales, 1993) with the majority of

mutations located in their b-propeller domains. This includes the BBS1M390R mutation, the single

most common mutation found in human BBS patients and one which is sufficient to induce BBS phe-

notypes including retinal degeneration and obesity in a mouse model (Davis et al., 2007). Our anal-

ysis suggests that many of the mutations within BBS1bprop and BBS2bprop would result in the

introduction of bulky or charged residues that would disrupt hydrophobic packing and correct fold-

ing, as shown experimentally for the M390R mutation introduced into recombinant BBS1bprop

(Mourão et al., 2014). The vulnerability of BBS1bprop and BBS2bprop reflects their important contribu-

tions to the BBSome’s autoinhibitory and activation mechanisms. Destabilizing mutations within

these domains would affect formation of the head, the positioning of BBS1bprop, and recruitment by

ARL6. We also note a cluster of mutations in BBS7 (L317V, H323R, G329V, R346Q) close to its inter-

action site with ARL6. In particular, H323R and G329V are within the flexible linker that only

becomes ordered in the presence of ARL6 (Figure 7b). Mutations within this linker may disrupt

ARL6-mediated BBSome recruitment.

Most mutations outside BBS1bprop and BBS2bprop can be rationalized as causing misfolding of

individual subunits, predominantly by affecting the packing of the hydrophobic cores. Other muta-

tions map to the interfaces between subunits. For example, BBS4N309K (Muller et al., 2010) maps to

the interface with BBS18 (Figure 7c), BBS1E224K (Redin et al., 2012) maps to the interface between

BBS1bprop and BBS4 (Figure 7d), and BBS2R632P (Katsanis et al., 2001) maps to the interface

Figure 7. Structural insights into Bardet-Biedl syndrome. (a) Known disease-causing mutations mapped onto the model of the BBSome:ARL6:GTP

complex. Each sphere, colored by subunit, represents a missense mutation associated with either BBS or retinitis pigmentosa. (b) Mutations in BBS7

close to the binding site with ARL6. (c–e), BBS mutations that could disrupt subunit association and therefore proper BBSome assembly. Panels b-e

show the postprocessed map contoured at a threshold between 0.015–0.02 and colored by subunit.
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between the coiled-coils of BBS2 and BBS9 in the neck (Figure 7e). These mutations may affect the

proper assembly of the BBSome.

Discussion

Mechanism of BBSome activation and implications for substrate
recognition and IFT
Our structures of the BBSome with and without ARL6 show that activation of the BBSome at ciliary

membranes requires a swiveling of BBS1bprop that widens a cavity in the body of the BBSome. This

relief of autoinhibition through a conformational change is similar to other Arf-regulated systems,

including the clathrin adaptor complexes (Ren et al., 2013). The rotation of BBS1bprop and the open-

ing of the cavity may allow substrate recognition by newly accessible elements. In particular, the

breaking of the continuous b-sheet between BBS1 and BBS2 exposes b-edge strands, which are

common mediators of protein–protein interactions (Remaut and Waksman, 2006) that have the

potential to hydrogen bond to cytosolic regions of transmembrane proteins. BBS1 is especially impli-

cated in substrate recognition and interacts with all known substrates of the BBSome including the

C-terminal cytosolic tails of Smoothened and Patched-1 (Zhang et al., 2012), the Leptin receptor

(Seo et al., 2009), and polycystin-1 (Su et al., 2014). The plasticity of BBS1 in its loosely held cradle

may allow it to subtly reorient to make optimal contacts with multiple cargoes. Some substrates

bind other BBSome subunits as well as BBS1. Smoothened binds BBS4, BBS5, and BBS7 in co-trans-

fection immunoprecipitation experiments (Zhang et al., 2012). Polycystin-1 interacts with BBS4,

BBS5, and BBS8 in yeast two-hybrid screens (Su et al., 2014). Our structures show that these subu-

nits are present on a relatively flat face of the BBSome that, based on the orientation induced by

ARL6, would lie parallel to the ciliary membrane in vivo, forming a large interface for cargo binding

(Figure 6—figure supplement 2). However, the relevance of these interactions is unclear as traffick-

ing of polycystin-1 to cilia is only severely diminished in BBS1 knockdown cells (Su et al., 2014).

Assuming the flat surface of the BBSome abuts the membrane, the opposite face would be free

to interact with the IFT complexes (IFT-A and IFT-B), with which the BBSome comigrates

(Lechtreck et al., 2009; Liew et al., 2014; Ou et al., 2005; Williams et al., 2014). Recent data from

visible immunoprecipitation experiments has mapped the interaction to BBS1, BBS2 and BBS9 of the

BBSome, and IFT38 of the IFT-B complex (Nozaki et al., 2019). This is consistent with the copurifica-

tion of BBSome subunits with endogeneously tagged IFT38 in a human cell line (Beyer et al., 2018).

Analysis of our structure shows that BBS1, BBS2 and BBS9 come together at the base of the neck

where the coiled-coil domains of BBS2 and BBS9 meet the GAE dimerization domains of BBS1 and

BBS9. Whether this is the sole binding site for the IFT complexes awaits further investigation, espe-

cially as other IFT-B subunits including IFT25 (Eguether et al., 2014), IFT27 (Aldahmesh et al.,

2014; Eguether et al., 2014; Liew et al., 2014), IFT74 (Lindstrand et al., 2016) and IFT172

(Schaefer et al., 2016) are either genetically associated with BBS or have been associated with

BBSome exit from the cilium.

Table 3. Mutations in ARL6 associated with BBS or retinitis pigmentosa (RP) that are mapped onto

the structure in Figure 7a.

The mapped disease-associated mutations in core BBSome subunits are provided as a supplemental

table in Chou et al. (2019).

Gene Protein mutation Phenotype Reference

ARL6 T31M BBS (Fan et al., 2004)

ARL6 T31R BBS (Fan et al., 2004)

ARL6 A89V RP (Aldahmesh et al., 2009)

ARL6 I91T BBS (Chandrasekar et al., 2018)

ARL6 I94T RP (Khan et al., 2013)

ARL6 G169A BBS (Young et al., 1998)

ARL6 L170W BBS (Fan et al., 2004)
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Relationship to vesicle coats
Our structures strengthen the proposed evolutionary relationship between the BBSome, clathrin

coats, and the COPI and COPII coatomers (Jin et al., 2010; van Dam et al., 2013), which are all

involved in transmembrane-protein trafficking. In particular, we show that the GAE-pf module of

BBS2, BBS7, and BBS9 is structurally related to the same module found in the a-adaptin subunit of

the clathrin adaptor complex, AP-2 (Owen et al., 1999; Traub et al., 1999) (Figure 3e). The mecha-

nism of membrane-recruitment and activation of the BBSome by ARL6 is also reminiscent of the acti-

vation of clathrin AP complexes by Arf1 and Arf6 GTPases (Paleotti et al., 2005; Ren et al., 2013),

in which a GTPase-induced conformational change precedes substrate recognition.

The a-solenoids, b-propellers, and PH-like domains of the BBSome also have equivalents in other

membrane trafficking complexes. For example, a-solenoids and b-propellers are hallmarks of the

protocoatomer family, although in clathrin and COP coatomers the a-solenoids and b-propellers are

domains of the same protein (Rout and Field, 2017). BBS5-like PH domains are found in the ESCRT

complexes (Teo et al., 2006), which are required for the formation and sorting of endosomal cargo

proteins into multivesicular bodies.

The structural similarity with the clathrin adaptor complexes provides compelling support for the

model that the BBSome is an adaptor complex, linking transmembrane proteins to the IFT-B com-

plexes for active transport (Liu and Lechtreck, 2018). However, while other trafficking complexes

oligomerize to form membrane deformations and vesicles (Rout and Field, 2017), the evidence that

the BBSome can do likewise is limited. BBSome complexes incubated with full-length ARL6 can form

electron-dense coats surrounding sections of liposomes but without inducing membrane deforma-

tion (Jin et al., 2010). In the absence of membranes, we observed no evidence of BBSome oligomer-

ization by either size-exclusion chromatography or by electron microscopy. Further work will be

needed to examine the evolutionary and functional relationship with vesicle coats and with the IFT

complexes, which are also predicted to have evolved from a common progenitor (van Dam et al.,

2013).

In summary, our structures of the BBSome with and without ARL6 reveal the intricate subunit

arrangement of the BBSome and its mechanism of membrane-recruitment and activation by an Arf-

family GTPase. We show that the ARL6 binding site includes contributions from BBS2 and BBS7 as

well as BBS1. The swiveling of BBS1bprop to accommodate ARL6 and the resultant widening of a cav-

ity within the BBSome will inform work to elucidate the molecular basis of substrate recognition and

the relationship between the BBSome and the IFT machinery. Furthermore, our structures can help

guide the design of future therapies, in particular CRISPR-based in vivo genetic engineering, aimed

at curing or alleviating the effects of BBS.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Gene
(Bos taurus)

ARL6. NCBI
Gene ID: 519014

IDT - Codon optimized

Biological
Sample

Bovine dark-
adapted retinas

W L Lawson
company (NE, USA)

-

Strain, strain
background Escherichia coli cells

BL21(DE3) Novagen 69450–4 Chemically
Competent cells

Affinity resin Anti-Flag M2 Sigma A2220

Chemical
compound

GTP Sigma G8877

Cryo grids QUANTIFOIL
R 1.2/1.3

Electron
Microscopy
Sciences

Q4100AR1.3

Commercial
assay or kit

Gibsons Assembly Invitrogen A14606

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Sequence
based reagents

Arl6_dN16 Fwd This paper PCR primers GAAGTTCATGTGCTGTGTTTGG

Sequence
based reagents

Arl6_dN16 Rev This paper PCR primers ACTCCCACCCCCTTTATCATC

Sequence
based reagents

Arl6_addHis_Fwd This paper PCR primers TG GAA GTT CTG TTC CAG GGG CCC
GATTACAAGGACGATGATGATAAAG

Sequence
based reagents

Arl6_addHis_Rev This paper PCR primers GAATTCTCGAGCGGCCGCCCTTA
TGTCTTCACCGACTGAATC

Software,
algorithm

serialEM doi:
10.1038/s41592-019-0396-9

RRID:SCR_017293 https://bio3d.colorado.
edu/SerialEM

Software,
algorithm

MotionCor2 v.1.2.1 doi:
10.1038/nmeth.4193

RRID:SCR_016499

Software,
algorithm

CTFFIND v.4.1.13 doi:
10.1016/j.jsb.2015.08.008

RRID:SCR_016732 https://cistem.org/ctffind4

Software,
algorithm

RELION v.3.0.4 doi:
10.7554/eLife.42166

RRID:SCR_016274 https://www3.mrc-
lmb.cam.ac.uk/relion/index.
php/Download_%26_install

Software,
algorithm

Coot v. 0.9-pre doi:
10.1107/S0907444904019158

RRID:SCR_014222 https://www2.mrc-lmb.cam.ac.uk/personal/
pemsley/coot/

Software,
algorithm

Phenix.real_
space_refine

doi:
10.1107/S2059798318006551

RRID:SCR_014224 https://www.phenix-online.org/

Software,
algorithm

UCSF Chimera v1.13.1 doi:
10.1002/jcc.20084

RRID:SCR_004097 http://plato.cgl.ucsf.edu/chimera/

Software,
algorithm

UCSF ChimeraX v.0.9 doi:
10.1002/pro.3235

RRID:SCR_015872 https://www.cgl.ucsf.edu/chimerax/

Software,
algorithm

PyMOL v2.3.2 PyMOL Molecular
Graphics System,
Schrödinger, LLC

RRID:SCR_000305 http://www.pymol.org/

Software,
algorithm

crYOLO doi:
10.1038/s42003-019-0437-z

- http://sphire.mpg.de/
wiki/doku.php?id=
pipeline:window:cryolo

Software,
algorithm

ResMap doi:
10.1038/nmeth.2727

- http://resmap.sourceforge.net/

Software,
algorithm

I-TASSER doi:
10.1186/1471-2105-9-40

RRID:SCR_014627 https://zhanglab.ccmb.
med.umich.edu/I-TASSER

Software,
algorithm

MolProbity v.4.3.1 doi:
10.1107/S0907444909042073

RRID:SCR_014226 http://molprobity.biochem.duke.edu

Software,
algorithm

SBGrid doi:
10.7554/eLife.01456

RRID:SCR_003511 https://sbgrid.org/

ARL6 cloning and purification
To isolate the BBSome complex from bovine retina, we first generated a recombinant bait protein,

bovine ARL6. A synthetic, codon-optimized nucleotide sequence (Integrated DNA Technologies)

encoding Bos taurus ARL6 with an N-terminal FLAG tag replacing the first 16 residues of ARL6 was

inserted into a pSY5 vector using Gibson assembly. The pSY5 vector introduces an additional octa-

histidine tag and PreScission cleavage site prior to the Flag tag. A dominant negative Q73L mutation

was introduced to slow GTP hydrolysis (Jin et al., 2010). His8-3C-Flag-D16NARL6(Q73L) was

expressed in Escherichia coli BL21(DE3) cells (Novagen) at 20˚C overnight after induction with 1 mM

isopropyl b-D-1-thiogalactopyranoside (Sigma) once the cells reached an optical density of 0.4–0.6

at 600 nm. The bacterial cells were collected by centrifugation at 7000 x g for 7 min. All subsequent

steps were performed on ice or at 4˚C. The bacterial cells were resuspended in lysis buffer (40 mM

Tris pH 8.0, 150 mM NaCl, 10 mM imidazole, 5 mM MgCl2, 4 mM b-mercaptoethanol, 0.05% NP-40,

HALT protease inhibitor cocktail (Thermo Fischer Scientific)) and sonicated for a total of 8 min using

20 s on/20 s off cycles and 20% amplitude. The bacterial lysate was clarified using centrifugation at
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40,000 x g for 40 min and loaded onto a 5 ml His-Trap column (GE Healthcare) pre-equilibrated with

lysis buffer. The column was then washed with 100 ml of lysis buffer without protease inhibitors. The

octahistidine tag was removed overnight by on-column digestion with human rhinovirus 3C protease

which specifically recognizes the PreScission cleavage site. The cleaved Flag-D16NARL6(Q73L) pro-

tein (hereon in called ‘ARL6’) was eluted from the column with 25 ml of lysis buffer and concentrated

to a final volume of 1 ml using a concentrator with a 10 kDa molecular weight cutoff

(Thermo Fischer Scientific). ARL6 was purified to homogeneity using a Superdex 200 (16/60) size-

exclusion chromatography column (GE Healthcare) and elutes as a single, symmetric peak. The peak

fractions were pooled, concentrated to ~10 mg/ml, vitrified in 50 ml aliquots in liquid nitrogen, and

stored at �80˚C until further use.

Preparation of retinal extracts
Bovine retinas were purchased from W L Lawson company (NE, USA). 50 g of bovine retinas were

resuspended in lysis buffer (40 mM Tris pH 8.0, 150 mM NaCl, 250 mM sucrose, 5 mM MgCl2, 4 mM

b-mercaptoethanol, Halt protease inhibitor cocktail (Thermo Fischer Scientific)) and homogenized

using a Tissue Tearor (BioSpec Products) for 1 min. The retinal tissue was further homogenized using

6–10 strokes of a glass Dounce homogenizer. The lysate was clarified by centrifugation at 40,000 x g

for 50 min and the supernatant collected.

Purification of the BBSome
Prior to generating the ARL6 affinity column, we incubated ~2 mg (100 mM) ARL6 with 2 mM GTP

(final concentration) for 1 hr. The ARL6:GTP complex was then loaded onto 3 ml of anti-Flag M2

affinity resin (Sigma). The resin was washed with 30 ml of buffer + 100 mM GTP to remove any

excess, unbound ARL6. Immediately before loading onto the column, 100 mM GTP (final concentra-

tion) was added to the clarified lysate. The retinal tissue lysate was loaded onto anti-Flag M2 pre-sat-

urated with bovine of ARL6 and incubated for 1 hr at 4˚C. The lysate was passed over the column

using a peristaltic pump multiple times with a flow rate of 2 ml/min. Resin was washed with 40 ml

lysis buffer + 100 mM GTP. The BBSome:ARL6 complex was eluted from the column with a total of

10 ml of 0.1 mg/ml Flag peptide (Sigma). Elution was performed in five steps, in which each step

involved a 30 min incubation with Flag peptide. The eluted BBSome:ARL6 complex was concen-

trated to 500 ml using a concentrator with a 100 kDa molecular weight cutoff (Thermo Fischer Scien-

tific) and injected onto a Superdex 200 (16/600) size-exclusion chromatography column (GE

Healthcare) equilibrated with 20 mM Hepes pH 7.5, 220 mM NaCl, 5 mM MgCl2, 4 mM b-mercap-

toethanol. The peak fractions were pooled and concentrated using 100 kDa cut-off concentrator

(Thermo Fischer Scientific) to ~0.5–0.7 mg/ml. ARL6 dissociates from the BBSome during size-exclu-

sion chromatography. The BBSome-containing fractions were then buffer exchanged into 20 mM

Hepes pH 7.5, 20 mM NaCl, 5 mM MgCl2,4 mM b-mercaptoethanol and loaded onto a 1 ml MonoQ

anion exchange chromatography column (GE Healthcare). After washing with 10 column volumes of

buffer, a gradient of 20 mM to 1 M NaCl was applied to elute the BBSome. The purity of the

BBSome is shown in Figure 1—figure supplement 1a.

Sample preparation for cryo-EM
Prior to making grids, 0.7 mg/ml BBSome (~18 mM) was mixed with 2 � molar excess of ARL6 (36

mM) and 1 mM GTP and incubated for an hour at 4˚C. During incubation, holey carbon R1.2/1.3 grids

with gold 400 mesh (Quantifoil Micro Tools) were glow discharged at 15 mA for 30 s (PELCO easi-

Glow Glow Discharge Cleaning System). 3 ml of BBSome:ARL6:GTP complexes were applied to each

glow-discharged grid. Grids were blotted for 2 s with a �2 offset at ~100% humidity and 20˚C before

being plunge-frozen in liquid ethane using a Vitrobot Mk II (Thermo Fisher Scientific).

Cryo-EM data collection
The grids were imaged on a Titan Krios microscope (Thermo Fisher Scientific) operating at an accel-

eration voltage of 300 kV and equipped with a BioQuantum K3 Imaging Filter (slit width 25 eV).

Images were recorded on a K3 Summit direct electron detector (Gatan) operated in counting mode

(Figure 1—figure supplement 1b). For data collection, we used a spot size of 4, a C2 aperture of

50 mm, and a nominal magnification of 81,000 x, yielding a pixel size of 1.06 Å. The total exposure
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time of each movie stack was 4 s fractionated into 50 frames with a total exposure of approximately

56 electrons/Å2. The defocus targets were �1.1 to �2.4 mm. In total, 9408 micrographs were col-

lected from two sessions. SerialEM was used for data collection (Schorb et al., 2019).

Image processing
We used MotionCor2 to correct for global and local (5 � 5 patches) beam-induced motion and to

dose weight the individual frames (Zheng et al., 2017). CTFFIND-4.1 was used to estimate parame-

ters of the contrast transfer function (CTF) (Rohou and Grigorieff, 2015). Particles were picked from

the micrographs using crYOLO (Wagner et al., 2019) and their coordinates exported to RELION-3.0

(Zivanov et al., 2018) for all subsequent processing steps. Particles were extracted with a box size

of 320 pixel. A single round of two-dimensional classification was performed and well-defined clas-

ses corresponding to BBSome particles were selected (Figure 1—figure supplement 1c). An initial

map for the BBSome was generated using RELION’s implementation of the stochastic gradient

descent algorithm using default parameters and a mask diameter of 280 Å. The initial map was used

as a reference for three-dimensional refinement. After refinement, CTF refinement and Bayesian pol-

ishing were performed. The particles from the two data collection sessions were combined after

Bayesian polishing and 3D classification (without alignment) was performed (Figure 1—figure sup-

plement 1d). The two best classes (based on occupancy and map quality) were selected and refined

together. As this map is generated from BBSome particles with and without ARL6, we next per-

formed focused classification with signal subtraction (FCwSS) with a mask centered on ARL6 to sepa-

rate the different species. Classes with and without ARL6 were independently selected and refined.

After post-processing in RELION-3.0, including correcting for the modulation transfer function of the

K3 Summit direct electron detector, the resolution of the BBSome reconstruction was 3.1 Å and the

resolution of the BBSome:ARL6 complex was 3.5 Å based on the FSC = 0.143 criterion

(Rosenthal and Henderson, 2003) (Figure 1—figure supplement 1e). Final reconstructions were

sharpened using automatically estimated B-factors (Rosenthal and Henderson, 2003). Local resolu-

tion calculations were performed with ResMap (Kucukelbir et al., 2014).

To further improve the map density of the BBSome, we used multibody refinement with masks

covering the body (mask 1) and head (mask 2) lobes. BBS1bprop was included in the body mask. The

masks were made in RELION with a raised-cosine soft edge. The quality of the map for the body

was minimally improved with the resolution remaining unchanged at 3.1 Å, but the quality of the

map for the head improved, with a nominal resolution of 3.4 Å. A third mask centered on the ARL6:

BBS1bprop subcomplex was used for multibody refinement of the BBSome:ARL6:GTP complex. These

masks resulted in final resolutions of 3.3 Å for the body, 3.8 Å for the head, and 4.0 Å for the ARL6:

BBS1bprop subcomplex. The masked maps from multibody refinement were resampled to the pre-

multibody reference and merged by taking the maximum density value at each voxel using the vop

maximum command in Chimera (Pettersen et al., 2004). These chimeric maps were used for model

building to take advantage of the improved map quality. Chimera was also used to generate a movie

(Video 1) showing the motion of the lobes and the ARL6:BBS1bprop subcomplex represented by the

first three eigenvectors.

Model building and refinement
Amino acid sequences for the Bos taurus BBSome subunits were obtained from the NCBI (Table 2)

and used as the input to generate comparative models with I-TASSER (Zhang, 2008). These models

were trimmed to remove unstructured or poorly predicted regions. For BBS9bprop, BBS1bprop and

ARL6, the crystal structures of human BBS9bprop (PDB: 4YD8) (Knockenhauer and Schwartz, 2015)

and Chlamydomonas reinhardtii BBS1bprop:ARL6:GTP complex (PDB: 4V0N) (Mourão et al., 2014)

were used directly and mutated to the Bos taurus sequence. The models were then placed into the

BBSome density map using the fit-to-map procedure in Chimera (Pettersen et al., 2004) or manu-

ally in Coot v0.8.9 (Brown et al., 2015). These homology and crystal structures were used as starting

points for model building, but most required comprehensive remodeling. All GAE, pf, and CC

domains were built de novo. The previous model of the BBSome obtained by integrative modeling

(PDB-Dev accession PDBDEV_00000018) (Chou et al., 2019) was not available or used during the

modeling process. During model building and real-space refinement in Coot, torsion, planar peptide

and Ramachandran restraints were used. The models were refined using Phenix.real_space_refine

Singh et al. eLife 2020;9:e53322. DOI: https://doi.org/10.7554/eLife.53322 16 of 22

Research article Structural Biology and Molecular Biophysics

https://doi.org/10.7554/eLife.53322


(Afonine et al., 2018) against the composite maps from multibody refinement. During refinement

the resolution limit was set to match the resolution determined using the FSC = 0.143 criterion. Sec-

ondary structure, Ramachandran and rotamer restraints were applied during refinement. Round of

manual model correction in Coot was performed between rounds of refinement. The final models

were validated using MolProbity v.4.3.1 (Chen et al., 2010) with model statistics provided in Table 1.

FSC curves calculated between the models and the unsharpened maps are shown in Figure 1—fig-

ure supplement 1f.

Figures
Figure panels were generated using PyMOL (DeLano, 2002), Chimera (Pettersen et al., 2004), or

ChimeraX (Goddard et al., 2018). Maps colored by local resolution (Figure 1—figure supplement

1g) were generated with unsharpened density maps using ResMap (Kucukelbir et al., 2014).

Software used in the project were installed and configured by SBGrid (Morin et al., 2013).
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